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Paul Glimcher (2003) and Colin Camerer, 
George Loewenstein, and Drazen Prelec (2005) 
make powerful cases in favor of neuroeconomic 
research. Yet in their equally powerful defense 
of standard “Mindless Economics,” Faruk Gul 
and Wolfgang Pesendorfer (forthcoming) point 
to the profound language gap between the two 
contributing disciplines. For example, for an 
economist, risk aversion captures preferences 
among wealth lotteries. From the neuroscien-
tific viewpoint, it is a broader concept related to 
fear responses and the amygdala. Furthermore, 
as economic models make no predictions con-
cerning brain activity, neurological data can 
neither support nor refute these models. Rather 
than looking to connect such distinct abstrac-
tions, Gul and Pesendorfer (forthcoming) argue 
for explicit separation: “The requirement that 
economic theories simultaneously account for 
economic data and brain imaging data places an 
unreasonable burden on economic theories.”

We share the conviction of Glimcher (2003) 
and Camerer, Loewenstein, and Prelec (2005) 
concerning the potential value of neuroeco-
nomics, yet we believe that the field will live 
up to its potential only if a common conceptual 
language can be agreed upon. Hence, we face 
the Gul and Pesendorfer challenge head on by 
developing theories that simultaneously account 
for behavioral and brain imaging data. The prin-
cipal innovation lies in our use of the decision 
theorists’ standard axiomatic methodology in 
this highly nonstandard setting. This removes 
any linguistic confusion by defining concepts 
directly in terms of their empirical counter-
parts. It also allows us  to pinpoint how to design 
experiments directed to the central tenets of the 
theory, rather than to particular parametriza-
tions. If these experimental tests reveal the the-
ory to be wanting, then knowing which axiom is 
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violated will aid in the development of appropri-
ate alternatives.

For our initial foray into this line of research, 
we focus on learning theory (Caplin and Dean 
2007a). This represents an ideal test case for the 
integrative methodology since neuroscientists 
have independently formulated a specific theory 
of neurological function, the “Dopaminergic 
Reward Prediction Error” (DRPE) hypothesis, 
which has important behavioral implications. 
Dopamine is a neurotransmitter for which 
release had previously been hypothesized to 
reflect “hedonia,” as when a thirsty monkey is 
given a squirt of juice. Yet Wolfram Schultz, 
Paul Apicella, and Tomas Ljungberg (1993) 
found that if such a monkey learns to associ-
ate a tone with later receipt of fruit juice, the 
dopaminergic response occurs when the tone is 
heard, not when the juice is received. Dopamine 
somehow appears to signal changes in the antic-
ipated value of rewards. Schultz, Peter Dayan, 
and P. Read Montague (1997) noted that a “pre-
diction error” signal of this form is precisely 
what is needed in reinforcement algorithms to 
drive convergence toward a standard dynamic 
programming value function (Andrew Barto 
and Richard Sutton (1982). The DRPE hypoth-
esis of neuroscience asserts that dopamine does 
measure a reward prediction error that is used to 
update an evolving value function. In addition to 
more standard tests, Mathias Pesseglione et al. 
(2006) have shown that neurological interven-
tions aimed at the dopamine system can have an 
impact on the rate at which learning appears to 
take place, much as the theory suggests.

Economists have become interested in rein-
forcement learning for their own reasons. While 
the natural assumption within economics is 
that inference is Bayesian, this assumption has 
little predictive power in complex environments. 
The need for predictive models led economists 
toward the reinforcement model, and Ido Erev 
and Alvin E. Roth (1998) have demonstrated 
that simple variants of this model match the 
 pattern of behavior in a wide variety of standard 
games. Camerer and Teck-Hua Ho (1999) enrich 
the model by adding counterfactual learning 
based on past outcomes. It is clear, however, that 
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these simple “history-based” models will match 
behavior only in relatively stable environments. 
We believe that neuroscientific research has 
the potential to suggest next steps in modeling 
learning in more complex environments. Indeed, 
Anthony Dickinson and Bernard W. Balleine 
(2002) have begun to uncover evidence suggest-
ing that dopaminergic reinforcement is but one of 
several neurological modules related to learning.

Unfortunately there is a profound language 
barrier that largely prevents economists from 
embracing the growing neuroscientific evidence 
on learning. In economics, concepts such as 
utility and reward are inferred from observed 
choices, while neuroscientists interpret them 
in relation to intuitions concerning the flow of 
experience (e.g., a squirt of juice is assumed to 
be rewarding to a thirsty monkey). In fact, many 
neuroscientific tests of the DRPE hypothesis 
take the perspective of  “classical” or “Pavlovian” 
conditioning in which choice plays no role, ren-
dering economic interpretation impossible. As 
with risk aversion, the fact that economic and 
psychological concepts have identical names 
does not imply identical interpretations.

Caplin and Dean (2007b) take an axiomatic 
perspective on the DRPE hypothesis and char-
acterize its empirical implications for a data tape 
with combined information on choice and dopa-
minergic activity. If the data do not obey our 
axioms, then the DRPE model is fundamentally 
wrong, not merely misspecified. Our approach 
allows us to identify and rectify a problem in 
current quantitative tests of the DRPE hypothe-
sis. In these tests, it is typical to treat neurologi-
cally measured dopaminergic signals as defined 
only up to linear transformations, with a quanti-
tatively larger dopaminergic response identify-
ing a larger reward difference. We pinpoint the 
somewhat harsh assumptions that are needed to 
justify this conclusion. Our central result justi-
fies only an ordinal version of the DRPE hypoth-
esis in which reward differences are ill-defined, 
just as marginal utility is ill-defined in ordinal 
characterizations. We strengthen the assump-
tions as required to justify use of dopamine as a 
measuring rod for differences in reward.

I.  Basic Propositions

We develop the DRPE hypothesis for a 
case in which probabilities are objective and 

 dopaminergic responses derive from realiza-
tions of specific lotteries over final prizes. An 
advantage of this simple lottery-outcome frame-
work is that it avoids tying our formulation to a 
particular model of learning. We consider a set-
ting in which the agent is either endowed with 
or chooses a specific lottery from which a prize 
is realized. We observe any initial act of choice 
among lotteries and the dopaminergic response 
when the prize is realized. Definition 1 lays out 
the various prize and lottery sets studied in the 
model as well as our idealized measure of the 
dopamine response rate.

DEFINITION 1: The set of prizes is a compact 
metric space Z with generic element z [ Z. 
The set of all simple lotteries over Z is denoted 
L, with generic element p [ L. We define 
ez [ L as the degenerate lottery that assigns 
probability 1 to prize z [ Z and the set L 1z 2  
to comprise all lotteries with prize z in their 
support,

(1)  L 1z 2 ; 5p [ L 0pz . 06 ( L.

The function d : m S R identifies the idealized 
dopamine response function (Drf), where M 
comprises all pairs 1z, p 2 with z [ Z and p [ 
L 1z 2 .

The dopaminergic reward prediction error 
hypothesis hinges on the existence of a func-
tion defining the “expected” and the “experi-
enced” reward associated with receipt of each 
possible prize from any given lottery. Under 
the assumption that the expected reward of a 
degenerate lottery is equal to the experienced 
reward of that prize, what we are looking for 
is a dopaminergic reward function r : L S R 
which defines both the expected reward asso-
ciated with each lottery and the experienced 
reward associated with each prize. A basic 
assumption is that this reward function con-
tains all the information that determines dopa-
mine release.

DEFINITION 2: a function r : L S R fully 
summarizes a Drf d : M S R, if there exists a 
function e : r(Z) 3 r(L) S R such that, given 
1z, p 2 [ m,

(2)  d 1z, p 2 5 E 1r 1ez 2 ,r 1p 2 2 ,
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where r 1Z 2  comprises all values r 1ez 2  across 
degenerate lotteries, and r 1L 2  identifies the 
range across all lotteries. in this case, we say 
that r and E represent the Drf.

A DRPE representation rests not only on the 
ability to use reward computations to under-
stand all dopaminergic responses, but also on 
these responses having appropriate order prop-
erties. Intuitively, the dopaminergic response 
should be strictly higher for a more rewarding 
prize than it is for a less rewarding prize, and 
from a less rewarding lottery than from a more 
rewarding lottery. In addition to depending on 
the existence of an appropriate reward function, 
the DRPE hypothesis rests on the assumption 
that, if expectations are met, the dopaminergic 
response does not depend on what was expected. 
We say that a DRF admits a reward prediction 
error representation if we can find r and E func-
tions that satisfy all three conditions.

DEFINITION 3: functions r and E, which rep-
resent a Drf, respect dopaminergic dominance 
if E is strictly increasing in its first argument 
and strictly decreasing in its second argu-
ment. They satisfy no surprise constancy if 
E 1x, x 2 5 E 1y,y 2  for all x, y [ r 1Z 2 .
DEFINITION 4: a Drf d : M S R admits a 
dopaminergic reward prediction error (DrPe) 
representation if there exists functions r : L S 
R and e : r(Z) 3 r(L) S R, which (i) represent 
the Drf; (ii) respect dopaminergic dominance; 
and (iii) satisfy no surprise constancy.

It is clear from the definition that if r : L S R 
forms part of a DRPE representation of a DRF 
d : M S R, then so does any function r* : L S R 
that is a strictly increasing monotone transform 
of r. Hence, this representation does not allow 
one to treat dopamine as an invariant measure 
of reward differences. We develop an addi-
tive representation that embodies the minimum 
requirement for using dopaminergic response 
to animate the notion of reward differences. We 
also develop an expected reward representation 
that is entirely analogous to the expected utility 
representation from choice theory.

DEFINITION 5: a Drf d : M S R admits a 
dopaminergic additive reward prediction error 

(DarPe) representation if there exists a func-
tion r : L S R and a strictly increasing function  
g : r(Z) 2 r(L) S R, such that, given 1z, p 2 [ m,

(3)  d 1z,p 2 5 G 1r 1ez 2 2 r 1p 2 2 ,
where r 1Z 2 2 r 1L 2  comprises all values 
r 1ez 2 2 r 1p 2  across 1z,p 2 [ M .

DEFINITION 6: a Drf d  :  M S R admits a 
dopaminergic expected reward prediction error 
(DerPe) representation if there exists func-
tions r : L S R, e : r 1Z 2 3 r 1L2 S R that form 
a DrPe representation of the Drf in which

r 1p 2 K mp 3u 4 all p [ L,

for some function u : Z S R, where mp 3u 4 denotes 
the expected value of u : Z S R with respect to 
the lottery p.

For economic interest to be warranted, there 
must be a connection between the dopaminergic 
reward and choice. The simplest such connection 
occurs if choices among lotteries can be mod-
eled as deriving from maximization of the DRPE 
reward function. While this case is of obvious 
interest to economists, a more standard scenario 
involves dopamine as simply one component of a 
richer overall process of learning and of choice.

DEFINITION 7: The choice correspondence 
C is defined on domain Q 5 {X [ 2L with 
0X 0 , `6, with C 1X 2 # X denoting the set of 
lotteries chosen from any finite subset of the 
lottery space. a Drf d  :  M S R and a choice 
correspondence C admit a choice-consistent 
DrPe representation if d admits a DrPe rep-
resentation, and for all X [ Q,

(4)  c(X) 5 arg max r (p).

Caplin and Dean (2007a) characterize all 
the representations above. In the present paper, 
we outline conditions for the basic DRPE rep-
resentation. There are three axioms that are 
intuitively necessary for d  :  M S R to admit a 
DRPE. The first ensures coherence in dopami-
nergic responses to prizes: if one prize is more of  
a positive surprise than another when received 
from some lottery, it must be so for any other 
 lottery. The second provides the analog condition 
with respect to lotteries: if an outcome z leads to 

p [Xp [X
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a bigger dopamine release when obtained from 
one given lottery than from some other lottery, 
the same must be true for any other outcome 
that is in the support of both lotteries. The third 
characterizes the dopamine function as having 
equivalent value all along the 45-degree line.

AxIOM 1 (a1: coherent Prize Dominance): 
given 1z, p 2 , 1z r   , p r 2 , 1z r   , p 2 , 1z, p r 2 [ M,

(5)  d 1z, p 2 . d 1z r   , p 2 1 d 1z, p r 2 . d 1z r   , p r 2 ,
AxIOM 2 (a2: coherent Lottery Dominance): 
given 1z, p 2 , 1z r   , p r 2 , 1z r   , p 2 , 1z, p r 2 [ M,

(6)  d 1z, p 2 . d 1z, p r 2 1 d 1z r   , p 2 . d 1z r   , p r 2 .
AxIOM 3 (a3: No Surprise equivalence): giv-
en z, z9 [ Z,

(7)  d 1z r   , ezr 2 5 d 1z, ez 2 .
While necessary, A1–A3 are not sufficient for 

a DRPE representation, due to the fact that the 
domain of the dopamine function differs across 
prizes. These domain differences allow A1–A3 
to be consistent with the cycles of apparent 
dopaminergic dominance, and other conditions 
inconsistent with the DRPE (Caplin and Dean 
(2007a). In that paper, we show that the follow-
ing continuity conditions suffice to establish 
availability of such a representation.

AxIOM 4 (a4: uniform continuity): The func-
tion d : m S R is uniformly continuous in the 
appropriate metric.

AxIOM 5 (a5: Separation): given (z, p), 1z r   , p 2  [ 
m,

(8)  d 1z, p 2 2 d 1z r   , p 2 1

  inf 
5pr[L 0 1z,pr2,1zr,pr2[M6

0d 1z, p r 2 2 d 1z r   , p r 2 0  . 0.

THEOREM 1: under a4 and a5, a Drf d : m 
S R admits a DrPe representation if and only 
if it satisfies a1–a3.

II.  Next Steps

Caplin and Dean (2007a) provide a theoreti-
cal framework within which to test the DRPE 

hypothesis. Our next step is to generate data with 
which to perform such a test. To this end, we are 
working with Glimcher at the Center for Neural 
Science at New York University on the labora-
tory implementation of our axiomatic frame-
work. We are currently refining an experimental 
design that will allow us to record brain activity 
as lotteries are chosen and as they resolve. This 
takes place while the subject is lying in a func-
tional Magnetic Resonance Imaging (fMRI) 
scanner. We use these data to construct an empiri-
cal analogue of the d function.

Assuming that we find supporting evidence 
for the DRPE hypothesis, our next step will be to 
extend our theoretical and empirical work to allow 
for dynamic environments in which learning takes 
place. Richer axioms will be developed to connect 
the observed patterns of choice and dopaminergic 
response, enabling us fully to characterize rein-
forcement learning models for such data.

The drive to deepen understanding of the 
neurological and behavioral aspects of learning 
will ultimately force researchers to look beyond 
the dopamine system. Dickinson and Balleine 
(2002) have developed a two-process theory 
of the motivation, with only one of these two 
processes involving the dopamine system. In 
association with this theory, Balleine (2005) is 
currently investigating the development of “hab-
its” as opposed to more flexible responses, and 
an associated “supervisory function” that deter-
mines the extent to which habitual behavior is 
called into play in any given situation. Depending 
on specific neurological manipulations, there can 
be wholesale changes in the extent to which past 
rewards dominate future behavior. In a multi-
modal framework, our understanding of behav-
ior will be greatly enhanced if we can develop 
neurological evidence pinpointing the extent to 
which different modes are in operation.

We believe that the axiomatic approach to neu-
roeconomics may be of value in areas other than 
learning. Kenway Louie and Glimcher (2007) 
present intriguing preliminary evidence of a 
neurological switch that occurs in the process of 
decision making, and that may possibly signal 
the process of contemplation has come to an end. 
This suggests the value of studying the neuro-
logical and behavioral aspects of the process of 
“arriving at a decision.” The hope is that neu-
roscientific measurements will provide system-
atic, if limited, access to the search process that 
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presages the act of choice. This would provide us 
with new channels for understanding when and 
how information provided to a decision maker is 
mapped into the ultimate decision.

The broader backdrop to our research is our 
belief that the momentum to broaden the empir-
ical basis of decision theory is unstoppable. 
We see the appropriate response as being to 
embrace rather than to resist this domain expan-
sion. While Gul and Pesendorfer are correct to 
point out that language barriers impede inter-
disciplinary collaboration, these barriers are far 
from impenetrable. Our goal is not only to pen-
etrate these barriers, but also to show that there 
is much to be learned through incorporation of 
nonstandard data into economic theory. Caplin 
and Dean (2007b) provide an entirely separate 
example focused around the question of how 
long a subject takes to make a decision. Caplin 
(forthcoming) argues against imposing any ex 
ante constraints on the types of data that can 
potentially be included in axiomatic models, 
even if the only goal is to provide insight into 
standard choice behavior. Our current argument 
that the neuroeconomic language barrier can 
be breached in the case of a specific neurologi-
cal measurement represents only the tip of the 
methodological iceberg.
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