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1 Introduction

To finish off the course, we are going to take a laughably quick look at optimization problems in

dynamic settings. We will start by looking at the case in which time is discrete (sometimes called

dynamic programming), then if there is time look at the case where time is continuous (optimal

control).

2 Dynamic Programming

We are interested in recursive methods for solving dynamic optimization problems. While we are

not going to have time to go through all the necessary proofs along the way, I will attempt to point

you in the direction of more detailed source material for the parts that we do not cover.

We are going to begin by illustrating recursive methods in the case of a finite horizon dynamic

programming problem, and then move on to the infinite horizon case.

2.1 The Finite Horizon Case

2.1.1 The Dynamic Programming Problem

The environment that we are going to think of is one that consists of a sequence of time periods,

indexed 1       ∞. We are going to think about the problem of someone who is choosing a
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sequence of control variables,  ∈  ⊂ R, one for each period (in a standard consumption problem,
this represents how much one consumes in each period).

We assume that the maximizing choice in each period may depend on a set of parameters that

describe the environment of the decision maker, but also any information that she has at the time

of deciding. The state at time  contains all the information that is available to the decider and

relevant for decisions today and in the future.

In each period we describe the current state of the economy by  ∈  ⊂ R (possibly a vector).

The objective function in a dynamic problem is typically the discounted sequence of instantaneous

functions  :  ×  → R, which we will assume is continuous and bounded (in the consumption

problem, this would just be the utility of consumption in a given period, but note that period

utility could depend on the state variable as well). With discount factor , the objective function

is
X
=0

( )

In addition, we will allow for uncertainty in the model given by a random variable  ∈  ⊂ R,

which is assumed to follow a stationary Markov process. This means the distribution of the random

variable at time  + 1 depends only on its value at time , so that Pr(+1 ≤ | −1   ) =
Pr(+1 ≤ |). We will denote the stochastic process with (0 ) = Pr (+1 ≤ 0| = ). In the

standard consumption problem  might be for example income. We will also assume that the value

of  is known to the individual at time , so ( ) is the complete description of the state of the

economy at time .

We assume that all the relevant information at time  is contained in  and . This requirement

means “finding the state is an art” (Tom Sargent, 2003). In a completely standard (deterministic)

consumption savings problem, the state of the system is just the current asset level. However, in

more complicated problems, finding a usable state variable may be very difficult, or impossible.

In particular, since the state space consists of all possible combinations of the different values of

each parameter, the state space grows quickly with the number of dimensions. This problem of a

rapidly expanding state space is called the ‘curse of dimensionality’. For example, in models where

markets are incomplete and agents are heterogenous, it may be that the state needs to include the

wealth level of every person in the economy, making the optimization problem intractable.

In addition to the objective function and the state, we need to describe the constraints on
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the choices that the individual can make. We will assume that there is a stationary constraint

correspondence, denoted by Γ :  ×  ⇒ , which describes the choice set for a given state. Note

that the assumption that Γ is stationary is restrictive: it means for example that there may be

credit constraints but we cannot require that the agent cannot die in debt. Finally, we need a law

of motion for the state variable,  :  × × → . This function tells us the state in time +1,

given ,  and . In the standard consumption savings problem, this would be an equation that

describes how wealth changes (i.e. wealth next period is wealth this period, minus consumption,

plus income, all multiplied by the rate of return).

The last missing piece is a specification of the agent’s choice. In the consumption problem,

she chooses consumption levels for each period. We may also allow her to condition the level

of consumption at time  on the state variable at time . If the problem was deterministic, this

wouldn’t matter very much, but as we are allowing for a stochastic element to the problem, this

is an important distinction. Here the consumer is really choosing a sequence of decision rules,

or conditional consumption rules. Let  :  ×  →  be a decision rule for time . We call the

set  = (0 1      ) a policy for  periods. We say that a policy is feasible if, for every ,

( ) ∈ Γ( ). We say that a policy is stationary if the decision rule does not depend on .

We can now describe the expected present value of a policy ( ) given the initial state variables

0 and 0. Expectations are taken with respect to the distribution (0 ), and the state variable

is assumed to follow the law of motion:

( ) (0 0  ) = 0

"
X
=0

 (  ( ))

#


We can now state the dynamic programming problem:

max
( )

( )

¡
0 0 ( )

¢


+1 = (   ( ))

 ( ) ∈ Γ ( )

0 0(
0 ) given

This is a complex problem, but luckily the recursive approach will allow us to solve for the

policy functions  one at a time. First we show that a solution to this problem exists. In order to

do so, we need some additional assumptions:
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Assumptions We will assume that the problem has the following structure:

1. For every  ∈  and  ∈ , the constraint set Γ( ) is non-empty and compact,

2. Γ is continuous,

3.  is continuous, and

4.  satisfies some restriction to ensure that 0 is bounded and continuous in 
1.

Now we can apply the Theorem of the Maximum that we have discussed previously.

Theorem 1 (Theorem of the Maximum) Let  ⊂ R and  ⊂ R. Suppose  :  ×  → R

is a continuous function, and Γ :  →  is a compact-valued, continuous correspondence. Then

() = max∈Γ() ( ) is well defined and continuous, and ∗() = argmax∈Γ() ( ) is well

defined, non-empty, compact-valued and upper hemicontinuous.

Using the Theorem of the Maximum, we prove the following statement:

Theorem 2 Under the stated assumptions, the dynamic programming problem has a solution, the

optimal policy ∗ . The value function ( ) (0 0) =( )

³
0 0 

∗
( )

´
is continuous in 0.

Proof. We will prove this iteratively. If  = 0, the statement follows directly from the theorem of

the maximum. Now let ( ) = {∗ ( )}=0 be the optimal policy from period 0 to  . Define

( ) (0 0) = 0

X
=0

 ( 
∗
 ( ))

as the value of the optimal policy for  periods given initial state values (0 0) Assume that ( )

is continuous in 0. Now note that

max
(+1)

(+1)

¡
0 0 (+1)

¢
= max

(+1)
0

+1X
=0

 (  ( ))

= max
(+1)

0

(
 (0 0) +

+1X
=1

 (  ( ))

)

= max
(+1)

0

(
 (0 0) +1

+1X
=1

 (  ( ))

)

= max
0

0

(
 (0 0) +max

( )
1

+1X
=1

 (  ( ))

)


1One example is the Feller property, see page 220 of Stokey and Lucas
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where 1 = (0 0 0) and the distribution of 1 is determined by  and 0. Therefore

max
(+1)

(+1) (0 0 +1) = max
0

©
 (0 0) + 0

£
( ) ((0 0 0) 1)

¤ª
These steps follows from the law of iterated expectations, and from the recursive structure of the

problem (i.e the choice of control variable at time  can only affect the state variable at times

after ). But this new problem is now a problem of maximizing a continuous function of 0 on a

compact valued continuous correspondence (as ( ) ( ) is continuous in  by assumption, (  )

is continuous,  ( ) is continuous, and the expectation operator is continuous). Thus, by the

Theorem of the Maximum (+1) (0 0) is well defined and continuous.

A corollary to this statement (that we will not prove) is as follows:

Corollary 1 If Γ ( ) is convex and (·) and (·) are strictly concave in  then  ( ) is

also continuous.

Notice that during this proof, we re-wrote the problem is a recursive way. That is, we wrote

the value today as a function of the (optimal) choice today plus the value tomorrow, assuming

that the optimal policy would be carried out from that point onwards (this is the function ( )).

Generalizing this result to the case in which we have  periods left to go, inserting the state equation

into next period’s value function, and using the definition of conditional expectation, we arrive at

Bellman’s equation of dynamic programming with a finite horizon (named after Richard Bellman

(1956)):

() ( ) = max
∈Γ()

½
 ( ) + 

Z


(−1)
¡
(  ) 0

¢
(0 )

¾
(1)

where  and  denote more precisely − and − respectively, and 0 denotes −+1

Bellman’s equation is useful because it reduces the choice of a sequence of decision rules to a

sequence of choices for the decision rules. It is sufficient to solve the problem in (1) sequentially

 + 1 times, as shown in the next section. Hence a dynamic problem is reduced to a sequence of

static problems. A consequence of this result is the so-called Bellman’s principle of optimality which

states that if the sequence of functions ∗ = {∗0 ∗1  ∗} is an optimal policy, then to maximize
the objective function (−)

¡
  (−)

¢
after  periods, the decision rules

©
∗  ∗+1  

∗


ª
are still optimal. In other words, as time advances, there is no incentive to depart from the original

plan. Policies with this property are also said to be time-consistent.

5



Time consistency depends on the recursive structure of the problem and does not apply to

more general settings. David Laibson became famous by suggesting that people do not discount

exponentially. Instead, he proposed that people suffer from “present bias” and put extra weight on

consumption that occurs in the current period. Thus, their utility function is given by

0

(
(0 0) + 

X
=1

( )

)
where 0    1 is the additional discounting for consumption that does not occur today. Assuming

that there exists an optimal policy  = ∗ ( ), note that

( ) (0 0) = 0

(
(0 

∗
0 (0 0)) + 

X
=1

( 
∗
 ( ))

)
is not the same as

0
©
(0 

∗
0 (0 0)) + 0

£
(−1) ((0 0 

∗
0 (0 0)) 1)

¤ª


The reason is that the objective function from period  = 1 onwards looks different viewed from

period zero and from period one:



X
=1

 ( )

(1 1) + 

X
=2

( )

This implies both that the problem does not have a recursive structure, and that optimal plans

made at period 0 may no longer be optimal in period 1.

2.1.2 Backward Induction

If the problem we are considering is actually recursive, we can apply backward induction to solve

it.

1. Start from the last period  , with 0 periods to go. Then the problem is static and reads:

(0)(   ) = max
∈Γ(  )

 (   )

which yields the optimal choice ∗ (   ) for the final value of  and the final realiza-

tion of   Hence,given a given specification of (·), we have an explicit functional form for

(0)(   )
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2. We can now go back by one period and use the constraint  = (−1 −1 −1) to write:

(1)(−1 −1) = max
−1∈Γ(−1−1)

{ (−1 −1)+

+

Z


(0) ((−1 −1−1)  ) (  −1)
¾

which allows to solve for ∗−1 (−1 −1) and obtain (1)(−1 −1) explicitly.

3. We continue until time 0 and collect the sequence of decision rules in each . This way we

can construct the optimal policy contingent on 0 and any realization of {}=0.

As a simple example, consider the following ‘cake eating’ problem:

max
{}=0

X
=0

 ln()

subject to +1 = (1− ) − 

 ≥ 0

+1 ≥ 0

0 given

You should check that this satisfies our assumptions (note that we can reformulate the constraints

as Γ() = [0 ]).

The Bellman equation for this problem is given by

() () = max
∈Γ()

©
ln() + (−1) ((1− )− ))

ª
For the final period, we know that the optimal policy must be to consume whatever is left, yielding

 () = 

(0)() = ln()

Thus, going back one period, we have the static problem

(1)() = max
∈Γ()

©
ln() + (0)((1− )− )

ª
= max

∈Γ()
{ln() +  ln ((1− )− )} 

Taking first order conditions gives us

1


=



((1− )− )
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so

(1− )−  = 

⇒  =
(1− )

1 + 


and so

−1() =
(1− )

1 + 


(1)() = ln

µ
(1− )

1 + 


¶
+  ln

µ
(1− )− (1− )

1 + 


¶
= ln

µ
(1− )

1 + 


¶
+  ln

µ

(1− )

1 + 


¶
= (1 + ) ln

µ
(1− )

1 + 


¶
+  ln

This process can then be iterated to solve the dynamic programming problem.

2.2 The Infinite Horizon Case

We will now drop the assumption that the problem is finitely lived, and think about the case in

which  =∞. The bad news is that (obviously), we can no longer solve these problems by backward
induction. The good news is that this where recursive dynamic programming really comes in to its

own. Note that the sequence problem is now

max


 (0 0 ) 

+1 = (   ( ))

 ( ) ∈ Γ ( )

0 0 (
0 ) given

Intuitively, the equivalent of the recursive functional equation should be

 (0 0) = max


 (0 0 ) + 0 ((0 0) 1)

It should be the case that the problem is not only recursive, it is also stationary. After all, in

the infinite horizon case, the problem starting tomorrow looks exactly as it does starting today, as

long as the initial state is the same. Thus, we should be able to drop the time index from policy
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and value functions. In fact, this is the case (under a couple of regularity conditions). This is the

principle of optimality, first formulated by Richard Bellman. However, it does require proving

(I’m going to omit the proof, but if you are interested it is in Section 4.1 of Stokey and Lucas).

Does such a value function exist? Luckily we have already got the machinery to prove this is

the case. Consider a mapping  that maps a set of functions  :  ×  → R into itself. Let  be

given by

 ( )( ) = max


 ( ) + ( ((  ) 1))

We want to find a fixed point of this mapping, i.e.  =  ( ). Recall that in previous lectures

we have shown the following result:

Theorem 3 (Banach Fixed Point Theorem) Let  be a complete metric space, and  be a

contraction on . Then there exists a unique ∗ such that (∗) = ∗.

Now we combine this with

Lemma 1 (Blackwell’s Contraction Lemma) Let  be a non-empty set, and  a non-empty

subset of B() that is closed under addition of positive constant functions. Assume that  is an

increasing self-map on  . If there exists a 0    1 such that

 ( + ) ≤  () +  for all ( ) ∈ B()×R+

then  is a contraction. (Note that we define  ≤  if () ≤ () ∀  ∈ ).

It is true (but you should check), that our assumptions are enough to guarantee that the

conditions of Blackwell’s Lemma hold for  , and that  maps the space of continuous, bounded

functions (which is complete) into itself. Thus, we know that  has a fixed point, and we can

characterize  as a fixed point of a contraction mapping. One advantage is that this provides us

with a straightforward way of finding  . Recall that the the proof of Banach simply used the

iteration of the contraction, starting from any 0, by setting 1 = (0) and 2 = (1) and so on.
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The fixed point is just the limit of this sequence.  is therefore the limit of

(1) ( ) = max
∈Γ()

½
 ( ) + 

Z


(0)
¡
(  ) 0

¢
(0 )

¾
(2) ( ) = max

∈Γ()

½
 ( ) + 

Z


(1)
¡
(  ) 0

¢
(0 )

¾
...

Thus, we know that  exists and is unique, and that we can think of the value function of

the infinite horizon problem as the limit of a sequence of finite horizon problems.  can be found

computationally by iterating as above. Moreover, the contraction guarantees that  preserves some

of the properties  , such as monotonicity and continuity.

2.2.1 Characterization of the Policy Function

Associated with the stationary value function, there is a stationary policy function  :  × → 

that solves the relevant maximization problem

 ( ) = max
∈Γ()

½
 ( ) + 

Z



£
(  ) 0

¤
(0 )

¾


Assuming that the mapping between states (  ) is invertible, we can write  = ( 0 ) and

treat the problem as if the decision maker chooses 0, the state next period:

 ( ) = max
0

½

£
 ( 0 )

¤
+ 

Z



¡
0 0

¢
(0 )

¾
If we knew that  was differentiable in , then we could characterize the solution using the FOC

 ( ) 2( 
0 ) + 

Z



¡
00
¢
(0 ) = 0

How do we know that  is differentiable? The following result comes in handy:

Theorem 4 (The Envelope Theorem) Let  be a concave function defined on the set , let

0 ∈ (), and let (0) be a neighborhood of 0. If there is a concave differentiable function

Ω : (0) → < such that Ω() ≤  () ∀ ∈ (0) with the equality holding at 0, then  is

differentiable at 0 and (0) = Ω(0)

Proof. See Stokey-Lucas, p. 85.
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We can use this result to show that the value function is differentiable, and to find the derivative.

To see this, let 00 be the value of 
0 that solves the optimization problem at (0 0). Then let

Ω( ) = 
£
 ( 00 )

¤
+ 

Z



¡
00 

0¢ (0 )
that is we are holding 00 fixed but allow  and  to vary. By definition, Ω(0 0) =  (0 0).

Moreover, as  ( ) is the maximized value of  [ (( 0 )] + 
R

 (0 0) (0 ), it must

also be the case that Ω( ) ≤  ( ) ∀ . Thus, assuming that  is concave and differentiable,
we get

 ( ) = Ω( ) = ( )1( 
0 ) + ( )

This gives us the Euler equation

 ( ) 2( 
0 ) + 

Z


(
0 0) + (

0 0)1(
0 00 00 ) = 0

To understand this, it is worth thinking about the standard consumption problem (let’s do in

the deterministic case). Here the problem is

max

∞X
=0

()

subject to +1 = (1− ) −  + 

where  is wealth at time  and  is income. Thus, ( +1) = +1 − (1 − ) − , and

therefore 2( +1) = 1 and 1( +1) = −(1− ). The Euler equation gives us

0(+1 − (1− ) − ) = (1− )0(+2 − (1− )+1 − )

0() = (1− )0(+1)

This is a nonlinear difference equation in the state variable. To be able to fully characterize the

optimal dynamic path of the state {∗ }∞=0, we need two boundary conditions:

• initial condition: 0 0 given

• transversality condition (TVC): lim→∞ (
∗
  

∗
 )

∗
 = 0

The latter condition requires that the present discounted value of the state at time  along the

optimal path tends to zero as  goes to infinity. Hence, either the state variable is small enough in

the limit, or its marginal value is small enough.
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2.2.2 Sufficiency of the Euler Equation and TVC

It is possible to prove that if a sequence of states {∗ }∞=0 satisfies the Euler equation and the TVC,
then it is optimal for the dynamic programming problem. To do so, we will show that the difference

 between the objective function evaluated at {∗ } and at {}, any alternative feasible sequence
of states, is non-negative. In this particular proof, we abstract from the stochastic nature of the

problem.2

First, we slightly rewrite the utility function and therefore the Euler equation as:

( )2( 
0) + (

0 0) + (
0 0)1(

0 00) = 0

̂2( 
0) + ̂1(

0 00) = 0

by replacing ( ( 0)) with ̂( 0).

We assume concavity of the return function ̂, and choose  such that ̂1( 
0) ≥ 0 and  ≥ 0.

Concavity of  means that for any , 0, ()− (0) ≥  0()(− 0). Thus

 = lim
→∞

X
=0


£
̂(∗  

∗
+1)− ̂( +1)

¤
≥ lim

→∞

X
=0


£
̂1(

∗
  

∗
+1)(

∗
 − ) + ̂2(

∗
  

∗
+1)(

∗
+1 − +1)

¤
Since ∗0 = 0 from the initial condition, we can rewrite the sum above as:

 ≥ lim
→∞

(
−1X
=0


£
̂2(

∗
  

∗
+1) + ̂1(

∗
+1 

∗
+2)

¤
(∗+1 − +1)

+2(
∗
  

∗
+1)(

∗
+1 − +1)

)

The Euler equation implies that each term of the sum is zero. Moreover, using the Euler

equation to substitute the last term, we obtain:

 ≥ lim
→∞

2(
∗
  

∗
+1)(

∗
+1 − +1) = − lim

→∞
+11(

∗
+1 

∗
+2)(

∗
+1 − +1)

Since 1 ≥ 0 and +1 ≥ 0, then:

 ≥ − lim
→∞

+11(
∗
+1 

∗
+2)(

∗
+1 − +1) ≥ − lim

→∞
+11(

∗
+1 

∗
+2)

∗
+1

Using the TVC, we can finally establish that  ≥ 0.
2This proof is from Stokey-Lucas, pp. 98-99.
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2.3 The Stochastic Growth Model

Consider the following optimal growth problem, (stated as a social planner problem)

max{}0
£P∞

=0 
()

¤


+1 = (1− )  + 

 ( ) =  + 

0 0 (+1 ) given

Let’s write the recursive formulation of the problem, using the DP techniques:

 ( ) = max
0

½

¡
( )− 0 + (1− )

¢
+ 

Z
 (0 0)(0 )

¾

The FOC w.r.t. 0 and the Envelope condition for this problem are respectively:

• (FOC): 0 (( )− 0 + (1− )) = 
R
1(

0 0)(0 )

• (ENV): 1( ) =  (·) = 0 (·) [1( ) + (1− )]

Therefore, we obtain the Euler Equation:

0
¡
( )− 0 + (1− )

¢
= 

Z
0
¡
(0 0)− 00 + (1− )0

¢ £
1 + 1(

0 0)− 
¤


which, together with the TVC

lim
→∞

1 (·)  = 0

and the initial condition of the economy (0 0) fully characterizea the solution of the problem.

The Euler equation can be given an intuitive interpretation. It states that the marginal utility

of consumption this period, along the optimal path, must be equal to the discounted expected

marginal utility of consumption next period accounting for the fact that postponing consumption by

one period will increase consumption tomorrow by the rate of return on capital net of depreciation.
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3 Optimal Control

We will now move onto the case where is time is continuous, rather than discrete.

3.1 The General Control Problem

Consider a dynamic system evolving over time, and an agent, the planner, who has the task to

control the behavior of this system. Time is continuous and indexed by , with  ∈ [0  ]. The
interval [0  ] is called the planning horizon. We start by assuming that  is finite, later we’ll

relax this assumption. Once again, we will summarize the state of the system with a set of state

variables, denoted as () ∈ , with  : [0  ] → R. The planner has knowledge of the initial and

final state of the system, hence we can define the boundary conditions (0) = 0, ( ) =  

The state variables can be affected through a set of control variables (or instruments) () ∈ ,

 : [0  ]→ R  ≤ . By choosing in every instant a value of each control variable, the planner can

modify the paths of the state variables and the dynamic behavior of the system. The planner knows

the relationship between the actions taken and the evolution of the states, which are summarized

by a law of motion of the states, a differential equation of the type

()


≡ ·
() =  (() () )  with  :  × × [0  ]→ R

Once the values are chosen for the control variables at a given instant , the rates of change of the

state variables at  are obtained by the law of motion, and given the value of the state at  (which

is predetermined), the future values of the state variables are determined. Often the planner is

limited in its choice of the controls by a set of constraints  (() () ) ≥ 0 which defines the
set of admissable controls.

In order to choose properly the controls, the planner needs an objective function, i.e. a

function describing the value of the system for any given path of states and controls, which we

denote as  =
R 
0
 (() () )  The function  (·) is called instantaneous return (or utility)

function, and the function  , value function as it summarizes the value of any given path of

controls and states.

We now enrich the problem with some additional structure, through a couple of key assumptions:

Assumption 1: (· · ·), (· · ·), (· · ·), (·) (·) are continuous and differentiable
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Assumption 2:  (() ) = {() ∈    (() () ) ≥ 0} is compact and convex.

We are now ready to formulate the general control problem (CP) faced by the planner:

max
{()}∈[0 ]

 =
R 
0
 (() () ) 



·
() =  (() () )

() ∈ , () ∈ 

 (() () ) ≥ 0
(0) = 0 ( ) = 

(CP)

The solution of the problem (CP) above is the optimal path of the control variable (and

the state, given the initial conditions and the law of motion) for each instant in the time interval

considered. The salient difference with a static optimization problem is obvious: the solution is

not just a singe optimal value for each choice variable, but an optimal time path for each control

variable, i.e. a function of time {∗()}. Note also that for the moment this is a deterministic,
rather than a stochastic problem.

Example 1 (Lifetime Consumption Alloctaion) Denote by () the flow of consumption at

time  and assume that households obtain utility only by consuming, through the instantaneous

utility function (()). Each household knows that he will live for  periods. He starts his life with

no wealth, i.e. (0) = 0 and does not want to leave behind him any bequest, hence ( ) = 0. Every

period he receives an endowment  that he can either consume or save for future consumption.

Savings are remunerated at rate . He will therefore face the following problem:

max
{()}∈[0 ]

R 
0
(())



·
() = () + ()

 = () + ()

(0) = 0 ( ) = 0

The simplest solution method for problems in the class of (CP) is the Maximum Principle,

developed by the Russian mathematician Pontryagin in the late 50’s.
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4 The Maximum Principle

4.1 A Derivation of the Maximum Principle from the Lagrangean

It is useful to derive the Maximum Principle from the Lagrangean associated to (CP) since we are

more acquainted with using the Lagrangean in static optimization. We simplify the exposition in

three ways. First, we ignore the feasibiliy constraint  , or equivalently, we assume that we can

substitute the set of constraints of  into the transition equation, thus the transition equation 

incorporates the constraint  as well. Second, we assume that  =  = 1. Third, to simplify the

notation, we denote the dynamic path for the variable , i.e. {()}∈[0 ] more simply as {()}
and we omit the subscript.

The Lagrangean corresponding to problem (CP), can therefore be written as:

L =
Z 

0

n
 (() () ) + ()

h
 (() () )− ·

()
io

 (L)

It is clear that the Lagrangean is obtained by summing up (under the integral sign) all the static

Lagrangeans for each time . Note that {()} are the dynamic Lagrange multipliers (or costates),
which are no longer constants, but functions of time.

Now, we need to characterize the maximum wrt to {()}. Integrate by parts the last component
of (L),

R 
0
()

·
(), and obtain:

L =
Z 

0

[ (() () ) + () (() () )] − [( )( )− ()(0)] +

Z 

0

·
()() (2)

Define now the Hamiltonian as (   ) = (  )+()(  ) (where we have omitted the

argument  for the sake of simpler notation) and rewrite (2) as:

L =
Z 

0

∙
 (() () () ) +

·
()()

¸
− [( )( )− (0)(0)] 

Now consider now an arbitrary perturbation of {()} which will imply a change in {()}
through the law of motion (·). The implied change in the Lagrangean is

∆L =
Z 

0

()

()
∆() +

∙
()

()
+

·
()

¸
∆()

16



It follows that ∆L = 0 (so that we are on a maximum) for all perturbation paths of () and
() only if at every instant :

()

()
= 0 and

()

()
= −

·
() (3)

We have therefore obtained a set of conditions, (??) and (3), which together with the boundary

conditions are necessary for the solution. This set of conditions constitutes the Maximum

Principle (MP) that we restate more formally below:

Maximum Principle: An optimal solution to the program (CP) above is a triplet {∗() ∗() ∗()}
that, given (   ) = (  ) + (  ) must satisfy at each date :

(i)
(∗ ∗ ∗ )


= 0

(ii)
(∗ ∗ ∗ )


= −

·

∗
()

(iii)
(∗ ∗ ∗ )


=

·

∗
()(i.e (  ) =

·

∗
())

(iv) boundary conditions (0) = 0 () =  .

This is the great advantage of the MP: we were able to split the dynamic problem (CP) involving

optimization over an entire interval of time into a sequence of simpler problems of static optimization

that look all the same, so it is enough to maximize one Hamiltonian for a generic time  and we

are done!

4.2 Sufficiency of the Maximum Principle

Once we add some concavity restrictions to the objective function and the constraint set, we are

ready to prove the sufficiency of the conditions of the MP . .

Theorem 1: Suppose that the triplet {∗ ∗ ∗} satisfies the conditions of the MP, and suppose
the Hamiltonian evaluated at  = ∗ is jointly (strictly) concave in { }, then {∗ ∗ ∗} is the
(unique) solution to the problem (CP).

17



Proof. Call  ∗ the value of the program for the candidate optimal path of the control and the states

which satisfy the MP, (∗ ∗). Call  the value corresponding to any other arbitrary admissable

path of ( ). We want to show that under the conditions of Theorem 1,

 ∗ −  =

Z 

0

(∗ − ) ≥ 0 (4)

where the “strict” inequality holds under strict concavity. Defining ∗ = (∗ ∗ ∗) and

 = (  ∗), we obtain:

 ∗ −  =

Z 

0

(∗ − ) =

Z 

0

h³
∗ − ∗

·

∗´− ³ − ∗

·

´i



Integrating by parts, one obtains:

 ∗ −  =

Z 

0

∙µ
∗ +

·

∗
∗
¶
−
µ
 +

·

∗


¶¸
− [∗( )∗( )− ∗(0)∗(0)]

+ [∗( )( )− ∗(0)(0)]

=

Z 

0

∙
(∗ −) +

·

∗
(∗ − )

¸


where the last equality follows from that any admissable path must have the same initial and

terminal conditions as the optimal path. From the above definition of concavity, it follows that:Z 

0

∙
(∗ −) +

·

∗
(∗ − )

¸
 ≥

Z 

0

∙
(∗ − )∗

 + (
∗ − )∗

 +
·

∗
(∗ − )

¸


=

Z 

0

½
(∗ − )

∙
∗
 +

·

∗¸
+ (∗ − )∗



¾
 = 0

where the last equality follows from that all “ ∗ ” variables satisfy the conditions of the MP by
assumption. Thus  ∗ −  ≥ 0.

Remark: One can ensure the sufficiency of the MP from more primitive assumptions on  and

 In particular, it is immediate that if  is concave in ( ),  is concave (convex) in ( ), and

∗ ≥ 0 (∗ ≤ 0), then  evaluated at ∗ is jointly concave in ( ).

Remark: We could have assumed that () is piecewise-continuous, i.e. we can have the control

variables jumping a finite number of times and the whole derivation of the MP would still hold

true. However, state variables cannot jump, i.e. must be continuous.
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5 Generalizations of the Maximum Principle

5.1 Discounting

In several economic applications the return function is written with a discount factor − with

  0, to capture the fact that the future is given lower weight than the present in intertemporal

decisions. The discounted control problem (DCP) can be written as:

max
{()}

R 
0
−(() ())



·
() = (() ()),

(0) = 0 ( ) =  

(DCP)

It is clear that the only difference with ( ) is in the return function. From the usual definition

of the (discounted) Hamiltonian, (  ) = −(() ()) + ()(() ()), we can apply the

 to obtain the familiar set of conditions:




= 0⇒ −




+ ()




= 0




= −

·
 ⇒

∙
−




+ ()





¸
= −

·
()




=

·
 ⇒ (() ()) =

·
()

First notice that the third condition (the law of motion of the state) does not change, but the

first two are modified. We define now the current value multiplier () as:

() = ()⇔ () = −()

and, through it, the current value Hamiltonian as:

(  ) =  (() ()) + () [() ()] 
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Notice that: −(  ) = (  ), so if we discount the current value  at rate , we obtain

the discounted Hamiltonian. Now, we aim at expressing the first two conditions of the MP in terms

of . From the first condition:




= 0⇒ −




+ −()




= 0⇒ −

∙



+ ()





¸
= 0⇒ 


= 0

Therefore,




= 0⇔ 


= 0

>From the second condition:




= −

·
() ⇔ −




+ −()




= −− ·() + −()

⇔ 


+ ()




= − ·

() + ()

⇔ 


− () = − ·

()

Therefore,




= −

·
()⇔ 


= ()− ·

()

We can now state the:

Maximum Principle for the Discounted Case: An optimal solution to the program (DCP)

above is a triplet {∗() ∗() ∗()} that given (   ) = (  ) + (  ) must satisfy at

each date :

(i)
(∗ ∗ ∗ )


= 0

(ii)
(∗ ∗ ∗ )


= ()− ·


∗
()

(iii)
(∗ ∗ ∗ )


=

·

∗
()

(iv) boundary conditions (0) = 0 () =  .
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5.2 Infinite Horizon

Consider the (DCP) without an explicit terminal condition for ( ), but just with the additional

constraint ( ) ≥ 0 It is easy to prove, using the proof of necessity of the MP based on the

perturbation argument, that the additional necessary condition of the MP is

−( )( ) = 0

This condition, called Transversality Condition (TVC), is very reminiscent of the complemen-

tary slackness conditions of static optimization. The meaning of this condition is that as we

approach the end of the planning horizon, the optimal solution requires that either ( ) is equal

to zero (so nothing is waisted, as ( ) gives utility) or ( ) is positive, but nothing is waisted

anyway because its shadow value ( ) is zero (in the next section we explain why the costate can

be interpreted as a shadow value of the state). With  →∞, the TVC becomes:

lim
→∞

()() = 0

In the infinite horizon case, the TVC above replaces the terminal condition, whereas all other

conditions of the MP remain equal.

Remark: The strangest things can happen when →∞. See Barro, Sala-i-Martin, page 505,
and the article by P. Michel on Econometrica in 1982 for a more formal treatment.

6 An Economic Interpretation of Optimal Control Theory

The MP can be seen as the dynamic generalization of the Lagrange method, so it should not come

as a surprise that the dynamic Lagrange multipliers () have a similar economic interpretation as

shadow prices.

Consider the Lagrangean associated to the problem (CP) evaluated along the optimal path

{∗() ∗()}, for any arbitrary function () of time:

L =
Z 

0

h
 (∗() ∗()) + () (∗() ∗())− ()

·

∗
()
i


Using the definition of Hamiltonian and integrating by parts, we obtain:
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L =

Z 

0

∙
 (∗ ∗ ) +

·
()∗()

¸
− [( ) − (0)0]

L
0

=

Z 

0

⎡⎣
∗

0
+

∗

0
+



0
+

·
()

∗

0
+ ∗()


·


0

⎤⎦ 
−( )

0
 +

(0)

0
0 + (0)

Since () is an arbitrary function of time, we have that


0
= 0 and

·


0
= 0. Now, if we evaluate

this derivative at {∗()}:

L∗
0

=

Z 

0

½∙
∗
 +

·
∗()

¸
∗

0
+∗



∗

0

¾
+ ∗(0) = ∗(0)

Where the last equality follows from that {∗() ∗() ∗()} satisfy the conditions of the MP
when the Hamiltonian is evaluated at ∗. We conclude that ∗(0) is the marginal increase in the

total value of the program due to a marginal increase in 0, the initial value of the state.

Since the optimal control problem can be always divided into two parts at any time  ≥ 0, then
more in general, we can state that:

L∗
()

= ∗()

hence ∗() can be given the interpretation of shadow price of ∗(). A useful application of this

result, due to Dorfman (1969), is in neoclassical capital theory.

Example 2: Neoclassical Capital Theory

Consider the problem of a firm which maximizes the sum of future profits () in the time

interval [0  ]. Profits depend positively on the stock of capital () (as more can be produced and

sold with more capital), and negatively on the flow of investments (), as new investment is costly,

so   0 and   0. Capital (the state) and investment (the control) are related by the law of

motion
·
() =  (() ()), for example ( ) = − , and in general   0 and   0.

The problem for the firm is to choose optimally the time path of investment, i.e.

22



max
{()}

R 
0
 (() ()) 


·
() =  (() ())

(0) = 0 ( ) ≥ 0

The intertemporal trade off involved in the investment choice is that investing today reduces

the current profit, but increases the future profits by increasing future capital .

To use the MP for this problem, we need to define the Hamiltonian:  = ( ) + ( ).

The 3 conditions of the MP (besides the law of motion) are:

(1)
∗


= 0⇒ −

∗


= ∗()

∗




Interpretation: Along the optimal path, the marginal decrease in profits due to an additional

unit of investment is equal to the value (computed at the shadow price of capital) of the additional

capital generated by the investment.

(2)
∗


= −

·

∗
⇒ ∗


+ ∗()

∗


= −

·

∗
().

Interpretation:
·

∗
() is the change in the value of capital in a small interval of time, or also the

loss firms incur if the production of  is postponed for a short time. That condition above then

says that along the optimal path each unit of capital good must decrease in value at the same rate

at which it contributes to current profit and the value of cumulated capital.

(3) TVC: ( )( ) = 0

Interpretation: In the limit the value of capital must be zero, either because  = 0 or because

the marginal value of an additional unit is zero, i.e.  = 0.

Example 1B: Optimal Lifetime Consumption

Consider the example described earlier, where a household has to choose optimally consumption

() and savings () at every instant along a finite lifetime, given that every period he receives
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labour income , and capital income (), where () is the cumulated wealth. Preferences are

of the log family and there is no discounting. Initial wealth is zero, and final wealth must be zero.

The problem of the household is

max{()}
R 
0
ln(())



·
() = () + ()

 = () + ()

(0) = 0 ( ) = 0

Substitute out () from the two constraints, to end up with the intertemporal budget con-

straint:

·
() + () =  + ()

The state variable is ()and the control variable is (). The Hamiltonian for this problem is:

 = ln(()) + () [() +  − ()] 

We can now apply the Maximum Principle:

 = 0⇒ 1

()
= () (5)

Interpretation: the utility of the marginal unit of consumption equals the shadow value of that

same unit of the good if saved and added to the capital stock.

 = −
·
 ⇒ () = −

·
() (6)

Interpretation: the return on the marginal unit of capital equals its loss of value over time
·
()

()
.

 =
·
 ⇒ ·

() = () +  − ()

Differentiating (5) with respect to time3 and using (6), one obtains:

·
()

()
= 

3Taking logs of (5):

ln () = − ln()
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Solving this simple first order differential equation, we obtain the optimal path of consumption up

to a constant:

() =  (7)

Notice that for  = 0, (0) =  so we know that the constant is nothing but the initial value

of consumption at time zero. How do we solve for (0)? We need to use the transition equation,

which we still haven’t used. Substituting (7) into the law of motion, we obtain:

·
() = () +  − (0)

If we premultiply the budget constraint above by − we obtain:

·
()− − ()− = − − (0)

Where the left hand side (LHS) is clearly
()−


. Hence, integrating out we obtain:

()− =  − 
−


− (0) (8)

Now, we can derive the expressions of the two constants of integrations { (0)} from the boundary
conditions.

For  = 0 (8) becomes: 0 =  − ⇒  = . Substituting this result into (7):

()− =
µ
1− −



¶
 − (0)

For  =  (8) becomes: (0) =




µ
1− −



¶
 Hence, when we substitute (0) into (7) we

obtain

∗() =




µ
1− −



¶
 (9)

which is the final expression for optimal consumption ∗

Notice that consumption is increasing over time, so in the initial period of his life the household

will save to guarantee his future consumption. Then, as the end of the horizon  becomes closer, he

and differentiating wrt time

1

()

()


= − 1

()

()


⇔

·
()

()
= −

·
()

()
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starts consuming more than , hence he will be decumulating wealth. This is the typical life-cycle

pattern: first saving, then dissaving.

It is interesting to notice that one can get the same result for (0) from the lifetime budget

constraint: Z 

0

− =
Z 

0

()−

stating that the discounted value of income must equal the discounted value of consumption ex-

penditures. The right hand side (RHS) above, using (7), can be rewritten as
R 
0
(0) = (0) It

follows that:

(0) = 

Z 

0

− = 

∙
−

−



¸
0

= 

∙
1− −



¸
which yields the same expression for (0).
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