
4 Lecture 4

4.1 Applications

We now will look at some of the applications of the convex analysis we have learned. First, we shall

us a separation theorem to prove the second fundamental theorem of welfare economics

4.1.1 Second Fundamental Theorem of Welfare Economics

As you know from your micro class, the second fundamental welfare theorem states that any

Pareto Optimal allocation of goods can be supported as a competitive equilibrium (under certain

conditions). Here we are going to use a separation theorem to prove this result in the case of an

 person,  commodity exchange economy. This economy is defined by a set { }=1, where 

is an  length vector of endowments for each person in the economy, and  : R
+ → R is a utility

function for each person. We will make the following assumptions:

Assumption 1   0 for all  ∈ 1

Assumption 2  is continuous and strictly increasing for all 

Assumption 3 for any   ∈ R
+,  ∈ (0 1), (+ (1− ))  min(() ()) (this property

is called strict quasi-concavity)

A (feasible) allocation is any vector  = (1) where  ∈ R
+ such that

X
=1

 =

X
=1



An allocation is weakly Pareto optimal if

(
)  (

) ∀  ∈ 1

for no other feasible allocation .

It is strongly pareto optimal if there is no allocation  such that

(
) ≤ (

) ∀  ∈ 1 

(
)  (

) some  ∈ 1 
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Let  be a price vector if  ∈ R
++ Define the demand correspondence of agent  as

( 
) = argmax

n
(

) :  ∈ R
+ and  ≤ 

o

You should check that the theorem of the maximum, along with the strict q-concavity assump-

tion ensures that these are all continuous functions.

A competitive equilibrium is a price vector  and an allocation  such that

 ∈ ( 
) ∀  ∈ 1

As I am sure you all know, any competitive equilibrium is pareto efficient (the first fundamental

welfare theorem). The key here is to show that any pareto optimal allocation can be supported as

a competitive equilibrium (the second fundamental welfare theorem)

Theorem 8 (The Second Fundamental Theorem of Welfare Economics) For any exchange

economy in which A1-A3 hold, for any strongly Pareto optimal allocation ∗ ∈ R
++, there exists a

price vector ∗ such that ∗ = (
∗ ∗) ∀  ∈ 1 

Proof. Let ∗ be a strongly pareto optimal allocation. Define

 =
n
 ∈ R

+ such that ()  (

∗)
o

Note that  is non-empty (by the fact that  is strictly increasing) and convex (due to strict

q-concavity). Moreover, as  is continuous,  is open. Let  = 1 + + , and note that this is

also non-empty, convex and open. Finally, note that, as ∗ is strongly pareto optimal

X
=1

∗ ∈ 

Otherwise, there would be an allocation  such that  ∈  ∀  and
P

 =
P

∗ =
P

, but

by construction, (
)  (

) all .

So we now have an open convex set  and a point
P

=1 
∗ ∈ . By corollary 3, we can separate

 from
P

=1 
∗, i.e. we can find a normal  ∈ R such that

  

X
=1

∗ ∀  ∈ 
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The strictly increasing nature of  also ensures that  ∈ R++, as, for every  ∈ 1  

 +

X
=1

∗ ∈ 

so if  ≤ 0, then we would have a contradiction.

Now all we have to do is show that ∗ = ( ∗) ∀ . Suppose not, then there exists some  and
some bundle  ∈ R

+ such that

 ≤ ∗ and

(
)  (


∗)

By the continuity of , we can therefore assume that 
  ∗. Define

 =
1

− 1(

∗ − )

and let

 ∈ argmax
n
(

) :  ∈ R
+ and  ≤ ∗ + 

o
all  6= 

and note that, as  is strictly increasing, (
)  (


∗) and  = 


∗ + . But

P  ∈ ,

so
X

 

X
∗

But

X
 = 

X


=  +

6=X


=  +

6=X¡
∗ + 

¢
=  +

6=X
∗ + (− 1)

=

X
∗

A contradiction
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4.1.2 Farkas’ Lemma

We now move on to a second result: Farkas lemma. This is what we call a theorem of the

alternative, which states that one and only one of two systems of equations can have a solution.

This has all sorts of uses, but we will use it later to prove the Kuhn Tucker theorem

Theorem 9 (Farkas’ Lemma) Let  ∈ R× and  ∈ R, and consider the following two sys-

tems of equations

1. For  ∈ R

 = 

 ≥ 0

2. For  ∈ R

 ≤ 0

   0

Exactly one of these two systems will have a solution

The reason that this is a useful result is that it means that, to prove 1 has a solution, it is

enough to show that 2 does not.

We are going to prove this result in a sequence of claims. First we will prove that at most one

of these two systems has a solution

Lemma 8 System 1 and system 2 cannot both have a solution

Proof. By contradiction: Let  be a solution to 1 and  be a solution to 2, then

0    =  ≤ 0
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In order to prove that one of these two systems must have a solution, we are going to do the

following: Let

 = (R
+)

=
©
 ∈ R| = ,  ∈ R

+

ª
Clearly, system 1 only has a solution if and only if  ∈ . We are going to show that system 2

has a solution if and only if  ∈ .

In order to do this, we are going to show that  is a convex, closed cone, and in order to do

that, we are going to have to define what a cone is:

Definition 6 A set  ⊂ R is a cone if, ∀  ∈ ,   0,  ∈ 

Why this is called a cone should be obvious if you think about the shape of such a set in R2

Lemma 9  = (R
+) is a closed, convex cone.

Proof. Note, that, for any 1 2 ∈ , there exits an 1, 2 ∈ R
+ such that

1 =

11
1
1 + + 1

1


...

1
1
1 + + 

1


2 =

11
2
1 + + 1

2


...

1
2
1 + + 

2


From this, the fact that  is convex and a cone should be obvious. For closedness, we will

consider two cases. First, assume that all the columns in  are linearly independent. Let
©

ª
be

a sequence is  such that  → . We need to show  ∈ .

Let  be the sequence such that  =  We need to show that  is bounded. If not, there

exists a subsequence such that ||||→∞. Let

 =


||||
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 is bounded and so has a convergent subsequence, so assume that  → , and note that

|||| = 1. But
 = |||| →  and ||||→∞

so  → 0 implies that  = 0, contradicting the linear independence of the columns of .

Thus,  is bounded and, as R
+ is closed,  →  ∈ R

+ and  =  ∈ 

Now consider the case where the columns of  are not linearly independent. For any  ∈ ,

there exists a subset of columns Θ ⊂ {1  } such that

 =
X
∈Θ



and {}∈Θ is LI

To see this, let + = {|  0} If { | ∈ +} is not , then there exists a  ∈ R such that

 = 0 ∀  ∈ +,  = 0

Consider −  where  = min
n


|  0

o
and (− ) = , and −  = 0 in one row.

Running this enough times kills off all the LI columns of A

Thus, let X
= {Θ ⊂ {1  } |Θ is LI}

and let

Θ = {| ≥ 0 and  = 0 ∀  ∈ Θ}

Then

 = ∪Θ∈Θ

which is a finite union of closed sets and therefore closed

We are now in a position to prove the theorem

Proof (Farkas’ Lemma). We are going to show that system two has a solution if and only if

 ∈  As  is closed and convex, then  = (()), and so is the intersection of all closed half

spaces that contain it. Hence,  ∈  if and only if ∃  6= 0 such that    =  and     

∀  ∈ .
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Since  is a cone   0 If   0, then pick some  such that 0      . There exists

a   0 such that      (just make  close enough to zero). And as  is a cone,  ∈ .

Note also that we can construct a sequence {}∞=1 such that  ∈  and  → 0. Thus, as  is

closed, 0 ∈ , and therefore  6= 0 This in turn imples that

   ≤ 0∀ ∈ 

If not, then we could find some  such that     0, but as    =     , we can

find an element in  that would violate     

Substituting in gives us

  ≤ 0 ∀  ∈ R
+

and so  ≤ 0
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