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1 Lecture 1

The first topic that we are going to cover in detail is what we’ll call ’real analysis’. The foundation

for this bit of the course is the definition of a ’metric’, which is basically a way of measuring the

distance between objects. This is something that was a property missing from our discussion of

ordered fields in week 1 There is a very natural way of defining a metric on R, but as we shall

see the concept is much more general than that. We will use the concept of a metric to generate

a topology on the spaces we are interested - or a description of what is open and closed. By doing

so, we will be able to discuss various topics such as continuity, connectedness, compactness and

so on. These in turn will allow us to prove results of more direct relevance to us as economists -

such as Weierstrass theorem (which tells us when an optimization problem is guaranteed to have

a solution), the Theorem of the Maximum, (which tells us how the solution to a maximization

problem will change with the parameters of that problem), and some fixed point theorems (which

are used in proving that equilibria of certain systems exist).

1.1 Definition of a Metric

To begin with we need to define a metric.

Definition 1 A metric space () is a set  and metric  :× → R such that the following

properties hold

1. 0 ≤ ( )  +∞ ∀   ∈
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2. ( ) = 0 if and only if  = 

3. ( ) = ( )

4. ( ) ≤ ( ) + ( ) ∀    ∈ (the triangle inequality)

As usual, there is a very natural way of defining a metric in R, which is the Euclidian Metric

Definition 2 The Euclidian metric is a metric on R such that

( ) =

Ã
X
=1

( − )
2

!1
2

For R, this reduces to ( ) = |− |, which clearly satisfies the necessary properties. We can
demonstrate easily in R2 that the Euclidian metric is indeed a metric. To prove this formally for

R, the only tricky bit (check) is the triangle inequality. But for this we can use a result called

Minkowski’s inequality 1. This this states that

Theorem 1 (Minkowski’s Inequality 1): For any   ∈ R and 1 ≤  ∞Ã
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Proof. This is trivial for the case where  = ∅ or  = ∅, so focus on the case where  =

(
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=1 ||)
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 are positive real numbers. Define the vectors ̄ = 1
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As the triangle inequality holds for the absolute value function, and that raising a positive number

to the power  is an increasing function, we get

| + | ≤ (||+ ||)

=
¡
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As  is a convex function on R+, we getµ
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Summing over 
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raising both sides to the power 1

givesÃ
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Thus, letting  = 2 and  = −  and  =  −  we getÃ
X
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⇒ ( ) ≤ ( ) + ( )
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As usual, there are other examples of metrics. In fact, Minkowsiki tells us that, for any  such

that 1 ≤  ∞,

( ) =

Ã
X
=1

(| − |)
! 1



is a metric. However, we can also define metrics in all sorts of weird and wonderful ways

Example 1 The discrete metric. Let  be any non-empty set and define ( ) as

( ) = 0 if  = 

= 1 otherwise

then  form a metric space.

Proof. The only non-trivial bit is the triangle inequality, but this is also obvious. If  =  then it

holds trivially. If  6=  then  =  and  =  cannot simultaneously be true, so ( ) + ( ) ≥
1 = ( ) and we are done.

Example 2 Let  be an non-empty set and B( ) be the set of all bounded real functions. Define
the sup-metric for   ∈ B( ) as

∞( ) = sup [|()− ()| :  ∈  ]

then (B( ) ∞( )) is a metric space.

Proof. Homework

1.2 Defining a Topology

We are now going to use the concept of a metric to define a topology on our metric space. A

topology is just a description of what defines a subset as open

Definition 3 Let  be an arbitrary set. A topology on  is a collection  ⊂ 2 such that

1. The empty set and  ∈ 

2. if {} is a collection of sets in  then ∪ ∈ 
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3. if {}=1 is a finite collection of sets in  then ∩ ∈ 

In other words, a topology on any set  is any collection of subsets that contains the empty

set and  and is closed under union and finite intersection. We will call sets in  the open sets as

defined by that topology.

Any metric can generate a topology. To see this, we need some more definitions

Definition 4 Let  be a metric space and  ∈ R++. The set ( ), defined as

( ) = { ∈ |( )  }

is called an open ball, with a centre  and radius . The set ̄( ) defined as

̄( ) = { ∈ |( ) ≤ }

is called a closed ball

Note here that we are sneakily using an implicit topology on R, by which open intervals are

open.

Now, we can use our metric to define a topology

Definition 5 Let  be a metric space. Then a set  ⊂  is open, if, for every  ∈  there

exists an  such that ( ) ⊂ 

Given this claim, we want to check a few things. First, we want to check that an open ball is

itself an open set

Lemma 1 An open ball is an open set

Proof. Let ( ) be some open ball, and let  ∈ ( ). Let  = 1
2
( − ( )). By definition

of the open ball, we know that   0, so we can define the open ball ( ). Our claim is that

( ) ⊂ ( ). To see this, pick  ∈ ( ), and note that

( ) ≤ ( ) + ( )

 + ( )

=
1

2
 +

1

2
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but, as 1
2
( )  1

2


1

2
 +

1

2
( )  

and so  ∈ ( )

We are going to be using arguments such as this an awful lot over the next few lectures.

Next, I need to come good on my claim that our definition of open sets is a topology

Theorem 2 The collection  = { ⊂ | ∀  ∈  ∃  ∈ R++ such that ( ) ⊂ } is a topology

Proof. This requires us to prove three things

1. The empty set and  ∈  . This is trivial

2. If {} is a collection of sets in  then ∪ ∈  . Let  ∈ ∪. Then ∃  such that

 ∈ . As  is open, there exists some  such that ( ) ⊂ . But then ( ) ⊂ ∪

3. if {}=1 is a finite collection of sets in  then ∩ ∈  . Let  ∈ ∩. Then for every
 ∈ {1   } there exists an () such that ( ()) ⊂ . Let  = min (). (Note how

we have used the finiteness of {}=1). Then, for every , ( ) ⊂ ( ()) ⊂ , and

so ( ) ⊂ ∩

You might be wondering about the asymmetry between the unrestrictedness of the unions and

the fineniteness of the intersections. Let me show you that this is a necessary restriction, at least

if we want our metric-based definition to work as a topology

Remark 1 The intersection of a countable collection of open sets {}∞=1 is not necessarily open.
To see this, you should prove to yourself that open intervals on the real line are open. Then define

 = (0 1 +
1

) for {}∞=1. Then note that

∩ = (0 1]

as, clearly 1 ∈ (0 1 + 1

) ∀ , but for any   1, we can find some  such that 1 +  ∈ . But

(0 1] is not open, as for any   0, (1 ) 6⊂ (0 1]
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Note that, for any given space (say R) different metrics can give rise to different topologies. For

example - what sets are open in R under the discrete metric? However, in some cases, different

metrics will give rise to the same topologies. For example, consider the family of metrics  we

defined above. It should be intuitively obvious that any two metrics in this family will define the

same topology on R. Clearly these metrics are ’equivalent’ in some way. This is a useful fact, as

certain properties may be easier to prove in (say) 1 than in 2. The equivalence of these metrics

means that proving things in 1 may be enough to guarantee that they hold for other metrics.
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