
3 Lecture 3

3.1 The Kuhn Tucker Conditions for Optimization with Equality Constraints

We will now use the concept of the tangent plane, along with Farkas’ Lemma to derive first order

conditions for the constrained problem

Lemma 1 Let ∗ be a regular point of () = 0 and a local max of  in . Then the system

0(∗) = 0

h∇(∗) i  0

has no solution.

Proof. Assume by contradiction that  solves the above system. Then there exists an  : ( )→ 

such that ∗ = (∗) and ̇ (∗) = . Then

(()) = ((∗)) +



(())|=∗(− ∗) + (− ∗)

= (∗) + h∇(∗) ̇ (∗)i(− ∗) + (− ∗)

= (∗) + h∇(∗) i(− ∗) + (− ∗)

⇒ ()− (∗)
(− ∗)

= h∇(∗) i+ (− ∗)
(− ∗)

which is greater than zero for  close to ∗, contradicting the idea that ∗ is a local maximizer

And now, as if by magic, we can use this result and Farkas’ lemma to derive the Kuhn-Tucker

FOC

Theorem 8 (First Order Necessary Conditions) Let ∗ be a regular point of () = 0 and a

local maximizer of  in . Then there exists  ∈ R such that

∇(∗) +
X
=1

∇(∗) = 0

Proof. By the previous lemma, we know that the system of equations

0(∗) = 0

h∇(∗) i  0
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has no solution. This implies that the system

 [0(∗) : −0(∗)] ≤ 0

h∇(∗) i  0

Does not have a solutions (as this would require both 0(∗) ≤ 0 and −0(∗) ≤ 0, and so
0(∗) = 0) By Farkas’ lemma, this implies that the system

[0(∗) : −0(∗)]
⎛⎝ +

−

⎞⎠ = ∇(∗)

+ ≥ 0

− ≥ 0 has a solution

Let  = − − +, and this gives the required result

You should convince yourself that regularity is important here. Consider maximizing −2
subject to 61 − 32 = 0

As with the unconstrained case, we also have second order necessary conditions. First order

necessary conditions find critical points - maxima or minima. The second order conditions help us

to narrow down the possible critical points

Theorem 9 (Second Order Necessary Conditions) Let ∗ be regular for () = 0 and a local

maximizer, then there exists  ∈ R such that

∇(∗) +
X
=1

∇(∗) = 0

Moreover, the matrix

Ψ(∗ ) =  (∗) +
X

(
∗)

is negative semi definite in  = ker(0(∗)) (i.e. 0(∗) = 0 implies Ψ(∗ ) ≤ 0)

Note that

 (∗) =
∙

2


(∗)

¸
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and

(
∗) =

∙
2


(∗)

¸
Proof. Let  : ( ) →  with (∗) = ∗ and  = ̇(∗). From 1 dimensional calculus we know

that, as (()) has a local maximum at ∗, it must be the case that

0 ≥ 2

2
((())) |=∗

but




((())) = ḣ()∇(())i

and so

2

2
((())) = ḧ()∇(())i+ ̇() (())̇()

implying

 (∗)+ ∇(∗)̈() ≤ 0

We also know that (()) = 0, and soX
()) = 0

This implies that

2

2

³X
())

´
|=∗ = 0

and so
X
=1


¡
(

∗)+ ∇(∗)̈()
¢
= 0

Adding these two together gives

X
=1


(

∗)+  (∗)

+̈()

Ã
∇(∗) +

X
=1

∇(∗)
!
≤ 0

and so (as ∇(∗) +P
=1 ∇(∗) = 0)

Ψ(∗ ) ≤ 0
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So what are these second order necessary conditions telling us? We know that in the case of

unconstrained optimization, the second order conditions basically ask about whether the function

is locally concave or convex. Here, we are comparing the curvature of the objective function to

that of the constraint. To see this, consider the following two example:

Example 4 Consider the following two problems:

1. () = (1 +
1
2
)2 + 22 () = (1 + 1)

2 + 22 = 1

2. () = (1 + 1)
2 + 22 () = (1 +

1
2
)2 + 22 =

1
4

In both cases, (0 0) satisfies the FONC. To see this, note that, for each system

1. ∇()
⎛⎝ 2(1 +

1
2
)

22

⎞⎠, ∇() =
⎛⎝ 2(1 + 1)

22

⎞⎠ and so ∇(0 0) =
⎛⎝ 1

0

⎞⎠, ∇(0 0) =⎛⎝ 2

0

⎞⎠, and so ∇(0 0) + ∇(0 0) = 0 for  = −12

2. ∇()
⎛⎝ 2(1 + 1)

22

⎞⎠, ∇() =
⎛⎝ 2(1 +

1
2
)

22

⎞⎠ and so ∇(0 0) =
⎛⎝ 2

0

⎞⎠, ∇(0 0) =⎛⎝ 1

0

⎞⎠, and so ∇(0 0) + ∇(0 0) = 0 for  = −2

However, in the first case, we have found a local minimum and in the second case a local max-

imum. This is because, in the first case the objective function is ‘more’ curved than the constraint,

while in the second case the constraint is more curved than the objective.

The SONC picks this up. Note that, for each problem

1. Ψ((0 0) ) =

⎡⎣ 2 0

0 2

⎤⎦− 1
2

⎡⎣ 2 0

0 2

⎤⎦ =
⎡⎣ 1 0

0 1

⎤⎦, or positive definite
2. Ψ((0 0) ) =

⎡⎣ 2 0

0 2

⎤⎦− 2
⎡⎣ 2 0

0 2

⎤⎦ =
⎡⎣ −2 0

0 −2

⎤⎦, or negative definite everywhere
As with the unconstrained case, we also have equivalent second order sufficient conditions:
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Theorem 10 Suppose ∗ is feasible and (∗) is regular. If there exists a  ∈ R such that

∇(∗) +
X
=1

∇(∗) = 0

Moreover, the matrix

Ψ(∗ ) =  (∗) +
X

(
∗)

is negative definite in  = ker(0(∗)) (i.e. 0(∗) = 0 implies Ψ(∗ )  0), then ∗ is a

strict local maximizer.

follows
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