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1 Appendix 1: Proofs

1.1 Lemma 1

Lemma 1 If π ∈ Π is consistent with PA ∈ P, then it is suffi cient for π̄A.

Proof. Let π ∈ Π be an information structure that is consistent with PA ∈ P . First, we list
in order all distinct posteriors ηi ∈ Γ(π) for 1 ≤ i ≤ I = |Γ(π)|. Given that π is consistent
with PA, there exists a corresponding optimal choice strategy CA : Γ(π) → ∆(A) such that
the information structure and choice functions match the data,

PA(a|ω) =

I∑
i=1

π(ηi|ω)CA(a|ηi).

We also list in order all possible posteriors associated with the corresponding revealed in-
formation structure, γj ∈ Γ̄ ≡ Γ(π̄A), 1 ≤ j ≤ |Γ̄|, and identify all chosen actions that are
associated with posterior γj as F̄ j ,

F̄j ≡ {a ∈ A|γ̄aA = γj}.

The garbling matrix bij sets the probability of γj ∈ Γ̄ given ηi ∈ Γ(π) as the probability of
all choices associated with actions a ∈ F̄j

bij =
∑
a∈F̄j

CA(a|ηi).

Note that this is indeed a |Γ(π)| × |Γ̄| stochastic matrix B ≥ 0 with
∑J

j=1 b
ij = 1 all i. Given

γj ∈ Γ(π) and ω ∈ Ω, note that,

I∑
i=1

bijπ(ηi|ω) =
I∑
i=1

π(ηi|ω)
∑
a∈F̄j

CA(a|ηi) =
∑
a∈F̄j

PA(a|ω),

by the data matching property. It is definitional that π̄A(γj |ω) is precisely equal to this, as
the observed probability of all actions associated with posterior γj ∈ Γ̄. Hence,

π̄A(γj |ω) =
I∑
i=1

bijπ(ηi|ω),
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as required for suffi ciency.

1.2 Theorem 1 and 2

Theorem 1 Given µ ∈ Γ and u : X → R, data set (D,P ) has a costly information representation
if and only if it satisfies NIAS and NIAC.

Proof of Necessity. Necessity of NIAS follows much as in CM15. Fix A ∈ D, πA ∈ Π and
CA : Γ(πA) → ∆(A) in a costly information representation, and a ∈ Supp(PA). By definition of a
costly information representation,

∑
γ∈Γ(πA)

CA(a|γ)

[∑
ω∈Ω

γ (ω)u(a(ω))

]
≥

∑
γ∈Γ(πA)

CA(a|γ)

[∑
ω∈Ω

γ(ω)u(b(ω))

]
all b ∈ A.

Substituting,

γ (ω) =
µ(ω)πA(γ|ω)∑

υ∈Ω

µ(ν)πA(γ|ν)
,

cancelling the common denominator
∑
υ∈Ω

µ(ν)πA(γ|ν) in the inequality and substituting PA(a|ω) =∑
γ∈Γ(πA)

πA(γ|ω)CA(a|γ), we derive,

∑
ω∈Ω

µ(ω)PA(a|ω)u(a(ω)) =
∑

γ∈Γ(πA)

CA(a|γ)

[∑
ω∈Ω

γ (ω)u(a(ω))

]
≥

∑
γ∈Γ(πA)

CA(a|γ)

[∑
ω∈Ω

γ (ω)u(b(ω))

]
=

∑
ω∈Ω

µ(ω)PA(a|ω)u(b(ω))

establishing necessity of NIAS.
To confirm necessity of NIAC consider any sequence A1, A2, .....AJ ∈ D with AJ = A1 and

(abusing notation slightly) corresponding information structure πj for 1 ≤ j ≤ J . By optimality,

G(Aj , πj)−K(πj) ≥ G(Aj , πj+1)−K(πj+1).∀ j ∈ {1, .., J},

so that,
J−1∑
j=1

G(Aj , πj)−K(πj) ≥
J−1∑
j=1

G(Aj , πj+1)−K(πj+1).

Given that K(π1) = K(πJ), note that,

J−1∑
j=1

G(Aj , πj)−G(Aj , πj+1) ≥
J−1∑
j=1

K(πj)−K(πj+1) = 0,

so that,
J−1∑
j=1

G(Aj , πj) ≥
J−1∑
j=1

G(Aj , πj+1).
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To establish that this is inherited by the revealed information structures π̄j for 1 ≤ j ≤ J , note from
lemma 1 that πj is suffi cient for π̄j , and so by Blackwell’s Theorem (see Remark 1), G(B, πj) ≥
G(B, π̄j) for all B ∈ F . For B = Aj this is an equality since both information structures give rise
to the same state dependent stochastic demand,

G(Aj , πj) = G(Aj , π̄j) =
∑
a∈Aj

∑
ω∈Ω

µ(ω)PAj (a|ω)u(a(ω)).

Hence,
J−1∑
j=1

G(Aj , π̄j) =

J−1∑
j=1

G(Aj , πj) ≥
J−1∑
j=1

G(Aj , πj+1) ≥
J−1∑
j=1

G(Aj , π̄j+1),

establishing NIAC.
Proof of Suffi ciency. There are three steps in the proof that the NIAS and NIAC conditions
are suffi cient for (D,P ) to have a costly information representation. The first step is to establish
that the NIAC conditions ensures that there is no global reassignment of the revealed information
structures observed in the data to decision problems A ∈ D that raises total gross surplus. The
second step is use this observation to define a candidate cost function on information structures,
K̄ : Π → R ∪ ∞. The key is to note that, as the solution to the classical allocation problem of
Koopmans and Beckmann [1957], this assignment is supported by “prices”set in expected utility
units. It is these prices that define the proposed cost function. The final step is to apply the
NIAS conditions to show that there exists a sequence of choice functions {CA}A∈D such that(
K̄, {π̄A}A∈D , {CA}A∈D

)
form a costly information representation of (D,P )..

Enumerate decision problems in D as Aj for 1 ≤ j ≤ J . Define the corresponding revealed
information structures π̄j for 1 ≤ j ≤ J as revealed in the corresponding data and let Π̄ ≡ ∪Jj=1π̄j
be the set of all such structures across decision problems, with a slight enrichment to ensure that
there are precisely as many structures as there are decision problems. If all revealed information
structures are different, the set as just defined will have cardinality J . If there is repetition, then
retain the decision problem index with which identical revealed information structures are associated
so as to make them distinct. This ensures that the resulting set Π has precisely J elements. Index
elements π̄j ∈ Π̄ in order of the decision problem Aj with which they are associated.

We now allow for arbitrary matchings of information structures to decision problems. First, let
βjl denote the gross utility of decision problem j combined with revealed information structure l,

βjl = G(Aj , π̄l),

with B the corresponding matrix. DefineM to be the set of all matching functions θ : {1, .., J} →
{1, .., J} that are 1-1 and onto and identify the corresponding sum of gross payoffs,

S(θ) =
J∑
j=1

βjθ(j).

It is simple to see that the NIAC condition implies that the identify map θI(j) = j maximizes the
sum over all matching functions θ ∈M. Suppose to the contrary that there exists some alternative
matching function that achieves a strictly higher sum, and denote this match θ∗ ∈M. In this case
construct a first sub-cycle as follows: start with the lowest index j1 such that θ∗(j1) 6= j1. Define
j2 = θ∗(j1) and now find θ∗(j2), noting by construction that θ∗(j2) 6= j2 as θ∗ is one-to-one . Given
that the domain is finite, this process will terminate after some K ≤ J steps with θ∗(jK) = j1. If
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it is the case that θ∗(j) = j outside of the set ∪Kk=1 jk, then we know the increase in the value of
the sum is associated only with this cycle, hence,

K−1∑
k=1

βjkjk <
K−1∑
j=1

βjkjk+1
,

directly in contradiction to NIAC. If this inequality does not hold strictly, then we know that there
exists some j′ outside of the set ∪Kk=1 jk such that θ

∗(j′) 6= j′. We can therefore iterate the process,
knowing that the above strict inequality must be true for at least one such cycle to explain the
strict increase in overall gross utility. Hence the identity map θI(j) = j indeed maximizes S(θ)
amongst all matching functions θ ∈M.

With this, we have established that the identity map solves an allocation problem of precisely
the form analyzed by Koopmans and Beckmann [1957]. They characterize those matching functions
θ : {1, ..J} → {1, ..J} that maximize the sum of payoffs defined by a square payoff matrix such
as B that identifies the reward to matching objects of one set (decision problems in our case) to
a corresponding number of objects in a second set (revealed information structures in our case).
They show that the solution is the same as that of the linear program obtained by ignoring integer
constraints,

max
xjl≥0

∑
j,l

βjlxjl s.t.
J∑
j=1

xjl =
J∑
l=1

xjl = 1.

Standard duality theory implies that the optimal assignment θI(j) = j is associated with a system
of prices on revealed information structures such that the increment in net payoff from any move of
any decision problem is not more than the increment in the cost of the information structure (see
Koopmans and Beckmann [1957] pages 58-60).

Defining these prices as K̄j , their result implies that,

βjl − βjj = G(Aj , π̄l)−G(Aj , π̄j) ≤ K̄l − K̄j ;

or,
G(Aj , π̄j)− K̄j ≥ G(Aj , π̄l)− K̄l.

The result of Koopmans and Beckmann therefore implies existence of a function K̄ : Π −→ R
that decentralizes the problem from the viewpoint of the owner of the decision problems, seeking
to identify surplus maximizing information structures to match to their particular problems. Note
that if there are two distinct decision problems with the same revealed posterior, the result directly
implies that they must have the same cost, so that one can in fact ignore the reference to the
decision problem and retain only the posterior in the domain. Set K(π) = K̄i if π = π̄i for some
Ai ∈ D, and K(π) =∞ if π /∈ Π̄.

We have now completed construction of a qualifying cost function K̄ : Π→ R∪∞ that satisfies
K̄(π) ∈ R for some π ∈ Π. By construction the observed information structure choices were always
maximal: π̄A ∈ Π̂(K,A) for all A ∈ D. It remains to prove that π̄A is consistent with PA for all
A ∈ D. To do so, we must construct, for each A ∈ D, a function CA : Γ(π̄A)→ ∆(A) such that (i)
π̄A and CA generate PA, and (ii) for all a ∈ A and γ ∈ Γ(πA) with CA(a|γ) ≡ Pr(a|γ) > 0,∑

ω∈Ω

γ(ω)u(a(ω)) ≥
∑
ω∈Ω

γ(ω)u(b(ω)) all b ∈ A.
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For each γ ∈ Γ(π̄A), define:

CA(a|γ) =


PA(a)∑

{b∈A|γ̄bA=γ} PA(b) if γ̄
a
A = γ;

0 otherwise;

where PA(a) is the unconditional probability of choosing action a in set A. Note that this defines
a probability distribution over A for each γ ∈ Γ(π̄A). Note also that CA(a|γ) > 0 only if γ̄aA = γ.
The NIAS condition implies that∑

ω∈Ω

µ(ω)PA(a|ω)u(a(ω)) ≥
∑
ω∈Ω

µ(ω)PA(a|ω)u(b(ω))⇒∑
ω∈Ω

γ̄aA(ω)u(a(ω)) ≥
∑
ω∈Ω

γ̄aA(ω)u(b(ω)).

The second line follows by dividing both sides by PA(a). Thus, NIAS ensures that the choice
function is optimal.

It remains only to show that π̄A and CA generate PA. To see this, first note that, for any two
b, b′ ∈ A such that γ̄bA = γ̄b

′
A, Bayes’rule implies,

PA(b|ω)

PA(b′|ω)
=
PA(b)

PA(b′)
∀ ω ∈ Ω s.t. γ̄bA(ω) 6= 0. (1)

Next note that, for every ω ∈ Ω and a ∈ A such that PA(a) > 0∑
γ∈Γ(π̄A)

π̄A(γ|ω)CA(a|γ) = π̄A(γ̄aA|ω)CA(a|γ̄aA) =
∑

{c∈A|γ̄cA=γ̄aA}
PA(c|ω)

PA(a)∑
{b∈A|γ̄bA=γ̄aA} PA(b)

=
∑

{c∈A|γ̄cA=γ̄aA}
PA(c|ω)

PA(a|ω)∑
{b∈A|γ̄bA=γ̄aA} PA(b|ω)

= PA(a|ω),

ensuring data matching. The penultimate equality follows from equation 1, while the final inequality
comes from noting that the sums in the numerator and the denominator are identical.

1.3 Theorem 2

Theorem 2 Given µ ∈ Γ and u : X → R, data set (D,P ) satisfies NIAS and NIAC if and only if
it has a costly information representation with conditions K1 to K3 satisfied.

Proof. The proof of necessity is immediate from theorem 1. The proof of suffi ciency proceeds in
four steps, starting with a costly information representation

(
K̄, π̄

)
of (D,P ) of the form produced

in theorem 1 based on satisfaction of the NIAS and NIAC conditions. A key feature of this function
is that the function K̄ is real-valued only on the revealed information structures Π̄ ≡ {π̄A|A ∈ D}
associated with all corresponding decision problems, otherwise being infinite. The first step is the
proof is to construct a larger domain Π̊ ⊃ Π̄ to satisfy three additional properties: to include the
inattentive strategy, I ∈ Π̊; to be closed under mixtures so that π, η ∈ Π̊ and α ∈ (0, 1) implies
α ◦ π + (1 − α) ◦ η ∈ Π̊; and to be “closed under garbling,” so that if π ∈ Π̊ is suffi cient for
information structure ρ ∈ Π, then ρ ∈ Π̊. The second step is to define a new function K̊ that
preserves the essential elements of K̄ while being real-valued on the larger domain Π̊ ⊃ Π̄, and
thereby to construct the full candidate cost function K̊ : Π→ R ∪∞. The third step is to confirm
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that K̊ ∈ K and that K̊ satisfies the required conditions K1 through K3. The final step is to

confirm that
(
K̊, {π̄A}A∈D

)
forms a costly information representation of (D,P ).

We construct the domain Π̊ in two stages. First, we define all information structures for which
some revealed information structure π̄ ∈ Π is suffi cient;

Π̄S = {ρ ∈ Π|∃π ∈ Π̄ suffi cient for ρ}.

Note that this is a superset of Π̄ and that it contains I. The second step is to identify Π̊ as the
smallest mixture set containing Π̄S : this is itself a mixture set since the arbitrary intersection of
mixture sets is itself a mixture set.

By construction, Π̊ has three of the four desired properties: it is closed under mixing; it contains
Π̄, and it contains the inattentive strategy. The only condition that needs to be checked is that it
retains the property of being closed under garbling:

π ∈ Π̊ suffi cient for ρ ∈ Π =⇒ ρ ∈ Π̊ .

To establish this, it is useful first to establish certain properties of Π̄S and of Π̊. The first is that
Π̄S is closed under garbling:

π ∈ Π̄S suffi cient for ρ ∈ Π =⇒ ρ ∈ Π̄S .

Intuitively, this is because the garbling of a garbling is a garbling. In technical terms, the product
of the corresponding garbling matrices is itself a garbling matrix. The second is that one can
explicitly express Π̊ as the set of all finite mixtures of elements of Π̄S ,

Π̊ =

π =
J∑
j=1

λj ◦ πj |J ∈ N, (λ1, ..λJ) ∈ SJ−1, πj ∈ Π̄S

 ,

where SJ−1 is the unit simplex in RJ. To make this identification, note that the set as defined on
the RHS certainly contains Π̄S and is a mixture set, hence is a superset of Π̊. Note moreover that
all elements in the RHS set are necessarily contained in any mixture set containing Π̄S by a process
of iteration, making is also a subset of Π̊, hence finally one and the same set.

We now establish that if ρ ∈ Π is a garbling of some π ∈ Π̊, then indeed ρ ∈ Π̊. The first step is
to express π ∈ Π̊ as an appropriate convex combination of elements of Π̄S as we now know we can,

π =

J∑
j=1

λj ◦ πj .

with all weights strictly positive, λj > 0 all j. Lemma 2 below establishes that in this case there
exist garblings ρj of πj ∈ Π̄S such that,

ρ =

J∑
j=1

λj ◦ ρj ,

establishing that indeed ρ ∈ Π̊ since, with Π̄S closed under garbling, πj ∈ Π̄S and ρj a garbling of
πj implies ρj ∈ Π̄S .

We define the function K̊ on Π̊ in three stages. First we define the function K̄S on the domain
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Π̄S by identifying for any ρ ∈ Π̄S the corresponding set of revealed information structures π̄ ∈ Π̄
of which ρ is a garbling, and assigning to it the lowest such cost. Formally, given ρ ∈ Π̄S ,

K̄S(ρ) ≡ min
{π∈Π̄|π suffi cient for ρ}

K̄(π).

Note that K̄S(π) = K̄(π) all π ∈ Π̄. To see this, consider A,A′ ∈ D with π̄A′ suffi cient for π̄A.
By the Blackwell property, expected utility is at least as high using π̄A′ as using π̄A for which it is
suffi cient,

G(A, π̄A′) ≥ G(A, π̄A).

At the same time, since
(
K̄, π̄

)
forms part of a costly information representation of (D,P ), we

know that π̄A ∈ Π̂(K,A), so that,

G(A, π̄A)−K(π̄A) ≥ G(A, π̄A′)−K(π̄A′).

Together these imply that K(π̄A) ≤ K(π̄A′), which in turn implies that K̄S(π) = K̄(π) all π ∈ Π̄.
Note that K̄S(π) also satisfies weak monotonicity on this domain, since if we are given ρ, η ∈ Π̄S

with ρ suffi cient for η, then we know that any information structure π ∈ Π̄ that is suffi cient for
ρ is also suffi cient for η, so that the minimum defining K̄S(ρ) can be no lower than that defining
K̄S(η).

The second stage in the construction is to extend the domain of the cost function from Π̄S to
Π̊. As noted above, this set comprises all finite mixtures of elements of Π̄S . Given π ∈ Π̊, we take
the set of all such mixtures that generate it and define K̊(π) to be the corresponding infimum,

K̊(π) = infJ∈N,λ∈SJ−1,{πj}Jj=1∈Π̄S |π=

J∑
j=1

λj◦πj



J∑
j=1

λjK̄S(πj).

Note that this function is well defined since K̄S is bounded below by the lowest cost in K̄ and the
feasible set is non-empty by definition of Π̊. We establish in Lemma 3 that the infimum is achieved.

Hence, given π ∈ Π̊, there exists J ∈ N, λ ∈ SJ−1, and elements πj ∈ Π̄S with π =
J∑
j=1

λj ◦ πj such

that,

K̊(π) =
J∑
j=1

λjK̄S(πj).

We show now that K̊ satisfies K2, mixture feasibility. Consider distinct structures π 6= η ∈ Π̊.
We know by Lemma 3 that we can find Jπ,η ∈ N, corresponding probability weights λπ,η ∈ Sπ,η

and elements ηj , πj ∈ Π̄S with η =
Jη∑
j=1

ληj ◦ ηj , π =
Jπ∑
j=1

λπj ◦ πj , and such that,

K̊(η) =

Jη∑
j=1

ληj K̄S(ηj);

K̊(π) =
Jπ∑
j=1

λπj K̄S(πj).
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Given α ∈ (0, 1), consider now the mixture strategy defined by taking each strategy πj with
probability αλπj and each strategy ηj with probability (1 − α)ληj . By construction, this mixture
strategy generates ψ = [α ◦ π + (1− α) ◦ η] ∈ Π and hence we know by the infimum feature of
K̊(ψ) that,

K̊(ψ) ≤
Jπ∑
j=1

αλπj K̄S(πj) +
Jη∑
j=1

(1− α)ληj K̄S(ηj) = αK̊(π) + (1− α)K̊(η),

confirming mixture feasibility.
We show also that K̊ satisfies K1, weak monotonicity in information. Consider π, η ∈ Π̊ with

π suffi cient for η. We know by Lemma 3 that we can find J ∈ N, λ ∈ SJ−1, and corresponding

elements {πj}Jj=1 ∈ Π̄S such that π =

J∑
j=1

λj ◦ πj and such that,

K̊(π) =

J∑
j=1

λjK̄S(πj).

We know also from Lemma 2 that we can construct
{
ηj
}J
j=1
∈ Π̄S such that η =

J∑
j=1

λj ◦ ηj and

such that each ηj is a garbling of the corresponding πj . Given that K̄S satisfies weak monotonicity
on its domain Π̄S , we conclude that,

K̄S(πj) ≥ K̄S(ηj) ∀ j ∈ {1, ..., J}

By the infimum feature of K̊(η) we therefore know that,

K̊(η) ≤
J∑
j=1

λjK̄S(ηj) ≤
J∑
j=1

λjK̄S(πj) = K̊(π),

confirming weak monotonicity.
We show now that we have retained the properties that made

(
K̄, π̄

)
a costly information

representation of (D,P ). Given A ∈ D, it is immediate that π̄ and the choice function constructed
in the proof of Theorem 1 is consistent with the data, since this was part of the initial definition.
What needs to be confirmed is only that the revealed revealed information structures are optimal.
Suppose to the contrary that there exists A ∈ D such that,

G(A, π)− K̊(π) > G(A, π̄A)− K̊(π̄A),

for some π ∈ Π̊. By Lemma 3 we can find J ∈ N, a strictly positive vector λ ∈ SJ−1, and

corresponding elements {πj}Jj=1 ∈ Π̄S , such that π =
J∑
j=1

λj ◦ πj and such that,

K̊(π) =
J∑
j=1

λjK̄S(πj).
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By the fact that π =

J∑
j=1

λj ◦ πj and by construction of the mixture strategy,

G(A, π) =
J∑
j=1

λjG(A, πj),

so that,
J∑
j=1

λj
[
G(A, πj)− K̄S(πj)

]
> G(A, π̄A)− K̊(π̄A).

We conclude that there exists j such that,

G(A, πj)− K̄S(πj) > G(A, π̄A)− K̊(π̄A).

Note that each πj ∈ Π̄S inherits its cost K̄S(πj) from an element π̄j ∈ Π̄ that is the lowest cost
revealed information structure according to K̄ on set Π̄ that is suffi cient for πj ,

K̄S(πj) = K̄(π̄j),

where the last equality stems from the fact (established above) that K̄S(π) = K̄(π) on π̄ ∈ Π̄.
Note by the Blackwell property that each strategy π̄j ∈ Π̄ offers at least as high gross value as the
strategy πj ∈ Π̄S for which it is suffi cient, so that overall,

G(A, π̄j)− K̄(π̄j) ≥ G(A, πj)− K̄S(πj) > G(A, π̄A)− K̊(π̄A).

To complete the proof it is suffi cient to show that,

K̊(π) = K̄(π),

on π ∈ Π̄. With this we derive the contradiction that,

G(A, π̄j)− K̄(π̄j) > G(A, π̄A)− K̄(π̄A),

in contradiction to the assumption that
(
K̄, π̄

)
formed a costly information representation of (D,P ).

To establish that K̊(π) = K̄(π) on π ∈ Π̄, note that we know already that K̄S(π) = K̄(π) on
π̄ ∈ Π̄. If this did not extend to K̊(π), then we would be able to identify a mixture strategy ψ ∈ Π̄
suffi cient for π̄A with strictly lower expected costs, K̊(ψ) < K̊(π). To see that this is not possible,
note first from Lemma 1 that all structures that are consistent with A and PA are suffi cient for π̄A.
Weak monotonicity of K̊ on Π̊ then implies that the cost K̊(ψ) of any mixture strategy suffi cient
for π̄A satisfies K̊(ψ) ≥ K̊(π), as required.

The final and most trivial stage of the proof is to ensure that normalization (K3) holds. Note
that I ∈ Π̄S , so that K̊S(I) ∈ R according to the rule immediately above. If we renormalize this
function by subtracting K̊(I) from the cost function for all information structures then we impact
on no margin of choice and do not interfere with mixture feasibility, weak monotonicity, or whether
or not we have a costly information representation. Hence we can avoid pointless complication by
assuming that K̊(I) = 0 from the outset so that this normalization is vacuous. In full, we define
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the candidate cost function K̊ : Π̊→ R ∪∞ by,

K̊(π) =

{
K̊(π) if π ∈ Π̊

∞ if π /∈ Π̊.

Note that weak monotonicity implies that the function is non-negative on its entire domain.
It is immediate that K̊ ∈ K, since K̊(π) = ∞ for π /∈ Π̊ and the domain contains the corre-

sponding inattentive strategy I on which K̊(π) is real-valued. It is also immediate that K̊ satisfies
K3, since K̊(I) = 0 by construction. It also satisfies K1 and K2, and represents a costly information
representation, completing the proof.

Lemma 2 If π =
J∑
j=1

λj ◦ πj with J ∈ N, λ ∈ SJ−1 with λj > 0 all j, and {πj}Jj=1 ∈ Π, then for

any garbling ρ of π, there exist garblings ρj of πj ∈ Π such that,

ρ =
J∑
j=1

λj ◦ ρj ,

Proof. By assumption, there exists a |Γ(π)|× |Γ(ρ)| matrix B with
∑

k b
ik = 1 all i and such that,

for all γk ∈ Γ(ρ),
ρ(γk|ω) =

∑
ηi∈Γ(π)

bikπ(ηi|ω).

Since π =
J∑
1

λj ◦πj , we know that Γ(πj) ⊂ Γ(π). Now define compressed matrix Bj as the unique

submatrix of B obtained by first deleting all rows corresponding to posteriors ηi ∈ Γ(π)\Γ(πj), and
then deleting all columns corresponding to posteriors γk such that bik = 0 all ηi ∈ Γ(πj). Define
ρj ∈ Π to be the strategy that has as its support the set of all posteriors that are possible given
the garbling ρj of πj ,

Γ(ρj) = {γk ∈ Γ(ρ)|bik > 0 some ηi ∈ Γ(πj)},

and in which state dependent probabilities of all posteriors are generated by the compressed matrix
Bj ,

ρj(γk|ω) =
∑

ηi∈Γ(πj)

bikπi(η
i|ω),

for all γk ∈ Γ(ρj).
Note by construction that each information structure ρj is a garbling of the corresponding

πj ∈ Π, since each Bj is itself a garbing matrix for which
∑

k b
ik = 1 for all ηi ∈ Γ(πj). It remains

only to verify that ρ =

J∑
j=1

λj ◦ ρj . This follows since,

ρ(γk|ω) =
∑

ηi∈Γ(π)

bikπ(ηi|ω) =
∑

ηi∈Γ(π)

bik
J∑
j=1

λjπj(η
i|ω) =

J∑
j=1

λj
∑

ηi∈Γ(πj)

bikπj(η
i|ω) =

J∑
j=1

λjρj(γ
k|ω).
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Lemma 3 Given π ∈ Π̊, there exists J ∈ N, λ ∈ SJ−1, and elements πj ∈ Π̄S with π =

J∑
j=1

λj ◦ πj

such that,

K̊(π) =
J∑
j=1

λjK̄S(πj).

Proof. By definition K̊(π) is the infimum of
J∑
j=1

λjK̄S(πj) over all lists {πj}Jj=1 ∈ Π̄S such that

π =

J∑
j=1

λj ◦ πj . We now consider a sequence of such lists, indicating the order in this sequence

in parentheses, {πj(n)}J(n)
j=1 , such that in all cases there are corresponding weights λ(n) ∈ SJ(n)−1

with π =

J(n)∑
j=1

λj(n) ◦ πj(n) and that achieve a value that is heading in the limit to the infimum,

lim
n−→∞

J(n)∑
j=1

λj(n)K̄S(πj(n)) = K̊(π).

A first issue that we wish to avoid is limitless growth in the cardinality J(n). The first key
observation is that, by Charateodory’s theorem, we can reduce the number of strictly positive

weights in a convex combination π =

J∗(n)∑
j=1

λ∗j (n) ◦ πj(n) to have cardinality J∗(n) ≤ M + 1. We

confirm now that we can do this without raising the corresponding costs,
J∗(n)∑
j=1

λ∗j (n)K̄S(πj(n)).

Suppose that there is some integer n such that the original set of information structures has
strictly higher cardinality J(n) > M + 1. Suppose further that the first selection of J1(n) ≤
M + 1 such posteriors for which there exists a strictly positive probability weights δ1

j (n) such

that π =

J1(n)∑
j=1

δ1
j (n) ◦ πj(n) has higher such costs (note WLOG that we are treating these as the

first J1(n) information structures in the original list). It is convenient to define δ1
j (n) = 0 for

J1(n) + 1 ≤ j ≤ J(n) so that we can express this inequality in the simplest terms,

J(n)∑
j=1

δ1
j (n)K̄S(πj(n)) >

J(n)∑
j=1

λj(n)K̄S(πj(n)).

This inequality sets up an iteration. We first take the smallest scalar α1 ∈ (0, 1) such that,

α1δ1
j (n) = λj(n).

That such a scalar exists follows from the fact that
J1(n)∑
j=1

δ1
j (n) =

J(n)∑
j=1

λj(n) = 1, with all components

in both sums strictly positive and with J(n) > J1(n). We now define a second set of probability
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weights λ2
j (n),

λ2
j (n) =

λj(n)− α1δ1
j (n)

1− α1
,

for 1 ≤ j ≤ J(n). Note that these weights have the property that π =

J(n)∑
j=1

λ2
j (n) ◦ πj(n) and that,

J(n)∑
j=1

λ2
j (n)K̄S(πj(n)) =

J(n)∑
j=1

[
λj(n)− α1δ1

j (n)

1− α1

]
K̄S(πj(n)) <

J(n)∑
j=1

λj(n)K̄S(πk(n)).

By construction, note that we have reduced the number of strictly positive weights λ2
j (n) by at

least one to J(n) − 1 or less. Iterating the process establishes that indeed there exists a set of no
more than M + 1 posteriors such that a mixture produces that first strategy π and in which this
mixture has no higher weighted average costs than the original strategy. Given this, there is no
loss of generality in assuming that J(n) ≤M + 1 in our original sequence.

With this bound on cardinality, we know that we can find a subsequence of information struc-
tures πj(n) which all have precisely the same cardinality J(n) = J ≤ M + 1 all n. Going further,
we can impose properties on all of the J corresponding sequences {πj(n)}∞n=1. First, we can se-
lect subsequences in which the ranges of all corresponding information structures have the same
cardinality independent of n,

|Γ(πj(n))| = Hj ,

for 1 ≤ j ≤ J . Note we can do this because, for all j and n, the number of posteriors in the
information structure πj(n) is bounded above by the number of posteriors in the strategy π, which
is finite.

With this, we can index the possible posteriors γjh(n) ∈ Γ(πj(n)) in order, 1 ≤ h ≤ Hj and
then select further subsequences in which these posteriors themselves converge to limit posteriors,

γjh(L) = lim
n→∞

γjh(n) ∈ Γ.

which is possible since posteriors lie in a compact set, and so have a convergent subsequence.
We ensure also that both the associated state dependent probabilities themselves and the weights

λj(n) in the expression π =

J(n)∑
j=1

λj(n) ◦ πj(n) converge,

lim
n→∞

π
(
γjh(n)|ω

)
= πjh(L|ω);

lim
n→∞

λj(n) = λj(L).

Again, this is possible because the state dependent probabilities and weights lie in compact sets.
The final selection of a subsequence ensures that, given 1 ≤ j ≤ J , each πj(n) ∈ Π̄S has its value

defined by precisely the same revealed information structure π̄j ∈ Π̄ as the least expensive among
those that were suffi cient for it and hence whose cost it was assigned in function K̄S . Technically,
for each 1 ≤ j ≤ J ,

K̄S(πj(n)) = K̄(π̄j),

for 1 ≤ n ≤ ∞: this is possible because the data set and hence the number of revealed information
structures is finite.
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We first use these limit properties to construct a list of limit information structures πj(L) ∈ Π̄S

with π =

J∑
j=1

λj ◦ πj for 1 ≤ j ≤ J . Strategy πj(L) has range,

Γ(πj(L)) = ∪Hj

h=1γ
jh(L),

with state dependent probabilities,

[πj(L)]ω

(
γjh(L)

)
= πih(L|ω).

Note that the construction ensures that π =
J∑
j=1

λj(L) ◦ πj(L). To complete the proof we must

establish only that,

K̊(π) =

J∑
j=1

λj(L)K̄S(πj(L)).

We know from the construction that, for each n,

J∑
j=1

λj(n)K̄S(πj(n)) =

J∑
j=1

λj(n)K̄(π̄j).

Hence the result is established provided only,

K̄S(πj(L)) ≤ K̄(π̄j),

which is true provided π̄j being suffi cient for all πj(n) implies that π̄j is suffi cient for the corre-
sponding limit vector πj(L). That this is so follows by defining Bj(L) = [bih(L)]j to be the limit of
any subsequence of the |Γ(π̄j)| ×Hj stochastic matrices Bj(n) = [bih(n)]j which have the defining
property of suffi ciency,

[πj(n)]ω (γjh(n)) =
∑

γ̄i∈Γ(π̄j)

[bih(n)]j ◦ π̄(γ̄i|ω),

for all γjh(n) ∈ Γ(πj(n)) and ω ∈ Ω. It is immediate that the equality holds up in the limit,
establishing that indeed π̄j is suffi cient for each corresponding limit vector πj(L), confirming finally
that K̄S(πj(L)) ≤ K̄(π̄j) and with it establishing the Lemma.

2 Appendix 2: No Strong Blackwell

A simple example with data on one decision problem with two equally likely states illustrates that
one cannot further strengthen the result in this dimension. Suppose that there are three available
actions A = {a, b, c} with corresponding utilities,

(u(a(ω1)), u(a(ω2))) = (10, 0) ; (u(b(ω1)), u(b(ω2))) = (0, 10) ; (u(c(ω1)), u(c(ω2))) = (7.5, 7.5) .

13



Consider the following state dependent stochastic choice data in which the only two chosen actions
are a and b,

PA(a|ω1) = PA(b|ω2) =
3

4
= 1− PA(b|ω1) = 1− PA(a|ω1).

Note that this data satisfies NIAS; given posterior beliefs when a is chosen, a is superior to b
and indifferent to c, and when b is chosen it is superior to a and indifferent to c. It trivially satisfies
NIAC since there is only one decision problem observed. We know from theorem 2 that is has a
costly information representation with the cost of the revealed information structure K (π̄) ≥ 0 and
that of the inattentive strategy being zero, K(I) = 0. Note that π̄ is suffi cient for I but not vice
versa, hence any strictly monotone cost function would have to satisfy K (π̄) > 0. In fact it is not
possible to find a representation with this property. To see this, note that both structures have the
same gross utility,

G(A, π) =
1

2
∗ 3

4
∗ 10 +

1

2
∗ 3

4
∗ 10 = 1 ∗ 7.5 = G(A, I),

where we use the fact that the inattentive strategy involves picking action c for sure. In order to
rationalize selection of the inattentive strategy, it must therefore be that π̄ is no more expensive
than I, contradicting strict monotonicity.
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