
6 Lecture 6

6.1 Continuity of Correspondances

So far we have dealt only with functions. It is going to be useful at a later stage to start thinking

about correspondances. A correspondance is just a set-valued function: a correspondance from

 to  is a map that takes every element in  and maps it to a non-empty subset of  (note

that a correspondance is therefore also a function if we define the range correctly, yes?). If Γ is a

correspondance from  to  we write Γ :  ⇒  .

Note that we have (formally or informally) come across a number of correspondances in eco-

nomics. For example, in a world with  commodities and a fixed income level , we can think of a

budget set as a correspondance  : R
+ ⇒ R

+ defined as

() =
©
 ∈ R

+| ≤ 
ª

Similarly, for any set  endowed with a preference relation º, we can think of the upper contour
set as a correspondance Â :  ⇒  defined as

Â() = { ∈ | Â }

As with functions, it is going to be useful to think of the concept of continuity with regard to

correspondances:

Definition 26 A correspondance Γ :  ⇒  is upper-hemicontinuous at  ∈  if for every open

subset  ⊂  with Γ() ⊆  there exists a   0 such that

Γ(( )) ⊆ 

It is lower-hemi-continuous at  if, for every open set  in  such that Γ()∩ 6= ∅ then there
exists a  such that

Γ(0) ∩ 6= ∅ ∀ 0 ∈ ( )

It is continuous if it is both upper and lower hemicontinuous
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We will draw graphs to demonstrate these properties in class.

As with continuous functions, there is a sequential characterization of both upper and lower

hemicontinuity, that we will state but not prove:

Lemma 13 A correspondance Γ :  ⇒  is lower hemicontinuous at  ∈  if and only if, for any

seqeunce  →  in , and any  ∈ Γ(), there exists a sequence  →  such that  ∈ Γ() ∀


In order to state a similar result for upper-hemi continuity, we need to define the concept of a

compact-valued correspondance

Definition 27 A correspondance Γ :  ⇒  is compact valued if, for every  ∈ , Γ() is compact

The concepts of closed-valued and convex-valued are defined analogously

So, what about UHC correspondances?

Lemma 14 Let Γ :  ⇒  be a correspondance. If, for every  →  in , and  ∈ Γ()
there exists a subsequence of  that converges to a point in Γ(), then Γ is upper hemi continuous.

If Γ is also compact valued, then the converse is also true.

One other useful property of UHC and compact valued correspondances is the following:

Proposition 4 Let Γ :  ⇒  be an upper hemi-continuous and compact valued correspondance.

Then Γ() is compact in  for any compact subset  of 5

6.2 Applications

We are now going to make use of some of the machinery that we have developed in order to prove

some genuinely useful results. In fact, another title for this section could have been ‘Some Reasons

5Note that we define Γ() as follows:

Γ() := ∪∈Γ()

NOT as {Γ()| ∈ }. I.e. it is a subset of  , not a collection of sets in  .
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Why we Care About the Rest of this Chapter.’ We are basically going to show some things that

are true about compact and complete sets that are going to be genuinely useful, even outside this

course. Gasp! In particular, we will show the following

1. Any continuous real valued function obtains a maximum and minimum value when evaluated

on a compact metric space (Weierstarss’s theorem)

2. A certain class of functions is going to have a fixed point on a complete space (Banach Fixed

Point Theorem)

3. The Theorem of the Maximum

So here we go

Theorem 11 (Weierstrass) Let  be a compact metric space and  :  → R be continuous,

then  attains its max and min in 

Proof. This theorem states that there exists ∗ ∈  such that (∗) = sup∈ () = max∈ (),

and the same for the minimim. We will prove it for the maximum - an equivalent method will work

for the minimum.

By theorem 10 we know that () is compact, and so (as () ⊂ R) closed and bounded.

But this means that sup∈ ()  +∞. Also, as sup∈ () is a closure point of (),

then sup∈ () ∈ (). This implies their exists some ∗ such that (∗) = sup∈ () =

max∈ ()

Given the machinery that we have built, this is a very simple result, but one that is very useful

- it gives you a condition under which optimization problems will actually have solutions!

Next we are going to move on to Banach Fixed Point theorem. In general, fixed point theorems

are very useful classes of result that give us conditions under which for some function  :  → 

we can find a value such that () = . These results are incredibly useful when it comes to proving

the existence of various types of equilibria. There are lots of different fixed point theorems, that

provide different conditions under which fixed points exist. We will hopefully get to some others

later in the course.

In order to state Banach, we are going to have to introduce some preliminaries.
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Definition 28 Let  be a metric space, and  :  → . We will say that  is a contraction if

there exists some 0    1 such that

(() ()) ≤ ( ) ∀   ∈ 

The inf of such ’s is called the contraction coefficient

So a contraction is a function that maps  to itself (also called a self map) such that the

function spits out items that are closer together than what you put into it. The most obvious

contraction is the function  : R→ R such that () =  for −1    1

Why do we care about contractions? The reason is, because of Banach, we know that contrac-

tions on complete metric spaces have a fixed point, and as I have already discussed, fixed points

are nice things.

Theorem 12 (Banach Fixed Point Theorem) Let  be a complete metric space, and  be a

contraction on . Then there exists a unique ∗ such that (∗) = ∗

Proof. We first show the existence of some ∗ ∈  such that (∗) = ∗. Pick some 0 ∈  and

define a sequence recursively such that +1 = (). The sequence {}∞=1 is a Cauchy To see
this, let  be the contraction coefficient of  , and note that

(2 1) = ((1) (0)) ≤ (1 0)

(3 2) = ((2) (1)) ≤ (2 1) ≤ 2(1 0)

More generally, (+1 ) ≤ (1 0) Thus, for any ,    + 1 we have

( ) ≤ ( −1) + (−1 −2) + + (+1 )

≤ (−1 + −2 + + )(1 0)

= 
(1− −)
1− 

(1 0)

so ( )  

1−(
1 0) implying that the sequence is cauchy.

As  is complete, it must be the case that {}∞=1 converges to some point ∗ ∈ . Therefore,
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for any   0, there exists some  such that (∗ )  
2
∀    . Thus

((∗) ∗) ≤ ((∗) +1) + (∗ +1)

= ((∗) ()) + (∗ +1)

≤ (∗ ) + (∗ +1)




2
+



2
= 

This is true for all   0, so it must be that ((∗) ∗) = 0, and so (∗) = ∗. Thus, ∗ is a

fixed point.

To prove uniqueness, note that, if  ∈  was another fixed point of  , we would have ( ∗) =

(() (∗)), a contradiction, as (() (∗))  ( ∗) for some   1.
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7 Lecture 7

Finally we move on to the theorem of the maximum. This is going to be a very useful theorem,

and it is designed to answer the following questions:

Example 13 Let  ∈ R
+ be a vector of prices,  be income, and consider an agent who choses

bundles  ∈ R
+ to maximize a utility function  : R

+ → R subject to the budget constraint

( ) =
©
 ∈ R

+| ≤ 
ª

Let ( ) be the demand function, so that

( ) = arg max
∈R

()| ≤ 

And ( ) be the derived utility, so that

( ) = max
∈R

()| ≤ 

Can we say anything about the properties of  and ? In other words, do we know anything

about how demand and derived utility change with the parameters of the problem?

This is exactly what the theorem of the maximum tells us (under certain assumptions). In order

to define these properties, we need to define the concept of the graph of a correspondance :

Definition 29 The graph of a correspondance Γ :  ⇒  is the set of pairs { } ∈  ×  such

that  is in the correspondance evaluated at 

Γ = {{ } ∈  ×  | ∈ Γ()}

Theorem 13 (The Theorem of the Maximum) Let

•  and  be metric spaces ( will be the set of things that are chosen,  the set of parameters)

• Γ :  ⇒  be compact valued and continuous (this is the constraint set defined by the

parameters)
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•  :  ×  → R be continuous, (this is the utility function)

Now define ∗ :  ⇒  as the set of maximizers of  given parameters 

∗() = arg max
∈Γ()

( )

and define ∗ :  ⇒  as the maximized value of  for  given parameters 

∗() = max
∈Γ()

( )

Then

1. ∗ is upper hemi-continuous and compact valued

2. ∗ is continuous

Translating into the language of the example

•  is the set of price vectors and income

•  is the commodity space

• Γ is the budget correspondance

•  is the utility function (note that we do not let utility depend directly on prices, but we

could if we wanted to)

• ∗ is the demand function

• ∗ is the derived utility

This is a really cool result. With relatively few assumptions, we are able to guarantee some neat

properties of things we really care about. The proof is somewhat cumbersome, so we will sketch it

here.

Proof. We will prove this as a set of claims:

Claim 1: ∗ has a closed graph. Let ( ) be a closure point of ∗ . We need to show that this

is in ∗ . First, we show that  is feasible at , then we show that it maximizes  at 
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Note that, if () is a closure point of ∗ , then we can construct a sequence ( )→ ( )

such that ( ) ∈ ∗ . This implies that  ∈ ∗() ∀ . This in turn implies that

 ∈ Γ() ∀ . As Γ is UHC and compact valued, then  must have a subsequences that

converges to some 0 ∈ Γ(), but as  → , it must be that  ∈ Γ(), so  is feasible at 

Now assume that  ∈ ∗(), then there must be some ̄ ∈ Γ() such that ( ̄)  ( ). By

LHC, there must be some sequence ̄ → ̄ such that ̄ ∈ Γ() ∀ . By the continuity of
 , we know that

lim ( ̄) = ( ̄)

lim ( ) = ( )

But, as  ∈ ∗(), this implies that

( ) ≥ ( ̄) ∀ 

( )  ( ̄)

A contradiction (check)

Claim 2 ∗ is UHC and compact valued. As ∗() is closed (by the above result) and ∗() ⊂ Γ()
compact, it must be the case that ∗() is compact, and so ∗ is compact valued.. Let ( )

be a sequence such that  →  and  ∈ ∗() ⊂ Γ() ∀ By the UHC and compact

valuedness of Γ, we know that there is a subsequence ̄ that converges to some  ∈ Γ(). The
closed graph property tells us that, as ( ̄) ∈ ∗ , then ( ) ∈ ∗ , and so  ∈ ∗(),

implying that ∗ is UHC

Claim 3 ∗ is continuous. Let  →  ∈ . We need to show that ∗() → ∗(). We know

that there is a subsequence ∗()→ lim sup ∗(). Pick a sequence  ∈ ∗(), so

∗() = ( 
∗()) = ( )

Because ∗ is compact valued and UHC, there is a subsequence  →  ∈ ∗(). By the

continuity of  , the fact that  →  and  →  implies that

∗()

= (  )

→ ( )
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. but as  ∈ ∗(), ( ) = ∗(), so ∗() is the lim sup of ∗(). A similar argument

proves that ∗() is also the lim inf of ∗(), so we are done.
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