4 Lecture 4

4.1 Applications

We now will look at some of the applications of the convex analysis we have learned. First, we shall us a separation theorem to prove the second fundamental theorem of welfare economics

4.1.1 Second Fundamental Theorem of Welfare Economics

As you know from your micro class, the second fundamental welfare theorem states that any Pareto Optimal allocation of goods can be supported as a competitive equilibrium (under certain conditions). Here we are going to use a separation theorem to prove this result in the case of an m person, l commodity exchange economy. This economy is defined by a set $\{\omega^i, u_i\}_{i=1}^m$, where ω^i is an l length vector of endowments for each person in the economy, and $u_i : \mathbb{R}^l_+ \to \mathbb{R}$ is a utility function for each person. We will make the following assumptions:

Assumption 1 $\omega^i >> 0$ for all $i \in 1..m$

Assumption 2 u_i is continuous and strictly increasing for all i

Assumption 3 for any $x, y \in \mathbb{R}^l_+$, $\alpha \in (0,1)$, $u(\alpha x + (1-\alpha)y) > \min(u(x), u(y))$ (this property is called strict quasi-concavity)

A (feasible) allocation is any vector $x=(x^1.....x^m)$ where $x^i\in\mathbb{R}^l_+$ such that

$$\sum_{i=1}^{m} x^i = \sum_{i=1}^{m} \omega^i$$

An allocation is weakly Pareto optimal if

$$u_i(x^i) < u_i(y^i) \ \forall \ i \in 1..m$$

for no other feasible allocation y.

It is strongly pareto optimal if there is no allocation y such that

$$u_i(x^i) \leq u_i(y^i) \ \forall \ i \in 1,..,m$$

$$u_i(x^i) < u_i(y^i) \text{ some } i \in 1, .., m$$

Let p be a price vector if $p \in \mathbb{R}^l_{++}$. Define the demand correspondence of agent i as

$$d_i(p,\omega^i) = \arg\max\left\{u_i(x^i) : x^i \in \mathbb{R}^l_+ \text{ and } px^i \le p\omega^i\right\}$$

You should check that the theorem of the maximum, along with the strict q-concavity assumption ensures that these are all continuous functions.

A competitive equilibrium is a price vector p and an allocation x such that

$$x^i \in d_i(p,\omega^i) \ \forall \ i \in 1..m$$

As I am sure you all know, any competitive equilibrium is pareto efficient (the first fundamental welfare theorem). The key here is to show that any pareto optimal allocation can be supported as a competitive equilibrium (the second fundamental welfare theorem)

Theorem 8 (The Second Fundamental Theorem of Welfare Economics) For any exchange economy in which A1-A3 hold, for any strongly Pareto optimal allocation $x_* \in \mathbb{R}^{l,m}_{++}$, there exists a price vector p^* such that $x_*^i = d_i(p^*, x_*^i) \ \forall \ i \in 1,...,m$

Proof. Let x_* be a strongly pareto optimal allocation. Define

$$S_i = \left\{ z \in \mathbb{R}^l_+ \text{ such that } u_i(z) > u_i(x^i_*) \right\}$$

Note that S_i is non-empty (by the fact that u is strictly increasing) and convex (due to strict q-concavity). Moreover, as u is continuous, S_i is open. Let $S = S_1 + ... + S_m$, and note that this is also non-empty, convex and open. Finally, note that, as x_* is strongly pareto optimal

$$\sum_{i=1}^{m} x_*^i \notin S$$

Otherwise, there would be an allocation y such that $y^i \in S^i \ \forall i$ and $\sum y^i = \sum x_*^i = \sum \omega^i$, but by construction, $u_i(y^i) > u_i(x^i)$ all i.

So we now have an open convex set S and a point $\sum_{i=1}^m x_*^i \notin S$. By corollary 3, we can separate S from $\sum_{i=1}^m x_*^i$, i.e. we can find a normal $p \in \mathbb{R}^l$ such that

$$ps > p \sum_{i=1}^{m} x_*^i \ \forall \ s \in S$$

The strictly increasing nature of u also ensures that $p \in \mathbb{R}_{++}$, as, for every $n \in 1, ..., l$

$$e^n + \sum_{i=1}^m x_*^i \in S$$

so if $p_n \leq 0$, then we would have a contradiction.

Now all we have to do is show that $x_i^* = d(p, x_*^i) \ \forall i$. Suppose not, then there exists some i and some bundle $s^i \in \mathbb{R}^l_+$ such that

$$ps^i \leq px_*^i$$
 and $u_i(s^i) > u_i(x_*^i)$

By the continuity of u_i , we can therefore assume that $ps^i < px_*^i$. Define

$$\theta = \frac{1}{m-1}(px_*^i - ps^i)$$

and let

$$s^{j} \in \arg\max\left\{u_{j}(x^{j}): x^{j} \in \mathbb{R}^{l}_{+} \text{ and } px^{j} \leq px_{*}^{j} + \theta\right\} \text{ all } j \neq i$$

and note that, as u_j is strictly increasing, $u_j(s^j) > u_j(x^j_*)$ and $ps^j = px^j_* + \theta$. But $\sum_{i=1}^m s^i \in S$,

$$\sum_{m}^{m} ps^{j} > \sum_{m}^{m} px_{*}^{i}$$

But

so

$$\sum_{m=0}^{m} ps^{j} = p \sum_{m=0}^{m} s^{j}$$

$$= ps^{i} + \sum_{m\neq i}^{m\neq i} ps^{j}$$

$$= ps^{i} + \sum_{m\neq i}^{m\neq i} (px_{*}^{j} + \theta)$$

$$= ps^{i} + \sum_{m\neq i}^{m\neq i} px_{*}^{j} + (m-1)\theta$$

$$= \sum_{m=0}^{m} px_{*}^{i}$$

 $A \ contradiction$

4.1.2 Farkas' Lemma

We now move on to a second result: Farkas lemma. This is what we call a **theorem of the** alternative, which states that one and only one of two systems of equations can have a solution. This has all sorts of uses, but we will use it later to prove the Kuhn Tucker theorem

Theorem 9 (Farkas' Lemma) Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, and consider the following two systems of equations

1. For $x \in \mathbb{R}^n$

$$Ax = b$$

$$x \geq 0$$

2. For $\lambda \in \mathbb{R}^m$

$$\lambda^T A \leq 0$$

$$\lambda^T b > 0$$

Exactly one of these two systems will have a solution

The reason that this is a useful result is that it means that, to prove 1 has a solution, it is enough to show that 2 does not.

We are going to prove this result in a sequence of claims. First we will prove that at most one of these two systems has a solution

Lemma 8 System 1 and system 2 cannot both have a solution

Proof. By contradiction: Let x be a solution to 1 and λ be a solution to 2, then

$$0 < \lambda^T b = \lambda^T A x \le 0$$

In order to prove that one of these two systems must have a solution, we are going to do the following: Let

$$K = A(\mathbb{R}^n_+)$$
$$= \{ y \in \mathbb{R}^m | y = Ax, x \in \mathbb{R}^n_+ \}$$

Clearly, system 1 only has a solution if and only if $b \in K$. We are going to show that system 2 has a solution if and only if $b \notin K$.

In order to do this, we are going to show that K is a convex, closed cone, and in order to do that, we are going to have to define what a cone is:

Definition 6 A set $S \subset \mathbb{R}^n$ is a cone if, $\forall s \in S, \alpha > 0, \alpha s \in S$

Why this is called a cone should be obvious if you think about the shape of such a set in \mathbb{R}^2 .

Lemma 9 $K = A(\mathbb{R}^n_+)$ is a closed, convex cone.

Proof. Note, that, for any $y_1, y_2 \in K$, there exits an $x^1, x^2 \in \mathbb{R}^n_+$ such that

$$y_1 = a_{11}x_1^1 + \dots + a_{1n}x_n^1$$

$$y_1 = \vdots$$

$$a_{m1}x_1^1 + \dots + a_{mn}x_n^1$$

$$a_{11}x_1^2 + \dots + a_{1n}x_n^2$$

$$y_2 = \vdots$$

$$a_{m1}x_1^2 + \dots + a_{mn}x_n^2$$

From this, the fact that K is convex and a cone should be obvious. For closedness, we will consider two cases. First, assume that all the columns in A are linearly independent. Let $\{y^k\}$ be a sequence is K such that $y^k \to y$. We need to show $y \in K$.

Let x_l be the sequence such that $y_l = Ax_l$. We need to show that x_l is bounded. If not, there exists a subsequence such that $||x_l|| \to \infty$. Let

$$z_l = \frac{x_l}{||x_l||}$$

 z_l is bounded and so has a convergent subsequence, so assume that $z_l \to z$, and note that ||z|| = 1. But

$$Ax_l = ||x_l||Az_l \rightarrow y \ and \ ||x_l|| \rightarrow \infty$$

so $Az_l \to 0$ implies that Az = 0, contradicting the linear independence of the columns of A. Thus, x_l is bounded and, as \mathbb{R}^n_+ is closed, $x_l \to x \in \mathbb{R}^n_+$ and $y = Ax \in K$

Now consider the case where the columns of A are not linearly independent. For any $y \in K$, there exists a subset of columns $\Theta \subset \{1,..,n\}$ such that

$$y = \sum_{j \in \Theta} x_j A_j$$

and $\{A_j\}_{j \in \Theta}$ is LI

To see this, let $J_{+} = \{j | x_{j} > 0\}$ If $\{A_{.,j} | j \in J_{+}\}$ is not LI, then there exists a $Z \in \mathbb{R}^{n}$ such that $z_{j} = 0 \ \forall \ j \notin J_{+}, \ Az = 0$

Consider $x - \alpha z$ where $\alpha = \min \left\{ \frac{x_j}{y_j} | z_j > 0 \right\}$ and $A(x - \alpha z) = y$, and $x - \alpha z = 0$ in one row. Running this enough times kills off all the LI columns of A.

Thus, let

$$\sum = \{\Theta \subset \{1, .., n\} \mid A_{\Theta} \text{ is } LI\}$$

and let

$$K_{\Theta} = \{Ax | x \geq 0 \text{ and } x_j = 0 \ \forall j \notin \Theta\}$$

Then

$$K = \cup_{\Theta \in \sum} K_{\Theta}$$

which is a finite union of closed sets and therefore closed

We are now in a position to prove the theorem

Proof (Farkas' Lemma). We are going to show that system two has a solution if and only if $b \notin K$. As K is closed and convex, then K = cl(co(K)), and so is the intersection of all closed half spaces that contain it. Hence, $b \notin K$ if and only if $\exists \lambda \neq 0$ such that $\langle \lambda, b \rangle = \alpha$ and $\alpha > \langle \lambda, k \rangle$ $\forall k \in K$.

Since K is a cone, $\alpha > 0$. If $\alpha < 0$, then pick some k such that $0 > \alpha > < \lambda, k >$. There exists a $\beta > 0$ such that $< \lambda, \beta k >> \alpha$ (just make β close enough to zero). And as K is a cone, $\beta k \in K$. Note also that we can construct a sequence $\{k_i\}_{i=1}^{\infty}$ such that $k_i \in K$ and $k_i \to 0$. Thus, as K is closed, $0 \in K$, and therefore $\alpha \neq 0$. This in turn implies that

$$<\lambda,k><0 \forall k\in K$$

If not, then we could find some k such that $<\lambda, k>>0$, but as $<\lambda, \beta k>=\beta<\lambda, k>$, we can find an element in K that would violate $<\lambda, \beta k><\alpha$

Substituting in gives us

$$<\lambda, Ax> \le 0 \ \forall \ x \in \mathbb{R}^n_+$$

and so
$$\lambda^T A \leq 0$$