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Abstract

We outline experiments that improve our understanding of decision making by analyzing

behavior in the period of contemplation that preceeds commitment to a final choice. The ex-

periments are based on axiomatic models of the decision making process that relate closely to

revealed preference logic. To test the models, we artificially incentivize particular choices to

be made in the pre-decision period. We show how the resulting experiments can improve our

understanding not only of the decision making process, but of the decision itself. Our broad

method is to make aspects of search visible while retaining the disciplined approach to data that

axiomatic modeling best provides.

Key Words: Revealed preference, search, incomplete information, revealed preference,

framing effects, status quo bias, bounded rationality, stochastic choice, decision time

<1>Introduction

Experiments that record more than standard choice data can improve our understanding of

choice itself. In this chapter, we illustrate the advantage of such “enhanced”choice data with an

example. We describe an experiment which, in addition to recording the final decision made by

subjects, incentivizes choices that are made in the prior period of contemplation. We show how the
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resulting data provides insight into how people search for information on the alternatives available

to them. This in turn improves our understanding of the decision making process and its final

outcome, which stands alone as the subject of interest in standard choice experiments.

This experiment forms part of an ongoing research project in which we aim to enrich the mod-

eling of search behavior while retaining the theoretical discipline inherent in the revealed preference

approach to choice behavior. We outline in some detail the poster child for our approach detailed

in Caplin and Dean [2009] and Caplin, Dean, and Martin [2009], henceforth CD and CDM re-

spectively. CD introduce “choice process”data, which measures not only the final option that a

decision maker (DM) selects, but also how their choice changes with contemplation time before a

final decision is made. CDM describe the results of an experiment designed to elicit choice process

data in the laboratory.

We first describe how choice process data can be used to test models of information search and

choice. CD characterize a model of sequential, or “alternative based search” (ABS), in which a

DM searches through alternatives sequentially, at any time choosing the best of those they have

searched according to a fixed utility function. Such behavior is standard within economic models of

price and wage search. While the ABS model is silent as when people stop searching, CD provide a

refinement that describes a DM who searches until an object is identified with utility above a fixed

reservation level, as in the satisficing model of Simon [1955]. We call this refinement ’reservation

based search’ (RBS). This form of search is optimal in simple models of sequential search with

psychic search costs. Importantly, neither the ABS or RBS model provide testable implications for

standard choice data, meaning that choice process data is crucial in any such test.

Next, we describe a set of experiments reported in CDM designed to evaluate the ABS and

RBS models. In order to simplify these tests, CDM specialize to the case of known preferences

by making the objects of choice particularly simple: amounts of money. In order to prevent the

choice problem from becoming trivial, these amounts are expressed in algebraic from (e.g. seven

plus three minus two) and are therefore diffi cult to decode. While the experimenter always knows

which of these numerical expressions is largest and therefore most preferred, the DM must work

to assess each alternative. In this environment it is easy to identify choice “mistakes,”or cases in

which a subject has failed to choose the best alternative in a choice set.

In order to test the ABS and RBS models, our experiment elicits choice process data. We obtain
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such data using an experimental design in which subjects’choices are recorded at a random point

in time unknown to them, incentivizing them to always report their currently preferred alternative.

We therefore gather information on the sequence of choice switches in the pre-decision period,

which we interpret as choice process data. This represents a choice-based experiment constructed

precisely to enrich our understanding of search behavior and imperfect information.

There are three key findings:

1. There is evidence in favor of the ABS model. Specifically, the vast majority of switches are in

the direction of improvement, suggesting that chosen objects have been accurately assessed.

2. There is strong evidence in favor of the satisficing model. Many decision makers engage in

sequential search that stops once a satisfactory level of reservation utility is achieved. These

reservation levels are environmentally determined - changing with the size of the choice set

and the complexity of each alternative.

3. There are interesting individual differences in search behavior that intermediate the impact

of search order on choice. For example, those who tend to search lists from top to bottom

fail to choose the best option if it is far down the list, while those who search less complex

options first miss the best option if it is complex, even if it is high on the list.

Section 4 shows that the choice process data is essential for making inferences concerning the

decision making process and its impact on choice. When we re-run the same experiments gathering

information only on final choices, little can be inferred about the forces that underlie mistakes, and

the empirical regularities that are uncovered by exploring the choice process get obscured. It is not

possible to test the ABS and RBS models, or extract data on reservation levels.

Section 5 comments on the underlying motivation for our research and the broader methodology.

We are far from the first to design experiments to study behavior in the pre-decision period. What

defines our approach is the focus on choice-based enhancements that can be incentivized in an ex-

perimental laboratory. We believe that the axiomatic approach of standard choice theory provides

the most robust foundation for understanding decisions. In this sense, the work described herein

fits with a broader research agenda of introducing “non-standard”data yet retaining the modeling

discipline that axiomatic modeling provides. Caplin and Dean [2008] and Caplin, Dean, Glim-

cher, and Rutledge [2010] outline a distinct application of this approach that jointly characterizes
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standard choice data and neuroscientific data on the dopamine system.

The concluding remarks in section 6 outline immediate next steps in the agenda. In the longer

run, we see research on the relationship between search and choice as of ever increasing importance

in the age of Google and of policy “nudges.“ How we learn and choose when complex options are

presented in various different manners is a question that will be increasingly under the microscope

in the years to come, and on which research of the form outlined herein may shed light.

<1>Choice Process Data: Theory

Choice process data is designed to provide insight into search-based causes of mistakes. Rather

than recording only the final decision, these data track how the choices that people make evolve

with contemplation time. As such, choice process data comes in the form of sequences of observed

sets of choices from any given set of options rather than comprising a single set of chosen options

(the theory allows for indifference and therefore simultaneous selection of several elements from a

set). To formalize, let X be a nonempty finite set of elements representing possible alternatives,

with X denoting non-empty subsets of X. Let Z be the set of all infinite sequences from X with

generic element Z = {Zt}∞1 with Zt ∈ X/∅ all t ≥ 1. For A ∈ X , define Z ∈ ZA ⊂ Z if and only if

Zt ⊂ A all t ≥ 1.

Definition 1 A choice process (X,C) comprises a finite set X and a function, C : X → Z such

that C(A) ∈ ZA ∀ A ∈ X .

Given A ∈ X , choice process data assigns not just final choices (a subset of A), but a sequence

of such choices, representing the DM’s choices after considering the problem for different lengths

of time. We let CA denote C(A) and CA(t) ∈ A denote the t-th element in the sequence CA, with

CA(t) referring to the objects chosen after contemplating A for t periods. Choice process data

represents a relatively small departure from standard choice data, in the sense that all observations

represent choices, albeit constrained by time.

The first model CD analyze captures the process of sequential search with recall, in which the

DM evaluates over time an ever-expanding set of objects, choosing at all times the best objects

thus far identified. Choice process data has an alternative-based search (ABS) representation if
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there exists a utility function and a non-decreasing search correspondence for each choice set such

that what is chosen at any time is utility-maximizing in the corresponding searched set.

Definition 2 Choice process (X,C) has an ABS representation (u, S) if there exists a utility

function u : X → R and a search correspondence S : X → ZND, with SA ∈ ZA all A ∈ X , such

that,

CA(t) = arg max
x∈SA(t)

u(x),

where ZND ⊂ Z comprises non-decreasing sequences of sets in X , such that Zt ⊂ Zt+1 all t ≥ 1.

Given that final choice of x over y is unrevealing with incomplete search, the ABS character-

ization relies on an enriched notion of revealed preference. To understand the required enrich-

ment, we consider behavioral patterns that contradict ABS. In doing this, we use the notation

C(A) = B1;B2; ...;Bn! with Bi ∈ X ∩ A to indicate that the sets B1..Bn are chosen sequentially

from A, with Bn being the final choice. The following choice process data all contradict ABS.

Cα ({x, y}) = x; y;x!

Cβ ({x, y}) = x; {x, y}; y!

Cγ ({x, y}) = y;x!; Cγ({x, y, z}) = x; y!

Cδ ({x, y}) = y;x!; Cδ ({y, z}) = z; y!; Cδ ({x, z}) = x; z!

Cα contains a preference reversal: the DM first switches to y from x, suggesting that x is

preferred to y. However, the DM then switches back to y, indicating that y is preferred to x. Cβ

involves y first being revealed indifferent to x, as x and y are chosen at the same time. Yet later y

is revealed to be strictly preferred to x as x is dropped from the choice set.. In Cγ the direction

in which preference is revealed as between y and x changes between the two element and three

element choice set. Cδ involves an indirect cycle, with separate two element sets revealing x as

preferred to y, y as preferred to z, and z as preferred to x.

As these examples suggest, the appropriate notion of strict revealed preference in the case of

ABS is based on the notion of alternatives being replaced in the choice sequence over time. A DM

who switches from choosing y to choosing x at some later time is interpreted by the ABS model

as preferring x to y. Similarly, if we ever see x and y being chosen at the same time, it must be

that the DM is indifferent between the two alternatives. Hence we capture the revealed preference

information implied by the ABS model in the following binary relations.
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Definition 3 Given choice process (X,C), the symmetric binary relation ∼ on X is defined by

x ∼ y if there exists A ∈ X such that {x, y} ⊂ CA(t) some t ≥ 1. The binary relation �C on X is

defined by x �C y if there exists A ∈ X and s, t ≥ 1 such that y ∈ CA(s), x ∈ CA(s + t) but y /∈

CA(s+ t).

For a choice process to have an ABS representation it is necessary and suffi cient for the revealed

preference information captured in �C and ∼ to be consistent with an underlying utility ordering.

The CD characterization of ABS therefore makes use of Lemma 1, a standard result which captures

the conditions under which an incomplete binary relation can be thought of as reflecting some

underlying complete pre-order. Essentially, we require the revealed preference information to be

acyclic.

Lemma 1 Let P and I be binary relations on a finite set X, with I symmetric, and define PI on

X as P ∪ I. There exists a function v : X → R that respects P and I:

xPy =⇒ v(x) > v(y);

xIy =⇒ v(x) = v(y);

if and only if P and I satisfy OWC (only weak cycles): given x1, x2, x3, .., xn ∈ X with x =

x1PIx2PIx3..P Ixn = x, there is no k with xkPxk+1.

Armed with this result, CD establish that the key to existence of an ABS representation is for

�C and ∼ to satisfy OWC.

Theorem 1 Choice process (X,C) has an ABS representation iff �C and ∼ satisfy OWC.

This condition is closely related to the standard strong axiom of revealed preference. It is this

condition that reduces to the improvement condition that is tested in the experiment described in

section 3. The set of equivalent representations of a choice process for which �C and ∼ satisfy

OWC involve the utility function v respecting �C and ∼ on X, and the search correspondence S

including at least all objects which have been chosen from all sets A at times s ≤ t, with permissible

additional elements that have utility is strictly below that associated with chosen objects according

to v. Hence the more switches there are between objects in the choice process, the more restricted

is the set of utility functions that can form part of an ABS representation.
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Since the ABS model says nothing about the stopping rule for search, CD augment it with a

simple “reservation utility”stopping rule in which search continues until an object is found which

has utility above some fixed reservation level, whereupon it immediately ceases. The key to the

empirical content of this stopping rule is that one can make inferences as to objects that must have

been searched even if they are never chosen. Specifically, in any set in which the final choice has

below reservation utility, it must be the case that all objects in the set are searched. Hence final

choices may contain revealed preference information. The RBS model embodies the concept of

satisficing that Simon [1955] introduce in his pioneering model of bounded rationality, in which he

suggested that decision makers do not optimize but rather search until they achieve a “satisfactory”

(or reservation) level of utility.

Intuitively, an RBS representation is an ABS representation (u, S) in which a reservation level of

utility ρ exists, and in which the above-reservation set Xρ
u = {x ∈ X|u(x) ≥ ρ} plays an important

role in the search process. Specifically, search stops if and only if an above-reservation item is

discovered. In order to capture this notion formally, CD define CLA = limt→∞CA(t), as the final

choice the DM makes from a set A ∈ X as well as limit search sets SLA ≡ limt→∞ SA(t) ∈ X .

Note that, for finite X, the existence of an ABS representation guarantees that such limits are well

defined.

Definition 4 Choice process (X,C) has a reservation-based search (RBS) representation (u, S, ρ)

if (u, S) form an ABS representation and ρ ∈ R is such that, given A ∈ X ,

R1 If A ∩Xρ
u = ∅, then SLA = A.

R2 If A ∩Xρ
u 6= ∅, then:

(a) there exists t ≥ 1 such that CA(t) ∩Xρ
u 6= ∅;

(b) CA(t) ∩Xρ
u 6= ∅ =⇒ SA(t) = SA(t+ s) all s ≥ 0.

Condition R1 demands that any set containing no objects above reservation utility is fully

searched. Condition R2(a) demands that search must at some point uncover an element of the

above-reservation set if present in the feasible set. Condition R2(b) states that search stops as soon

as reservation utility is achieved.
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As with the ABS model, the key to characterizing the RBS model is to understand the corre-

sponding notion of revealed preference. As RBS is a refinement of ABS, it must be the case that

behavior that implies a revealed preference under ABS also does so under RBS. However, the RBS

model implies that some revealed preference information may also come from final choice, with sets

that contain only below-reservation utility objects being completely searched.

The following cases that satisfy ABS but not RBS illustrate behaviors that must be ruled out:

Cα({x, y}) = x; y!; Cα({x, z}) = x!; Cα({y, z}) = z!

Cβ({x, y}) = x; y!; Cβ({x, y, z}) = x!

In the first case, the fact that x was replaced by y in {x, y} reveals the latter to be preferred and

the former to be below reservation utility. Hence the fact that x was chosen from {x, z} reveals z

to have been searched and rejected as worse than x, making its choice from {y, z} contradictory.

In the second, the fact that x is followed by y in the choice process from {x, y} reveals y to be

preferred to x, and x to have utility below the reservation level (otherwise search must stop as

soon as x is found). The limit choice of x from {x, y, z} therefore indicates that there must be no

objects of above-reservation utility in the set. However, this in turn implies that the set must be

fully searched in the limit, which is contradicted by the fact that we know y is preferred to x and

yet x is chosen.

In terms of ensuring existence of an RBS representation, the critical question is how to identify

all objects that are revealed as having below-reservation levels of utility. As in the above cases, we

know that an object must have utility below the reservation level if we see a DM continue to search

even after they have found that object. CD call such an object non-terminal. Furthermore, we

know that an object must be below reservation utility if, in some choice set, a directly non-terminal

element is finally chosen instead of that object. CD define the union of this class of object and the

non-terminal objects as indirectly non-terminal.

Definition 5 Given choice process (X,C) define the non-terminal set XN ⊂ X and the indirectly

non-terminal set XIN ⊂ X as follows,

XN = {x ∈ X|∃A ∈ X s.t. x ∈ CA(t) and CA(t) 6= CA(t+ s) some s, t ≥ 1 };

XIN = XN ∪ {x ∈ X|∃A ∈ X , y ∈ XN with x, y ∈ A and y ∈ CLA}.
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Under an RBS representation, final choices in sets with below reservation utility objects contain

revealed preference information: when choice is made from two objects x, y ∈ X either of which

is indirectly non-terminal, then we can conclude that the chosen object is preferred. To see this,

suppose that y is indirectly non-terminal, hence has below reservation utility. In this case if it is

chosen over x it must be that x was searched and rejected. Conversely, suppose that x is chosen

over y. In this case either x is above reservation, in which case it is strictly preferred to y, or it is

below reservation, in which case we know that the entire set has been searched, again revealing x

superior. This motivates the introduction of the binary relation �L on X which gets united with

the information from �C to produce the new binary relation �R relevant to the RBS case.

Definition 6 Given choice process (X,C), the binary relation �Lon X is defined by x �L y if

{x ∪ y}∩XIN 6= ∅, and there exists A ∈ X with x, y ∈ A, x ∈ CLA, yet y /∈ CLA. The binary relation

�R is defined as �L ∪ �C .

The behavioral condition that is equivalent to the RBS model is that the revealed preference

information obtained from �R and ∼ is consistent with an underlying utility function.

Theorem 2 Choice process (X,C) has an RBS representation iff �R and ∼ satisfy OWC.

The ABS and RBS models both treat search order as unobservable, and characterize the extent

to which it is recoverable from choice process data. This makes it natural to develop stochastic

variants, since there is no reason to believe that search from a given set will always take place in

the same order. CD therefore generalize the deterministic model to allow for stochasticity. They

do this by allowing each choice set to map onto a probability distribution over sequences of chosen

objects. The resulting stochastic models turn out to be direct generalizations of their deterministic

counterparts. CD show that the stochastic RBS model can capture anomalous choice behavior,

such as status quo bias, stochastic choice, and general framing effects.

<1>The Experiment

Having developed a theory of information search that could potentially explain choice “mis-

takes,” our next task was to develop an experimental methodology that would allow us to test

these models. These experiments are described in CDM.
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The main simplification in the choice process experiment is that CDM make the utility function

observable and identical across subjects. To accomplish this, the objects of choice are amounts

of money received with certainty. In order to make the choice problem non-trivial, each object

is displayed as an arithmetic expression, a sequence of addition and subtraction operations, with

the value of the object equal to the value of the sum in dollars. The value of each alternative was

drawn from an exponential distribution with λ = 0.25, truncated at $35 (a graph of the distribution

was shown in the experimental instructions).1 Once the value of each object was determined, the

operations used to construct the object were drawn at random.

Each round began with the topmost option on the screen selected, which had a value of $0, and

so was worse than any other option. To elicit choice process data, subjects were allowed to select

any alternative in the choice set at any time, changing their selected alternative whenever they

wished. The alternative that the subject currently selected would then be displayed at the top of

the screen. A subject who finished in less than 120 seconds could press a submit button, which

completed the round as if they had kept the same selection for the remaining time. Typically, a

subject took part in a single session consisting of 2 practice rounds and 40 regular rounds, and two

recorded choices were actualized for payment, which was added to a $10 show up fee.

The key to the experimental design is the way in which subjects were incentivized. Rather

than simply receiving their final choice, actualized choice was recorded at a random point in time

unknown to the experimental subject. Specifically, subjects were instructed that at the end of the

round, a random time would be picked from distribution between 1 and 120 seconds according to a

truncated beta distribution with parameters α = 2 and β = 5, and the selected alternative at this

time would be recorded as the choice for that round.2. At any given time, its is therefore optimal

for the subject to have selected the alternative that they currently think is the best, as there is a

chance that their current selection would be recorded as their choice. We therefore interpret the

sequence of selections as choice process data.3

1For each of the three choice set sizes we generated 12 sets of values, which were used to generate the choice

objects at both the low and the high complexity levels.
2A graph of this distribution was shown in the experimental instructions. The beta distribution was chosen in

order to “front load”the probability of a time being selected in the first minute of the choice round, as most subjects

made their choices inside 120 seconds.
3 In support of this interpretation, many subjects indicated in a follow-up survey that they always selected their

most preferred option.
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There were six treatments, differing in the complexity of choice object (3 or 7 addition and

subtraction operations for each object) and the total number of objects (10, 20 or 40 alternatives)

in the choice set. Figure 1 (from CDM) shows a 10 option choice set with objects of complexity 3.

The experimental design creates an environment in which subjects’final choices were subop-

timal. Averaging across all treatments, subjects fail to finally choose the best option 44% of the

time. Failure rates vary from 11.4% for the size 10, low complexity (3 operations) treatment to

80.9% for size 40, high complexity (7 operations) treatment. These failures of optimality were also

significant in terms of dollar amounts, with an average gap of more than $8.00 between the finally

chosen and the best option in the largest and most complex choice sets (size 40, complexity 7).

The potential for choice process data to shed light on the above losses derives from the fact

that several switches are commonly observed in the pre-decision period. Most individuals do indeed

change their selection with consideration time. This is a necessary condition for choice process data

to contain more information than standard choice data alone.

<2>Sequential Search

The first question that CDM consider is the extent to which switches in the pre-decision period

are from lower to higher value alternatives (this corresponds to “alternative-based”search (ABS)

in the general characterization above). Using a standard measure of the failure of consistency with

revealed preference (Houtman and Maks [1985]) with measures of statistical power based on the

alternative of random selection (as in Bronars [1987]), CDM show that, for the population as a

whole, ABS does a good job of describing search behavior. They also identify “ABS types” by

comparing each subject’s HM Index with the median HM Index of the 1,000 simulations of random

data for that subject, which have exactly the same number of observations in each round. have an

HM Index lower than the 75th percentile. They focus on the 72 out of 76 subjects with HM indices

about the 75th percentile of this distribution.

The prevalence of ABS types suggests that simple search theoretic explanations can help make

sense of apparent mistakes. In large choice sets, people still recognize preferred objects and choose

them when they come across them. However, their final choices may not be maximal because they

do not search through all available alternatives.

11



<2>Satisficing

CDM use choice process data to shed new light on satisficing behavior. They show that the

RBS model describes the experimental data well at both the aggregate and individual level. At the

aggregate level, for each treatment there exists possible reservation values such that, on average,

subjects continue to search when currently selecting an alternative which is below this reservation

level, but stop searching when holding a value above it. This is true even if the data is broken

down by total number of searches. This means that a reservation level can be estimated for each

treatment (as we describe below). The resulting estimated reservation values also do a good job of

describing individual level data: across all treatments subjects behave in line with these reservation

levels (i.e. stop searching when holding a value above this level but continue searching when holding

a value below it) in approximately 77% of observations.

CDM use standard methods to estimate the reservation utility for each treatment. Specifically

all individuals in a given choice environment are assumed to have the same constant reservation

value v and experience variability ε in this value each time they decide whether or not to continue

search. Further, this stochasticity is assumed to enter additively and to be drawn independently and

identically from the standard normal distribution. To estimate the reservation level using choice

process data, CDM consider each selection made by a subject as a decision node. Search is defined

as continuing if a subject switches to another alternative after the current selection. Conversely,

search is stopped at a decision node only if the subject made no further selections, pressed the

submit button, and the object they had selected was not the highest value object in the choice set.

Reservation levels are estimated by maximizing the likelihood of observed decisions.

Not only do the estimated reservation levels do a good job of explaining individual behavior,

they also shed light on why the number of mistakes vary from treatment to treatment. CDM

find that reservation levels vary systematically with treatment. Reservation levels decrease as the

objects of choice get more complicated. This explains why mistakes (measured as the gap in value

between the chosen option and the best available option) are larger in more complicated choice

sets. Reservation levels increase as the size of the choice set increases. This increase implies that

subjects do better in absolute terms in larger choice sets, but the increase is not suffi cient to prevent

them from making larger mistakes in bigger choice sets.

While the theoretical interest of the satisficing model is clear, it is perhaps surprising that the
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experimental results of CDM offer such strong support to this stark model. A partial explanation

may lie in the connection between the experimentally identified reservation stopping rules and

optimal stopping rules in a model with a fixed psychic cost of search and independently drawn

object valuations. CDM show that a fixed reservation strategy is optimal in this model. Yet

there are some conflicts between this model and the experimental findings. Specifically, optimal

reservation levels are independent of the size of the choice set in the optimizing model, yet increasing

in the experiment. Understanding this finding is a priority in ongoing research.

<2>Search Order

Choice process data provide insight into the order in which people search through available

objects, and this information can help predict when subjects will do badly in particular choice sets.

CDM analyzed two factors that can determine search order: screen position and object complexity.

In order to explore both factors, they ran an additional experimental treatment which contained

objects of varying complexity. This treatment contained choice sets of size 20, and the objects in

each set varied in complexity from between one and nine operations. They ran the new treatment

on 21 subjects for a total of 206 observed choice sets.

In the context of these experiments, CDM show that average search behavior has systematic

patterns. On average, subjects search the screen from top to bottom: screen position is higher for

later searched objects. They show also that subjects tend to search from simple to complex objects.

Perhaps more surprising is evidence of individual differences in the search patterns of individual

subjects. Some subjects behave in a manner consistent with “Top-Bottom” (TB) search, while

others are consistent with “Simple-Complex” (SC) search. The former are subjects whose search

order takes them from the top to the bottom of the screen, while the latter are subjects whose

search takes them from simple to complex objects.

The experiment reveals that the differences in search order impact final choices. In a round in

which the highest valued item is very short and occurs at the end of the list, TB searchers find it

less often than do SC searchers. Conversely when the highest valued item is very long and occurs

very early in the list, TB searchers find it more often than do SC searchers.

<1>Choice Alone
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Our central claim in this chapter is that our enhanced choice experiment helps us to understand

choice behavior in a way that would not be possible using choice alone. In order to support this

claim, we need to show two things. First, that our method for eliciting the enhanced choice data

does not distort the behavior of our subjects to such an extent that we learn very little about

standard choice environments. Second, that the additional data that we collected does in fact add

to our understanding of choice

To investigate these two points, CDM ran a “pure choice”version of the experimental design

removing the incentives relating to the pre-decision period. The standard choice experiment made

use of exactly the same treatments as the choice process experiments: choice sets contained 10, 20

or 40 alternatives, with the complexity of each alternative being either 3 or 7 operations. Moreover,

exactly the same choice sets were used in the choice process and standard choice experiments. The

subjects in the pure choice experiment took part in a single experimental session consisting of 2

practice rounds and between 27 and 36 regular rounds, drawn from all 6 treatments. At the end

of the session, two regular rounds were drawn at random, and the subject received the value of the

selected object in each round, in addition to a $10 show up fee. Each session took about an hour,

for which subjects earned an average $32. In total we observed 22 subjects making 657 choices.4

We find similar patterns of final choices in the pure choice and choice process environments.

There are somewhat fewer mistakes in the pure choice experiment: averaging across all treatments,

subjects fail to select the best option 38% of the time, compared to 44% of the time in the choice

process experiment. However, the comparative statics are similar in the two cases: Mistakes increase

both with the size of the choice set and the complexity of alternatives, with failure rates varying

from 7% for the size 10, low complexity (3 operations) treatment to 65% for size 40, high complexity

(7 operations) treatment. These failures of rationality remain significant in terms of dollar amounts,

with average loss of $7.12 in the size 40, high complexity treatment. The pattern of mistakes was also

similar between the pure choice and choice process settings: when CDM compare the distribution

of final choices using Fisher’s exact test, only 12 of the 60 choice sets have distributions that are

significantly different at the 5% level.

To the extent that there is a difference in the quality of final choices between the choice process

4One difference was that the pure choice experiments were run without time limits. When comparing with the

choice process outcomes, CDM focus only on rounds from the choice process experiment in which the subject pressed

the submit button before the allotted 120 seconds, and so did not hit the binding time constraint.
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and pure choice treatments, it goes in the expected direction. The incentive to continue searching

is higher in the standard choice experiment, since it is certain that any identified improvements will

be implemented. The corresponding probability is less than one in the choice process experiment,

and falls toward zero as the 2 minutes come to an end. In this light, it is noteworthy how limited

was the impact of the incentive changes induced by the choice process interface.

There is one other source of evidence on the similarity in decision making with and without the

enhanced incentives in the choice process experiment. The experimental design allowed subjects

in the pure choice experiment to select options prior to their final choice just as they could in the

choice process experiment. The only difference was that in the standard choice experiment, there

was no incentive for them to do so. CDM found that subjects still did record switches of their own

volition even without incentives, that the resulting selections broadly satisfied ABS and RBS, and

that reservation utilities exhibited the same qualitative patterns as in the incentivized experiment.

Essentially all of the results above concerning the nature of the search and decision process from

the choice process experiments are closely mirrored using data from the pre-decision period in the

pure choice experiment despite the absence of incentives.

How much could we have learned about information search and choice had we observed only

pure choice, and ignored the pre-decision period? The answer is very little, and much of it wrong.

On the positive side, one would learn that choices are made more poorly in the larger and more

complex decision sets. On the negative side, one would nave no way of testing various explanations

for what is behind these poor decisions. With choice data alone, one could not test the ABS or RBS

model, or make reliable inferences about reservation utility levels. If all one observed were final

choices then any data set can be explained perfectly by a model in which the reservation level is

zero, and whatever is chosen is the first object searched. Thus it is infeasible to estimate reservation

levels, and compare how they change with the environment. Thus, the extra information in choice

process allows us to understand what it is that drives suboptimal choice and estimate otherwise

hidden reservation parameters

A second advantage of choice process data is that it allows us to recover revealed preference

information in the case of incomplete search. In environments such as these, where all alternatives

are not evaluated, the eventual choice of one object over another does not necessarily convey

preference, as the decision maker may be unaware of the unchosen alternative. Standard choice

data does not therefore reveal any preference. In contrast when one has access to choice process
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data, the switch from one alternative to another does convey revealed preference information under

the assumption of the ABS model, as the fact that the former alternative was chosen at one time

indicates that the decision maker was aware of its existence.

<1>Methodology

The research outlined above is part of a methodologically-oriented agenda in the area of “neu-

roeconomics.”This field has recently been the subject of much controversy concerning its definition

and its substance. An initial salvo was fired by Camerer, Loewenstein, and Prelec [2005] who ar-

gued that neurological data would revolutionize our understanding of choice. Gul and Pesendorfer

[2008] fired back hard with the claim that non-standard data is essentially irrelevant to economics,

which is interested only in the act of choice.

Following this harsh exchange, the center of the active debate on neuroeconomics concerns what

are appropriate forms of non-standard data to explore to better understand choice, and the extent

to which these data need themselves to be modeled. Here there are many flowers that continue

to bloom. Camerer [2008] outlines a very wide array of non-standard data that are potentially

interesting to those seeking to understand choice. Search in particular has been a major spur to

the development of psychological data. Herbert Simon developed “protocol analysis” to augment

choice data with highly structured vocalized descriptions of the decision making process (Ericsson

and Simon [1984]); time to decide has been the focus of much research (e.g. Armel, Beaumol, and

Rangel [2006] and Wilcox [1993]), as have the order of information search as revealed by Mouselab

(e.g. Payne, Bettman and Johnson [1993], Ho, Camerer, and Weigelt [1998], and Gabaix et al.

[2006]); eye movements (e.g. Wang, Spezio and Camerer [2006] and Reutskaja et al. [2008]); and

neuroscientific observations.

The program of neuroeconomic research in which we are engaged, and to which the work

outlined herein contributes, involves a particularly tight relationship between non-standard data

and economic theory. We see the tension between tightly constrained decision theory and massive

volumes of new psychological data as potentially damaging to the social nature of the research

enterprise (see Caplin [2008] for an in depth exposition). The concern is that such open-ended

constructs as decision making frames, mental accounts, and rules of thumb are flexible enough

to account for any pattern of observations, and subjective enough to defy common definition.
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We believe that the key to avoiding this potential communication breakdown is to internalize

the profound strength of the data theoretic (“axiomatic”) approach introduced into economics by

Samuelson [1938].

It is ironic that the axiomatic approach is traditionally seen as connected to a standard concept

of choice among available alternatives. There is no necessary connection of this nature. Indeed it is

our view that axiomatic methods are made ever more essential by data proliferation. Application

of the axiomatic method ensures that new data earn their keep by opening up new observable phe-

nomenon. In principle, axiomatic methods represent an ideal method for unifying psychologically

sophisticated decision theory with experimental economics. It is also methodologically incoherent

to argue that axiomatic methods apply best to a particular designated data set, comprising “stan-

dard”choices. We see no valid distinction between choice and non-choice data. To take an extreme

case, the pulse can be modeled as chosen just as much as can the standard choice of apples over

oranges. While it may be that the former is more tightly constrained by physical laws, even this is

debatable. After all, the goal of choice theory is to treat choice itself as mechanically as possible.

The first work in which we jointly characterize properties of standard choice data and non-

standard data relates to the neurotransmitter dopamine. In that context, Caplin and Dean [2009b]

identified the precise characteristics of the standard theory in which dopamine provides a reward

prediction error signal, while Caplin, Dean, Glimcher, and Rutledge [2010] provided the correspond-

ing experimental tests, which were broadly positive. The current work is the second example, but

is in many ways more fundamental to the methodology. It takes full advantage of the researcher’s

freedom to specify non-standard data that is experimentally observable, and for which a ready made

theory exists that is very close to standard choice theory. An extremely well developed theory sug-

gests that search is sequential and investigates optimal search, which is often of the reservation

variety. Moreover, the very first breakdown of revealed preference relates to incomplete search, a

point that was noted early on by Block and Marshak [1960] in their pioneering model of stochastic

choice.

Our investigation of choice process data reflects the joining of natural streams: study of non-

standard data and axiomatic methods of choice theory. Interestingly, Campbell [1978] had previ-

ously developed a theory of this data tape with respect to an early model of the decision making

procedure. In fact it is in many respects a natural data tape for a theorist, and ABS and RBS are

natural first formulations of boundedly rational decision models.
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<1>Concluding Remarks

There are several obvious next steps in the research agenda related to the choice process. One

such step is to join choice process data with additional observations on the search process, including

mouse movements, time between switches, eye movements, and neurological measurements. We

expect eye movements to be of particular value in helping us understand the nature of search.

While less well studied than standard choice behavior, opening up to these enriched observations

may be very important in analyzing possible alternative modes of search, such as “characteristic

based”procedures in which objects are compared on a facet-by-facet basis.

With regard to applications, we are particularly interested in variants of the choice process

model and experiment that give insight into financial decision making over the Internet. It is

intuitively clear that most of us are incapable of making fully informed financial decisions, and

that the mode of presentation can substantively impact both what we understand and what we

choose. The choice process interface represents only a starting point in terms of the observational

enrichments required to further our understanding of these effects.

It is in some ways surprising that economists have focused so little prior attention on how well

understood are the various options in any given decision making context. While research has now

begun on the many settings in which subjective “consideration sets”may be strictly smaller than

the objectively available set of choices, nothing of equal power has replaced the principle of revealed

preference.5 It is the organizing power that this principle introduces that led to our experimental

investigation of artificially enhanced choice data.

We see our agenda as illustrating one of the advantages of economic experiments over field

experiments. Our experiments really require a controlled environment in which the process of

choice is subject to “un-natural”manipulation and to observation. It would be hard if not impossible

either to manipulate or to adequately observe the act of choice in a field experiment designed to

be naturalistic.
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