Midterm¹

Question 1.-

Consider the set of functions $F \subset \mathcal{C}(0,1)$ defined by

$$F = \left\{ f | \mathcal{C}(0,1) | f(x) = ax^b, a \in A \subset \mathbb{R} \text{ and } b \in B \subset \mathbb{R} \right\}$$

That is, F is a subset of the set of continuous functions defined on (0,1)

Part 1

Let $B = \mathbb{R}$. Is every element of this set of functions continuous? Are they all uniformly continuous? Are they all Lipschitz continuous (HINT: for the last part you can use the fact that $\frac{f(x)-f(y)}{x-y}$ converges to f'(x) as y converges to x)

Every element of the set of functions is continuous

Continuity of the set F follows from the following claim

Claim 1 $f(x) = x^b$ is continuous for all $x \in (0,1)$ and $b \in \mathbb{R}$

Proof. We are going to prove for the case in which $b \ge 0$. The case for b < 0 follows from the fact that $x^b = \left(\frac{1}{x}\right)^{-b}$ and from the continuity of the composition of functions and of the function $g(x) = \frac{1}{x}$ for all $x \in (0, 1)$.

Let b > 0, the case for b = 0 is trivial (f(x) = 1). We want to show that for all $\varepsilon > 0$ there exists a $\delta > 0$ such that for all y such that $|x - y| < \delta$ it is the case that $|x^b - y^b| < \varepsilon$. Consider $\delta \equiv \min \left\{ x - (x^b - \varepsilon)^{\frac{1}{b}}, (x^b + \varepsilon)^{\frac{1}{b}} - x \right\}$ then we have that

$$\begin{split} |x - y| < \delta & \Leftrightarrow & -\delta < y - x < \delta \\ & \Leftrightarrow & (x^b - \varepsilon)^{\frac{1}{b}} - x < y - x < (x^b + \varepsilon)^{\frac{1}{b}} - x \\ & \Leftrightarrow & (x^b - \varepsilon)^{\frac{1}{b}} < y < (x^b + \varepsilon)^{\frac{1}{b}} \\ & \Leftrightarrow & x^b - \varepsilon < y^b < x^b + \varepsilon \\ & \Leftrightarrow & -\varepsilon < y^b - x^b < \varepsilon \end{split}$$

the desired result. \blacksquare Aside note: The way to get to δ is to start from the bottom and work your way up.

¹If you find any typo please email me: Maria Jose Boccardi@Brown.edu

Not all the elements in the set are uniformly continuous

In particular consider a = 1 (for simplicity) and b = -1, the function $f(x) = \frac{1}{x}$ is not uniformly continuous. To see this take $\varepsilon = 1$ and assume by contradiction that the function is uniformly continuous, then there exist a $\delta > 0$ such that $f(B(x, \delta)) \subset B(f(x), 1)$. Then it has to be the case that $\left|\frac{1}{x} - \frac{1}{y}\right| < 1$ for all x, y such that $|y - x| < \delta$.

 $\left|\frac{1}{x} - \frac{1}{y}\right| < 1 \Leftrightarrow |x - y| < xy.$ Set $y = x + \frac{\delta}{2}$ then $\left|\frac{\delta}{2}\right| < x^2 + x\frac{\delta}{2}$ for all $x \in (0, 1)$ which is clearly not true.

Not all the elements in the set are Lipstchiz continuous

Consider a = 1 and $b = \frac{1}{2}$, and assume by the way of contradiction that the function is Lipschitz continuous. Then it is the case that there exists a $k \in \mathbb{R}_+$ such that $|f(x) - f(y)| \le K|x-y|$ or equivalently (assuming $x \neq y$) $\frac{|f(x)-f(y)|}{|x-y|} \le K$. Consider the case where y = 2x then it must be the case that

$$\frac{|\sqrt{x} - \sqrt{2x}|}{|x - 2x|} \le K \quad \Leftrightarrow \quad \frac{|\sqrt{x}(1 - \sqrt{2})|}{|-x|} \le K$$
$$\Leftrightarrow \quad \frac{|(1 - \sqrt{2})|}{\sqrt{x}} \le K$$

Consider now $x \to 0$ then the last inequality clearly is not true.

Part 2.-

Does your answer change if we instead have $B = \mathbb{R}_{++}$

The function is clearly still continuous from the previous part and it is not Lipschitz continuous since the counterexample of part 1 still applies.

In this case the of uniformly continuity now it is. I think the easiest way to prove it is as follows. Consider first the family of function of the form $f(x) = ax^b$ but when [0, 1] and then conclude that is uniformly continuous in (0, 1). In particular we just need to prove that is continuous in [0, 1] since as it was proving in the homework continuity of a function on [a, b] implies uniformly continuity on [a, b]. In particular we just need to prove continuity at x = 0 and x = 1, the rest follows from the previous part.

Continuity of x = 0

We want to show that for any $\varepsilon > 0$ there exists a $\delta > 0$ such that for all $y \in B(0, \delta)$ it is the case that $f(y) \in B(f(0), \varepsilon)$. Again for simplicity consider the case where a = 1 and consider $\delta = (\varepsilon)^{\frac{1}{b}}$

$$\begin{array}{ll} \Leftrightarrow & -\left(\varepsilon\right)^{\frac{1}{b}} < y - 0 < \left(\varepsilon\right)^{\frac{1}{b}} \\ \Leftrightarrow & -\left(\varepsilon\right)^{\frac{1}{b}} < y < \left(\varepsilon\right)^{\frac{1}{b}} \\ \Leftrightarrow & -\varepsilon < y^{b} < \varepsilon \\ \Leftrightarrow & -\varepsilon < y^{b} - 0 < \varepsilon \\ \Leftrightarrow & -\varepsilon < f(y) - f(0) < \varepsilon \end{array}$$

Continuity of x = 1

We want to show that for any $\varepsilon > 0$ there exists a $\delta > 0$ such that for all $y \in B(1, \delta)$ it is the case that $f(y) \in B(f(1), \varepsilon)$. Again for simplicity consider the case where a = 1. Consider $\delta = \min\left\{1 - (1 - \varepsilon)^{\frac{1}{b}}, (1 + \varepsilon)^{\frac{1}{b}} - 1\right\}$

$$\begin{array}{ll} \Leftrightarrow & -\left(\varepsilon-1\right)^{\frac{1}{b}} - 1 < y - 1 < \left(\varepsilon+1\right)^{\frac{1}{b}} - 1 \\ \Leftrightarrow & -\left(\varepsilon-1\right)^{\frac{1}{b}} < y < \left(\varepsilon+1\right)^{\frac{1}{b}} \\ \Leftrightarrow & -\varepsilon + 1 < y^{b} < \varepsilon + 1 \\ \Leftrightarrow & -\varepsilon < y^{b} - 1 < \varepsilon \\ \Leftrightarrow & -\varepsilon < f(y) - f(1) < \varepsilon \end{array}$$

Now assume that $B \subset \mathbb{R}_{++}$ and that $F \subset C[0,1]$ which we endow with the sup metric (i.e. $d(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)|)$

Part 3.-

Can we ensure that the distance between any two functions in F is finite?

Yes, because if $b \in \mathbb{R}_{++}$ and $x \in [0,1]$ then $f(x) \in [0,a]$ if $a \ge 0$ and $f(x) \in [a,0]$ if a < 0 for all $x \in [0,1]$ and for all $a \in \mathbb{R}$ and $b \in \mathbb{R}_{++}$ and if the functions are bounded then the distance is finite, see homework.

Part 4.-

Is F bounded? If not, provide necessary and sufficient conditions on A and B for it to be bounded?

F is bounded if there exists a r and a function f such that $F \subset B(f, r)$. In particular we need A to be bounded, if A is bounded then $d(f_1, f_2) = \sup_{x \in [0,1]} |f_1(x) - f_2(x)| = \sup_{x \in [0,1]} |a_1 x^{b_1} - a_2 x^{b_2}| \le |\sup A - \inf A| < \infty$. Consider the function $f(x) = ax^b$ when a = 0 then $F \subset B(0, R)$ where $R \equiv |\sup A - \inf A| + 1$.

Part 5.-

Is F complete? If not, provide sufficient conditions on A and B for it to be complete (you will get more points if you can name looser conditions!)

The set is not complete. Consider for example the following Cauchy sequence $x^{\frac{1}{m}} \in F$ for all m and $x \in [0,1]$. Then $f_m \to f$ where f(0) = 0 and f(x) = 1 for all $x \in (0,1]$ which is clearly not continuous and $f \notin F$ ($b \in \mathbb{R}_++$).

For F to be complete we need that any cauchy sequence in F is convergent in F. Take any cauchy sequence $f_n \in F$ we want to show (or find the conditions under which) $f_n \to f \in F$. If f_n is cauchy then it is the case that for all $\varepsilon > 0$ there exists a N such that if n, m > N then $d(f_n, f_m) < \varepsilon$ that is $\sup_{x \in [0,1]} |a_n x^{b_n} - a_m x^{b_m}|$. In case that A is a singleton then we need completeness of B and the other way around, follows from continuity.

More generally consider f_n Cauchy, that means that for every $\varepsilon > 0$ there exists some $M \in \mathbb{N}$ such that $d(f_n, f_m) < \varepsilon$ for all m, n > M; that is $\sup_{x \in [0,1]} |f_n(x) - f_m(x)| < \varepsilon$ or $\sup_{x \in [0,1]} |a_n(x)^{b_n} - a_m(x)^{b_m}| < \varepsilon$. In particular when x = 1 f_n being Cauchy implies a_n being cauchy, and therefore one of the conditions that we must impose is the completeness of A.

Furthermore if a_n is Cauchy then for f_n to be Cauchy b_n must be Cauchy (following a continuity argument) and therefore in order to get completeness of F we need completeness of B.

Part 6.-

Define $T: F \to \mathbb{R}$ as $T(f) = \max_{x \in [0,1]} f(x)$. Is T well defined (i.e. does T(f) take a value in \mathbb{R} for any $f \in F$?)

Yes, by Weierstrass since [0, 1] is a compact space and f is a continuous function then there exists a maximum.

Part 7.-

Provide conditions under which the problem $\max_{f \in F} T(f)$ has a solution (again, you will get more points for looser conditions!)

In order to be sure that the problem has a solution we have to see the conditions under which we can ensure T(f) to be continuous and F to be compact.

We know that the set F is compact if it is closed, bounded and equicontinuous. For boundedness we need boundedness of A. For closeness take any sequence of $f_m \in F$ such that $f_m \to f$ we need to show (or find the conditions under which) $f \in F$. By imposing A and B closed we get the desired result F is equicontinuous at $x \in [0, 1]$ if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that for all y such that $|x - y| < \delta$ implies $|ax^b - ay^b| < \varepsilon$ for all $a \in A$ and $b \in B$. From previous parts we have that A is closed and bounded and B is closed. Considering a = 1 and b = m we can show that F is not equicontinuous when $m \to \infty$, see homework 3. Then we need to imposed boundedness on B.

Putting all these together, $A \subset \mathbb{R}$ and $B \subset \mathbb{R}_{++}$ must be compact.

In order to prove that the function T(f) is continuous we can invoke the theorem of the maximum. In particular prove that the function f is continuous and we know that [0,1] is a compact set, then we know that the set of maximizers is an upper hemicontinuous correspondence. Also given that $b \in \mathbb{R}_{++}$ then we have that the function $f(x) = ax^b$ is strictly monotonic if $a \neq 0$. Then the maximizer is unique

Question 2 .-

Let X be a metric space such that there exists an $\varepsilon > 0$ and an uncountable set $S \subseteq X$ such that $d(x,y) > \varepsilon$ for any distinct $x, y \in S$. Show that X cannot be separable. Give an example of three spaces that satisfies this property.

A metric space X is separable if it has a countable dense subset. Let assume by contradiction that X is separable and let Y be the countable dense subset, that is X = cl(Y) and Y is countable. For any $x \in S$, then it has to be the case that $x \in Y$ or $x \in cl(Y) \setminus Y = X$. We know it has to be the latter because by assumption Y is countable. Consider $\varepsilon' = \frac{1}{2}\varepsilon$ then $B(x, \varepsilon') = x \cup Y = \emptyset$ which contradicts that $x \in cl(Y)$.

Examples:

- \mathbb{R} with the discrete metric.
- l^{∞}
- Hedgehog space with uncountable spinyness

Question 3

Consider the following subsets of the set of all infinite sequences

$$l^{p} = \left\{ \{x\}_{m} \in \mathbb{R}^{\infty} | \sum_{i=1}^{\infty} |x_{i}|^{p} < \infty \right\}$$
$$l^{\infty} = \left\{ \{x\}_{m} \in \mathbb{R}^{\infty} | \sup_{m \in \mathbb{N}} |x_{m}| < \infty \right\}$$

Part 1.-

Show that l^1 is a strict subset of l^∞

We want to show that (1) $\{x\}_m \in l^1 \Rightarrow \{x\}_m \in l^\infty$ and that (2) $l^\infty \setminus l^1 \neq \emptyset$

(1) $l^1 = \{\{x\}_m \in \mathbb{R}^\infty | \sum_{i=1}^\infty |x_i| < \infty\}$. In particular for $\sum_{i=1}^\infty |x_i| = M < \infty$ it must be the case (as it was shown in class) that $\lim_{i\to\infty} |x_i| = 0$. As it was also shown in class any convergent subsequence is bounded, therefore $\sup_{m\in\mathbb{N}} |x_m| < \infty$

(2) For example $\{x\}_m = \frac{1}{m} \in l^\infty$ (sup_{m \in \mathbb{N}} |x_m| = 1) but $\{x\}_m = \frac{1}{m} \notin l^1$ ($\sum_{i=1}^\infty |x_i| = \infty$)

Part 2.-

Is l^1 a linear subspace of l^{∞} ?

 l^1 is a linear subspace of l^{∞} (from previous part we know that is a subset) if it is closed under addition and scalar multiplication. In particular consider the sequences $\{x\}, \{y\} \in l^1$ we need to show that $\{z\} = \{x + y\} \in l^1$ and that $\{w\} = \{\lambda x\} \in l^1$ for $\lambda \in \mathbb{R}$.

$$\{z\} \in l^1 \Leftrightarrow \sum_{i=1}^{\infty} |z_i| < \infty \Leftrightarrow \sum_{i=1}^{\infty} |x_i + y_i| < \infty$$

since $|x_i + y_i| \le |x_i| + |y_i|$ for all i then it is the case that $\sum_{i=1}^{\infty} |x_i + y_i| \le \sum_{i=1}^{\infty} |x_i| + |y_i| = \sum_{i=1}^{\infty} |x_i| + \sum_{i=1}^{\infty} |y_i| < \infty$ where the last inequality follows from the fact that $\{x\}, \{y\} \in l^1$.

$$\{w\} \in l^1 \quad \Leftrightarrow \quad \sum_{i=1}^{\infty} |w_i| < \infty \tag{1}$$

$$\Leftrightarrow \quad \sum_{i=1}^{\infty} |\lambda x_i| < \infty \tag{2}$$

$$\Rightarrow |\lambda| \sum_{i=1}^{\infty} |x_i| < \infty$$
(3)

where the last inequality follows from the fact that $\{x\} \in l^1$

Part 3.-

Is the set of all convergent real sequences a linear subspace of l^{∞} ? or of l^{1} ?

As it was shown in class the set of all convergent real sequences is a subset of l^{∞} , but it is not a subset of l^1 , consider for example the sequence $x_m = \frac{1}{m}$ which is convergent but the infinite

sum is infinite. Now we need to show that the set of convergent subsequence is a linear subspace of l^{∞} . As in the previous part, we need to prove that the set of convergent subsequences is closed under addition and scalar multiplication. Which follows directly from the fact that if $x_n \to x$ and $y_n \to y$ then $x_n + y_n \to x + y$ and $\lambda x_n \to \lambda x$.