
3 Lecture 3

3.1 Continuity

Next, we move onto the idea of continuity - a property of functions that I am sure you have all used

informally, and we will now define formally. This is an incredibly useful property when it comes

to optimization, as we will soon see. Broadly speaking, a continuous function is one that does not

jump.

Definition 10 Let () and ( ) be 2 metric spaces. A function  :  →  is continuous at a

point  ∈  if, for every   0, ∃   0 such that

( 0)  

⇒ (() (0))  

Equivalently, (( )) ⊂ (() ). We say a function is continuous if it is continuous at

every point in its domain.

For a real valued function endowed with the standard metric, it should be pretty easy to see

that this definition is equivalent to our intuition that a continuous function is one that can be

drawn without the pen leaving the paper.

Note that whether or not a particular function is continuous depends crucially on the metric in

use, as the follow example shows

Example 6 Any function defined on  :  →  is continuous if  is endowed with the discrete

metric. To see this, note that the ball ( 1
2
) = {} for all  ∈  , thus, for any   0, (( 1

2
)) ⊂

(() ). Thus, if we consider the indicator function  :  → R = 10, then this function is

discontinuous if  = R endowed with the standard metric, but is continuous if  is R endowed with

the discrete metric.

There are several alterative characterizations of continuity that are equivalent

Theorem 3 Let  : ( )→ ( ). The following are equivalent
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1.  is continuous

2. for any  ∈  and sequence  →  implies ()→ ()

3. −1() is open for any open set 

4. −1() is closed for any closed set 

Proof. We do this in four parts

1. (1 implies 2). Take any . We need to find an  such that    ⇒ (() ())  . By

continuity, we know that there must be a  such that ( 0)   implies that (() (0)) 

. Moreover, as  → , we can find some  such that ( ) ≤  ∀    . Thus, for ∀
   , (() ())  

2. (2 implies 4) Let  ⊂  , closed. Pick any convergent sequence  →  in −1(). We need

to show that  ∈ −1(). By the line above, we know that () → (). But as () is a

sequence in , which is closed, () ∈  and so  ∈ −1()

3. (4 implies 3)Let  ⊂  , open. By definition,  closed. Thus, by the line above, −1()

closed. Thus, −1() open. But this is just −1()

4. (3 implies 1). Pick any  ∈  and   0. As (() ) is open, then so is −1((() ).

Note that  ∈ −1((() ). By the definition of an open set ∃  such that ( ) ⊂
−1((() ). Thus, (( )) ⊂ (() ).

It should be obvious that it is not necessarily true that a continuous function will map an open

set to an open set. You will be asked to come up with a counterexample for your homework

We will now go through some more properties of continuous functions which show that various

combinations of continuous functions also tend to be continuous.

Lemma 4 Let  and  be metric spaces, and  :  →  ,  :  →  and  :  →  be

continuous functions.
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1.  ◦  :  →  is continuous.

2.  :  →  2 such that ( ) = (() ()) is continuous, where  2 is endowed with the

product metric2

3.  ± , , max( ) and min( ) are all continuous

Proof. Exercise

Before moving on, it is worth considering some stronger forms of continuity

Definition 11 Let  and  be two metric spaces. A function  :  →  is uniformly continuous

if, for every , there exists a  such that (( )) ⊂ (() ) ∀  ∈ 

Spot the difference between uniform continuity and standard continuity? For standard continu-

ity, for any , we are allowed to find a  for each  such that (( )) ⊂ (() ). For uniform

continuity you have to pick the same  for every . Clearly, any uniformly continuous function is

continuous, but, the reverse is not true.

When does this make a difference? A classic example is the function  : R++ → R () = 1

.

This function is clearly continuous (you should check), but it is not uniformly continuous, select

 = 1. If the function is uniformly continuous, then we must be able to find a  such that

(( )) ⊂ (() 1) ∀ . Say we find such a . It has to be the case that | 1

− 1


|  1 for all 

and  such that | − |  . In other words, |− |  . But set  = + 
2
. Then | 

2
|  2 +  

2
,

for all   0. This is clearly not true

A further strengthening of the concept of continuty is Lipschitz Continuity

Definition 12 Let  and  be two metric spaces. A function  :  →  is Lipschitz continuous

if there exists a real number  ∈ R+ such that

(() ()) ≤ ( )

2For a collection { }=1 of metric spaces, the product metric on  = × is given by

( ) =


=1

( )
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Notice that, for real valued functions, this implies that the slope of the line between any two

points  and  must be bounded above by . The standard example of a function that is uniformly

but not Lipschitz continuous if 
1
2
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