
3 Lecture 3

3.1 Norms

We are now going to define a new class of operators on a linear space that are going to allow us to

think about a new set of relations between the elements of that space. First, we are going to define

the concept of a norm.

Definition 8 A norm on a linear space  is a function  :  → R that satisfies three properties

1. () ≥ 0 ∀  ∈  , with () = 0 if and only if  = ∅

2. () = ||() ∀  ∈ R,  ∈ 

3. (+ ) ≤ () + () ∀   ∈ 

Intuitively, a norm is a notion of the ‘length’ of a vector in a linear space, or the distance of

that object from the zero object. This concept becomes clearer with the definition of the Euclidian

norm on R

Definition 9 The Euclidian norm of a vector  ∈ R is represented by |||| and defined as

|||| =
vuut X

=1

2

For homework you wil check that the Euclidian norm is in fact a norm.

If you are paying attention, it should be clear that there is some relationship between metrics

and norms, in fact the Euclidian metric looks very like the Euclidian norm! The relationship

between metrics and norms is not, in fact, isomorphic. While every norm defines a metric such

that ( ) = ( − ) it is not the case that every metric defined on a linear space generates a

norm in a similar way - that is, it is not the case that for any metric, the function ̄() = (∅)

is a norm. Consider for example the discrete metric defined on a linear space. then, for  6= ∅ and
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  1

= ||̄()

= ||( ∅)

= 

6= 1

= ( ∅)

= ̄()

Thus violating one of the properties of the norm. In fact, we can put properties on a metric so

it will generate a norm. This is summed up by the following theorem

Theorem 5 Let  be a linear space. Then for any norm |||| on , the function ( ) = ||− ||
is a metric. If ( ) is a metric, then the function |||| = ( ∅) is a norm if and only if

1. ( ) = (+   + ) (translation invariance)

2. ( ) = ||( ) (homogeneity)

Proof. Beyond the scope of this course (See OK J.1.4)

Of course, there are lots of other examples of useful norms. One example of a commonly used

class on norms are the −  norms. On R, −  norms are defined as follows

Definition 10 On R, for any  ∈ [1∞), the −  norm is defined as

|||| =
Ã

X
=1

| |
! 1



−∞ is defined as

||||∞ = max {|1| |2|  ||}

Note that, on − 2, this is the Euclidian norm. It is pretty easy to show that − 1 and −∞
are norms, It is also fun to figure out what the unit circle looks like under these different norms.
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For other values of , it is somewhat harder to prove that they are norms, but follows easily

from Minkowski’s Inequality 1 (which we came across in the real analysis bit of the course, but we

repeat here)

Theorem 6 (Minkowski’s Inequality 1): For any   ∈ R and 1 ≤  ∞Ã
X
=1

| + |
! 1



≤
Ã

X
=1

||
! 1



+

Ã
X
=1

||
! 1



Proof. See real analysis lecture notes.

 −  norms (and other versions of Minkowski’s inequality) can in fact be applied to a much

wider class of linear spaces - such as real valued sequences and functions, and form an important

area of study in functional and convex analysis. Hopefully we will come back to them if we have

time.

Next, we define the concept of an inner product.

Definition 11 For a linear space  a function    :  ×  → R is called an inner product if

and only if it satisfies the following

1.    ≥ 0 with    = 0 if and only if  = ∅

2.    =    ∀   ∈ 

3.  +   =      +     ∀   ∈ R,    ∈ 

As with the definition of addition we used when defining a linear space, there is a ‘natural’ way

of defining an inner product in R called the “dot product”.

Definition 12 The “dot product” of two vectors in R is

 =

X
=1



Notice, that if we use the Euclidian norm on R, then there is a relationship between the dot

product and the norm
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Remark 4 If we use |||| to indicate the Euclidian norm on R, then

||||2 = 

Proof.

||||2 =

X
=1

2

=

X
=1



= 

Thus we could use the dot product to define the Euclidian norm. Can all norms be generated

from some inner product in this way? It turns out that the answer is no - only norms that satisfy

a condition called the parallelogram property3 can be generated from some norm. . For example,

of the  −  norms on R, only  − 2 can be generated by a norm in this way. However, as we will

be spending much of our time working with the euclidian norm and dot product, this is a handy

result to know. It also implies another useful results.

Lemma 1 For   ∈ R, ||+ ||2 = ||||2 + ||||2 + 2    

Proof. (In fact, this is true for any real valued inner product space with associated norm, but we

will do it for R). First note that

||+ ||2 =  +   +  

=     +     +2    

= ||||2 + ||||2 + 2    

To gain insight into what an inner product does, we can show that in R2 the dot product is

related to the angle between two vectors

32||||2 + 2||||2 = ||+ ||2 + ||− ||2
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Theorem 7 In R2

|     | = |||||||| cos 

where  is the angle between  and 

Proof. Assume  ≤ 
2
 Set  such that ∆(0  ) is a right angle triangle. Then, by definition

cos  =
||||
||||

Now, using Pythagoras

||||2 = ||||2 + ||− ||2

= 2||||2 + ||||2 − 2     +2||||2

⇒ ||||2 =   

⇒ |     | = |||||||| cos 

In fact, in more general inner product vector spaces, this is how the concept of an angle is

defined

Definition 13 If (   ) is an inner product linear space then, for any two vectors  and 

the angle  between  and  is defined by

   

|||||||| = cos 

The above result tells us that in R2, the dot product of two vectors has to be less than the

product of the Euclidian norm of those two vectors. It turns out that this is a more general property.

Theorem 8 (Cauchy-Schwartz inequality) For any   ∈ R

|     | ≤ ||||||||

Proof. For any  ∈ R, ||− || ≥ 0 by definition. This implies that

0 ≤ ||− ||2

 (− ) (− ) 

= ||||2 − 2     +2||||2

17



If  = 0 we are done (as |   0  | = 0), so assume not, and set

 =
   

||||2

Which implies that

0 ≤ ||||2 −    2

||||2
|     | ≤ ||||||||

We now define the concept of orthogonality.

Definition 14 2 vectors   ∈  are orthogonal if    = 0

Definition 15 A collection of vectors {1  } ⊂  is orthogonal if    = 0 ∀  6=  and

is orthonormal if |||| = 1 ∀ i

Note that, from this definition, it is obvious that the zero vector is orthogonal to each vector.

We define an orthonormal basis of an inner product space as a basis of that space whereby

each of the elements are orthonormal. It turns out that, using the Gram Schmidt process, any

collection of linearly independent vectors can be ’orthonormalized’, and so every inner product

space has an orthonormal basis.

From theorem 7 it is clear that in R2, vectors are orthogonal if there is a 90 degree angle between

them. Also, it should be clear that you can have at most two (non zero) orthogonal vectors in R2.

This gives a hint to the following theorem

Theorem 9 An orthogonal set that does not include the zero element is linearly independent.

Proof. Exercise

We are now going to define the orthogonal complement of a set. This is just the set of objects

that is orthogonal to every object in that set.
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Definition 16 If     is an inner product space, the orthogonal complement of a subset

 ⊂  is defined as

⊥ = { ∈  |    = 0 ∀  ∈ }

For homework, you will prove the following three properties of the orthonormal set.

Theorem 10 Properties of the orthogonal compliment of  ⊂ R

1. ⊥ is a linear subspace

2. If  is a linear subspace with basis {1  }, then

⊥ = { ∈ R|    = 0 ∀  ∈ {1  }}

3. If  is a linear subspace, then  ∩ ⊥ = {0}

Proof. Exercise

One particularly interesting property of a linear subspace and its orthogonal compliment of a

set is that it allows us a unique decomposition of any vector into the sum of two other vectors: one

in the original set and one in its compliment

Theorem 11 Let  be a linear subspace of R. Then each  ∈  admits a unique decomposition

of the form

 =  + ⊥

where  ∈  and ⊥ ∈ ⊥. We call  the orthogonal projection of  onto 

Proof. Let {1  } be an orthonormal basis for . Define

 =

X
=1

    

and ⊥ = − 
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Now we need to show that ⊥ ∈ ⊥. By a result that you will prove for homework, it is enough

to show that    ⊥ = 0 ∀ .

   ⊥ =   −  

=      −     

=      −
X
=1

      

=      −        

= 0

For uniqueness, say that  =  + ⊥ =  + ⊥ . Then

 −  = ⊥ − ⊥

But  −  ∈  and ⊥ − ⊥ ∈ ⊥ (because both  and ⊥ are linear subspaces), and because

the only intersection between  and ⊥ is 0, this implies that

 −  = ⊥ − ⊥ = 0

so  =  and ⊥ = ⊥

One reason that the orthogonal projection is interesting is that the element  is the closest

element to  in  in the following sense:

Theorem 12 Let  be the orthogonal projection of a vector  onto a linear subspace . Then

|| − || ≤ ||− || ∀  ∈ 

Proof. Take any  ∈  , and note that

||− ||2 = ||(− ) + ( − )||2

||(− )||2 + ||( − )||2 + 2  (− ) ( − ) 

but

 (− ) ( − ) = 0
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as (− ) ∈  and ( − ) = ⊥ ∈ ⊥. Thus

||− ||2 = ||(− )||2 + ||( − )||2 ≥ ||( − )||2
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