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1 Lecture 1

We now begin our whirlwind tour of static optimization. The problem that we are interested in is

finding the maximum (or minimum) value taken by a real valued function defined on some subset

 of R. Initially, we are going to to think about the unconstrained problem, whereby we are

interested in finding the maximum and minimum on all of . We are then going to move onto

constrained problems, in which we are not free to choose any element in the set , but only

elements that satisfy some constraints. We will begin by thinking about equality constraints, and

then (if we have time) inequality constraints.

1.1 Unconstrained Optimization

We will now set up the general problem of unconstrained optimization. Again, we are going to

focus on the case of finding a maximum - the case of finding a minimum is analogous.

Problem 1 Let  ⊂ R and  :  → R. We wish to find

max
∈

()

and argmax
∈

()

We will say that  is feasible if  ∈ , and ∗ is an optimal solution if () ≤ (∗) ∀  ∈ 

The first thing we are going to do is strengthen the result we had earlier relating the idea of a

local maximizer to the derivative
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Theorem 2 Let  ⊂ R and  :  → R be differentiable

1. If ∗ ∈ () is a local maximizer then  0() = 0. Moreover, if  00() exists, then  00() ≤ 0

2. If  0(∗) = 0 and  00(∗)  0 then ∗ is a strict local maximizer

Proof. We have already shown that if ∗ is a local maximizer, then  0() = 0. Using the second

order Taylor approximation, we know that

() = (∗) +  0(∗)(− ∗) +
1

2
 00(∗)(− ∗)2 + (|− ∗|2)

= (∗) +
1

2
 00(∗)(− ∗)2 + (|− ∗|2) ≤ (∗)

for  close enough to ∗. This implies that

1

2
 00(∗)(− ∗)2 + (|− ∗|2) ≤ 0

⇒ 1

2
 00(∗) ≤ −(|− ∗|2)

(− ∗)2

But as lim→∗
(|−∗|2)
(−∗)2 = 0, this implies that  00(∗) ≤ 0

Now assume that  0(∗) = 0 and  00(∗)  0. As

() = (∗) +
1

2
 00(∗)(− ∗)2 + (|− ∗|2)

⇒ ()− (∗) =
1

2
 00(∗)(− ∗)2 + (|− ∗|2)

=

µ
1

2
 00(∗) +

(|− ∗|2)
(− ∗)2

¶
(− ∗)2

As lim→∗
(|−∗|2)
(−∗)2 = 0, we can find some  such that, for |− ∗|  

|(|− ∗|2)
(− ∗)2

| ≤ |1
4
 00(∗)|

and so

()− (∗) ≤ 1
4
 00(∗)(− ∗)2  0

2



We are now going to extend this result in two ways. First, we are going to allow for functions

on some arbitrary subset of R. Second, we are going to generate a result that allows us to say

something about any point in the feasible set. In order to do so we first need to define the concept

of a feasible direction

Definition 1 Let  ⊂ R. A vector  ∈ R is a feasible direction from  ∈  if ∃ ̄  0 such

that +  ∈  ∀  ∈ [0 ̄]

Theorem 3 (First Order Necessary Conditions) Assume  is C2 on  ⊂ R. if ∗ ∈  is a

local max of  , then

h∇(∗) i ≤ 0

for all feasible directions  from ∗

Proof. Let  ∈ R be a feasible direction from ∗, and define () = (∗ + ) on [0 ̄]. Note

that

0() = 1
(∗ + )

1
+ + 

(∗ + )



= h∇(∗ + ) i

Then () ≤ (0) for  sufficiently small. From 1st order Taylor approximation

() = (0) + 0(0)+ ()

= (0) + h∇(∗) i+ () ≤ (0)

⇒ h∇(∗) i ≤ ()



and so, by the usual argument h∇(∗) i ≤ 0

We can also provide necessary second order conditions

Theorem 4 (Second Order Necessary Conditions) Assume  is C3 of . If ∗ is a local
maximum, then, for any feasible direction  ∈ R

1. h∇(∗) i ≤ 0
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2. h∇(∗) i = 0 ⇒ (∗) ≤ 0, where (∗) =
h

2


(∗)
i

Proof. (1) we have already proved.

For (2), using the same function () we can use Taylor’s second order approximation to give

() = (0) + 0(0)+
1

2
00(0)2 + (2) ≤ (0)

If h∇(∗) i = 0 then 0(0) = 0, giving

1

2
00(0)2 + (2) ≤ 0

and so, by the usual argument 00(0) ≤ 0. But 00(0) = (∗) so we are done.

Two obvious extensions that we will state and not prove are:

Corollary 1 If ∗ ∈ () and is a local max, then

1. ∇(∗) = 0

2. (∗) is negative semi - definite

Just as we have extended the necessary conditions from the R case to the R case, so we can

extend the sufficient conditions. We won’t show this, but the technique is to essentially apply the

trick involving () above to the proof of the sufficiency condition for the R case.

Corollary 2 If ∗ ∈ () such that

1. ∇(∗) = 0

2. (∗) is negative definite

Then ∗ is a strict local minima.
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