Mathematics For Economists

Mark Dean

Homework 4

Due October 14th

- **Question 1** Which of the following problems is guaranteed to have a solution? Either prove, or give a counter-example
 - 1. A firm chooses a level of input $t \in \mathbb{R}_+$ to buy in order to maximize profits. For input t, the firm produces output f(t), which is concave (and continuous) (i.e. $f(\alpha t + (1 - \alpha)s) \ge \alpha f(t) + (1 - \alpha)f(s) \forall t, s \in \mathbb{R}_+$). Output can be sold at the price of 1 per unit, while input can be bought at c per unit
 - 2. As above, but there exists some x_0 such that $f(x_0) \leq cx_0$ (hint draw a graph)
 - 3. A consumer chooses a commodity bundle $x \in \mathbb{R}_+$ in order to maximize a continuous utility function $u : \mathbb{R}_+ \to \mathbb{R}$ subject to the budget constraint $B(p, I) = \{x \in X | px \leq I\}$ for some $p \in \mathbb{R}_+$
 - 4. The object $x \in \mathbb{R}^2 \cap S(a, b, c, d)$ that is closest to the 0 vector, where $S(a, b, c, d) = \{(x_1, x_2) \in \mathbb{R}^2 | a \le x_1 < b, c \le x_2 < d\}$ for $a, b, c, d \in \mathbb{R}_+$
- Question 2 Let X and Y be metric spaces, $\Gamma : X \Rightarrow Y$, and $f : X \times Y \to \mathbb{R}$. In each case, assume that the conditions of the theorem of the maximum hold unless explicitly stated. Find examples of the following:
 - 1. y^* is not continuous
 - 2. Γ is not UHC, and so f^* is not continuous
 - 3. f is not continuous, and so y^* is not UHC

Question 3 Prove sections 4 and 5 of Theorem 1 in the Linear Algebra notes