6 Lecture 6

6.1 Continuity of Correspondances

So far we have dealt only with functions. It is going to be useful at a later stage to start thinking
about correspondances. A correspondance is just a set-valued function: a correspondance from
X to Y is a map that takes every element in X and maps it to a non-empty subset of Y (note
that a correspondance is therefore also a function if we define the range correctly, yes?). If I is a

correspondance from X to Y we write ' : X = Y.

Note that we have (formally or informally) come across a number of correspondances in eco-
nomics. For example, in a world with n commodities and a fixed income level I, we can think of a

budget set as a correspondance B : R’t = R’ defined as

B(p) = {v € Ry|pz < I}

Similarly, for any set X endowed with a preference relation =, we can think of the upper contour

set as a correspondance Uy : X = X defined as

U-(z) = {y € X[z > y}

As with functions, it is going to be useful to think of the concept of continuity with regard to

Correspondances .

Definition 26 A correspondance I' : X = Y is upper-hemicontinuous at x € X if for every open

subset O C'Y with I'(x) C O there exists a § > 0 such that

I'(B(z,d)) CO

It is lower-hemi-continuous at x if, for every open set O in'Y such that T'(x)NO # () then there
exists a & such that

I@)YNO#£0V 2 € B(z,d)

It is continuous if it is both upper and lower hemicontinuous
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We will draw graphs to demonstrate these properties in class.

As with continuous functions, there is a sequential characterization of both upper and lower

hemicontinuity, that we will state but not prove:

Lemma 13 A correspondance I' : X = Y is lower hemicontinuous at x € X if and only if, for any
seqeunce T, —  in X, and any y € I'(x), there exists a sequence Yy, — y such that y,, € T'(zy,) V

Tm

In order to state a similar result for upper-hemi continuity, we need to define the concept of a

compact-valued correspondance

Definition 27 A correspondance ' : X =Y is compact valued if, for every x € X, I'(x) is compact

The concepts of closed-valued and convex-valued are defined analogously

So, what about UHC correspondances?

Lemma 14 LetT' : X = Y be a correspondance. If, for every x,, — x in X, and yn, € T'(xy,)
there exists a subsequence of Y, that converges to a point in T'(x), then I is upper hemi continuous.

If T is also compact valued, then the converse is also true.

One other useful property of UHC and compact valued correspondances is the following:

Proposition 4 Let ' : X = Y be an upper hemi-continuous and compact valued correspondance.

Then T'(S) is compact in'Y for any compact subset S of X°

6.2 Applications

We are now going to make use of some of the machinery that we have developed in order to prove

some genuinely useful results. In fact, another title for this section could have been ‘Some Reasons

®Note that we define I'(S) as follows:
I'(S) := UgesI'(z)

NOT as {I'(z)|z € S}. Le. it is a subset of Y, not a collection of sets in Y.
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Why we Care About the Rest of this Chapter.” We are basically going to show some things that
are true about compact and complete sets that are going to be genuinely useful, even outside this

course. Gasp! In particular, we will show the following

1. Any continuous real valued function obtains a maximum and minimum value when evaluated

on a compact metric space (Weierstarss’s theorem)

2. A certain class of functions is going to have a fixed point on a complete space (Banach Fixed

Point Theorem)

3. The Theorem of the Maximum

So here we go

Theorem 11 (Weierstrass) Let X be a compact metric space and f : X — R be continuous,

then f attains its mazx and min in X

Proof. This theorem states that there exists x* € X such that f(x*) = sup,cx f(x) = maxzex f(x),
and the same for the minimim. We will prove it for the mazimum - an equivalent method will work

for the minimum.

By theorem 10 we know that f(X) is compact, and so (as f(X) C R) closed and bounded.
But this means that sup,cx f(z) < +oo. Also, as sup,cx f(x) is a closure point of f(X),
then sup,cx f(z) € f(X). This implies their exists some x* such that (z*) = sup,cyx f(z) =

max;ex f(z) m

Given the machinery that we have built, this is a very simple result, but one that is very useful

- it gives you a condition under which optimization problems will actually have solutions!

Next we are going to move on to Banach Fixed Point theorem. In general, fixed point theorems
are very useful classes of result that give us conditions under which for some function f: X — X
we can find a value such that f(z) = x. These results are incredibly useful when it comes to proving
the existence of various types of equilibria. There are lots of different fixed point theorems, that
provide different conditions under which fixed points exist. We will hopefully get to some others

later in the course.

In order to state Banach, we are going to have to introduce some preliminaries.
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Definition 28 Let X be a metric space, and f : X — X. We will say that f is a contraction if

there exists some 0 < k < 1 such that

d(f(z), f(y)) < kd(z,y) ¥V z,y € X

The inf of such k’s is called the contraction coefficient

So a contraction is a function that maps X to itself (also called a self map) such that the
function spits out items that are closer together than what you put into it. The most obvious

contraction is the function f: R — R such that f(t) = at for -1 <a <1

Why do we care about contractions? The reason is, because of Banach, we know that contrac-
tions on complete metric spaces have a fixed point, and as I have already discussed, fixed points

are nice things.

Theorem 12 (Banach Fixed Point Theorem) Let X be a complete metric space, and f be a

contraction on X. Then there exists a unique =* such that f(z*) = z*

Proof. We first show the existence of some x* € X such that f(z*) = x*. Pick some 2° € X and
define a sequence recursively such that ™" = f(z™). The sequence {z,}o° | is a Cauchy. To see

this, let k be the contraction coefficient of f, and note that

d(@*z') = d(f(a'), f(2")) < kd(a',2%)

d(z3,2%) = d(f(z?), f(zh)) < kd(2?, 2') < K2d(2!, 20)

More generally, d(z"+1, 2™) < k"d(z', 2%). Thus, for any I, m > 1+ 1 we have

dz™ 2ty < d(@™ ™) +d@m 2™ 2) + L d(a 2h
< (B2 4+ EDd(at, 20)
_ m—l
L=k )d(xl,xo)

1—k
so d(z™, 2!) < 1l%lkd(acl, zV) implying that the sequence is cauchy.

As X is complete, it must be the case that {z,},-, converges to some point x* € X. Therefore,
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for any € > 0, there exists some M such that d(x*,z") < 5§V n > M. Thus

d(f(z*),2*) < d(f(z"),a"") +d(z", 2" )
= d(f(z"), f(=")) +d(z",2" ")
< kd(z*,2™) 4 d(z*, ")
< % + % =€

This is true for all € > 0, so it must be that d(f(z*),z*) =0, and so f(z*) = z*. Thus, =* is a
fixed point.

To prove uniqueness, note that, if v € X was another fixed point of f, we would have d(x,x*) =

d(f(z), f(z*)), a contradiction, as d(f(z), f(z*)) < kd(z,z*) for some k <1.m
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7 Lecture 7

Finally we move on to the theorem of the maximum. This is going to be a very useful theorem,

and it is designed to answer the following questions:

Example 13 Let p € R"} be a vector of prices, I be income, and consider an agent who choses

bundles x € R} to maximize a utility function u : Ry — R subject to the budget constraint

B(p,I)={z € Rl}|pz < I}

Let D(p,I) be the demand function, so that

D(p,I) = argmaxu(z)|px < I
reR?

And v(p, I) be the derived utility, so that

v(p,I) = maxu(z)lpr < I

Can we say anything about the properties of D and v? In other words, do we know anything

about how demand and derived utility change with the parameters of the problem?

This is exactly what the theorem of the maximum tells us (under certain assumptions). In order

to define these properties, we need to define the concept of the graph of a correspondance :

Definition 29 The graph of a correspondance I' : Y = X is the set of pairs {z,y} € X XY such

that x is in the correspondance evaluated at y

Grr = {{z,y} € X x Y]z c [(y)}
Theorem 13 (The Theorem of the Maximum) Let

e X andY be metric spaces (Y will be the set of things that are chosen, X the set of parameters)

o' : X = Y be compact valued and continuous (this is the constraint set defined by the

parameters)
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e f: X XY — R be continuous, (this is the utility function)

Now define y* : X = Y as the set of maximizers of f given parameters x

y*(r) = arg max_f(z,y)
y€el'(z)

and define f*: X =Y as the maximized value of f for f given parameters x

f*(x) = max f(z,y)

yel(z)

Then

1. y* is upper hemi-continuous and compact valued

2. f* is continuous

Translating into the language of the example

X is the set of price vectors and income

Y is the commodity space

I" is the budget correspondance

could if we wanted to)

y* is the demand function

e f* is the derived utility

f is the utility function (note that we do not let utility depend directly on prices, but we

This is a really cool result. With relatively few assumptions, we are able to guarantee some neat

properties of things we really care about. The proof is somewhat cumbersome, so we will sketch it

here.

Proof. We will prove this as a set of claims:

Claim 1: y* has a closed graph. Let (y, ) be a closure point of Gry«. We need to show that this

is in Gry+. First, we show that y is feasible at x, then we show that it maximizes f at x
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Note that, if (y.z) is a closure point of Gry+, then we can construct a sequence (yy, z,) — (y, )
such that (yn,z,) € Gry=. This implies that y, € y*(z,) V n. This in turn implies that
Yn € I'(zy) V n. As T' is UHC and compact valued, then y, must have a subsequences that

converges to some y' € I'(z), but as y, — v, it must be that y € I'(x), so y is feasible at x

Now assume that y ¢ y*(x), then there must be some § € I'(z) such that f(x,y) > f(x,y). By
LHC, there must be some sequence g, — y such that g, € I'(x,) V n. By the continuity of
f, we know that

lim f(xp,gn) = f(z,9)

limf(xn, yn) = f(x,y)
But, as y,, € y*(z,,), this implies that

flzy) < fz,9)
A contradiction (check)

Claim 2 y* is UHC and compact valued. As y*(x) is closed (by the above result) and y*(z) C I'(z)
compact, it must be the case that y*(x) is compact, and so y* is compact valued.. Let (2, yy)
be a sequence such that z, — z and y, € y*(z,) C I'(zy,) V n.By the UHC and compact
valuedness of I'; we know that there is a subsequence g, that converges to some y € I'(x). The
closed graph property tells us that, as (zy,, Jn) € Gry«, then (z,y) € Gry, and so y € y*(x),
implying that y* is UHC

Claim 3 f* is continuous. Let x,, — = € X. We need to show that f*(x,) — f*(z). We know

that there is a subsequence f*(zy) — limsup f*(x,). Pick a sequence y € y*(xg), so

[ (wr) = fog, y™ (2r) = f(2r, yr)

Because y* is compact valued and UHC, there is a subsequence y; — y € y*(z). By the

continuity of f, the fact that z; — 2 and y; — y implies that

(=)
- f(z,y)
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. but as y € y*(z), f(z,y) = f*(x), so f*(x) is the limsup of f*(z,). A similar argument

proves that f*(z) is also the liminf of f*(z,,), so we are done.
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