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Math Camp 2012
State whether the following sets are open, closed, neither, or both:

1. {(x, y) : −1 < x < 1, y = 0} Neither

2. {(x, y) : x, y are integers} Closed

3. {(x, y) : x+ y = 1} closed

4. {(x, y) : x+ y < 1} open

5. {(x, y) : x = 0 or y = 0} closed

Prove the following:

1. Open balls are open sets

Take any y ∈ B(x, r). Define r2 = r−d(y,x)
2 . Let z be any point in B(y, r2). Then

d(z, x) ≤ d(z, y)+d(y, x) ≤ r2+d(y, x) =

(
r

2
− 1

2
d(y, x) + d(y, x)

)
=

r

2
+
1

2
d(y, x) ≤ 1

2
r+

1

2
r = r

therefore z ∈ B(x, r), then B(y, r2) ⊂ B(x, r). QED

2. Any union of open sets is open

Let U = U1 ∪ U2 ∪ .... (the union of sets Ui where there can be infinitely many), where Ui

is open for all i. Take any x ∈ U , then x ∈ Ui for some set Ui. Since Ui is open then ∃r s.t.
B(x, r) ⊂ Ui, but since by definition Ui ⊂ U , then we have that B(x, r) ⊂ U , and therefore U is
open.

3. The finite intersection of open sets is open

Let U = U1 ∩ U2 ∩ U3 ∩ .... ∩ Uk where U1, U2, ..., Uk are open sets. Take any x ∈ U , then
x ∈ Ui for all i ∈ {1, 2, ..., k}. Since Ui is open, there exists ri such that B(x, ri) ⊂ Ui. Let
r ≡ min{r1, ..., rk}, then B(x, r) ⊂ B(x, ri) ⊂ Ui for all i ∈ {1, 2..., k}, therefore B(x, r) ⊂ U ,
therefore U is open. QED.

4. Any intersection of closed sets is closed

5. The finite union of closed sets is closed

For 4 and 5 use the fact that U = U1 ∩ U2 ∩ .... ⇔ U c = U c
1 ∪ U c

2 ∪ ..... and that U =
U1 ∪ U2 ∪ .... ∪ Uk ⇔ U c = U c

1 ∩ U c
2 ∩ .... ∩ U c

k and then use the proofs for part 2 and 3.

6. Let f and g be functions from Rk to Rm which are continuous at x. Then h = f−g is continuous
at x.

1If you find any typo please email me: Maria_Jose_Boccardi@Brown.edu



2 Real Analysis

Use the alternative definition for continuity for sequences. Then we have that: take any se-
quence {xi}i∈N ⊂ Rk such that {xi}∞i=1 → x. Then we need to show that h(xi) → h(x) as
i→∞. By the definition of h we have that h(xi) = f(xi)− g(xi), therefore

lim
i→∞

h(xi) = lim
i→∞

f(xi)− g(xi) = lim
i→∞

f(xi)− lim
i→∞

g(xi) = f(x)− g(x)

when in the second to last step we use the property of limits and in the last step the fact that
f and g are continuous.

7. Let f and g be functions from Rk to Rm which are continuous at x. Then h = fg is continuous
at x.

Analogous to previous case using the property that if zn = xnyn then limn→∞ zn = [limn→∞ xn][limn→∞ yn]

Find the greatest lower bound and the least upper bound of the following sequences.
Also, prove whether they are convergent or divergent:

1. {xn}∞i=1 =
{

1
2 ,

2
3 ,

3
4 ,

4
5 , . . .

}
Greatest lower bound is 1

2 and the least upper bound is 1

Claim 0.1 limn→∞ xn = limn→∞
n

n+1 = 1

Proof. Fix ε > 0. Let K > 1
ε take any n ≥ K then∣∣∣∣1− n

n+ 1

∣∣∣∣ = 1

n+ 1
<

1

n
<

1

K
< ε

2. {xn}∞i=1 = {−1, 1,−1, 1, . . . }

Greatest lower bound is −1 and the least upper bound is 1

Claim 0.2 limn→∞ xn = limn→∞(−1)n@. That is {xn} diverges.

Proof. Suppose, by contradiction, that {xn} has a limit point L. Take ε = 1
4 then there existsK

such that d(xn, L) <
1
4 for all n > K. Therefore d(xn, xn+1) ≤ d(xn, L)+d(xn+1, L) ≤ 1

4+
1
4 = 1

2
for all n > K. But d(xn, xn+1) = |1− (−1)| = 2 for all n ∈ N, therefore we have a contradiction,
then {xn} does not have a limit point.

3. {xn}∞i=1 =
{
− 1

2 ,
2
3 ,−

3
4 ,

4
5 ,−

5
6 , . . .

}
Greatest lower bound is −1 and the least upper bound is 1

Claim 0.3 limn→∞ xn = limn→∞(−1)n n
n+1@, that is {xn} diverges

Proof. Analogous to previous one.
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Prove the following:

1. A sequence can only have at most one limit.

Suppose, by contradiction, that {xn} has two limits L1 6= L2. Choose ε = d(L1,L2)
4 . Then

there exist K1,K2 ∈ N such that d(xn, L1) < ε for all n ≥ K1 and d(xn, L2) < ε for all n ≥ K2.
Define K ≡ max{K1,K2}. Then

d(L1, L2) ≤ d(L1, xn) + d(xn, L2) ≤ ε+ ε = 2ε

but given the way that ε was defined we have that d(L1, L2) = 4ε > 2ε, therefore we have a
contradiction and it must be the case that L1 = L2

2. If {xn}∞n=1 → x and {yn}∞n=1 → y, then {xn + yn}∞n=1 = x+ y.

Fix ε > 0, then ∃K1,K2 ∈ N st |xn − x| < ε
3 for all n ≥ K1 and |yn − y| < ε

3 for all n ≥ K2.
Define K ≡ max{K1,K2} then we have that

|(xn + yn)− (x+ y)| = |(xn − x) + (yn − y)| ≤ |xn − x|+ |yn − y| ≤ ε

3
+

ε

3
=

2ε

3
< ε

for all n ≥ K therefore we have that {xn + yn} → x+ y

3. A sequence of vectors in RN converges iff all the component sequences converge in R.

We are going to show this only for the Euclidean distance, that is d(x, y) =
√∑N

i=1(xi − yi)2.
We need to prove both statments "if" and ""only if".
Proof. [⇒] Suppose that {xn} → x ∈ RN , then we need to show that {(xi)n} → xi ∈ R for all
i ∈ {1, 2, .., N}

Fix ε > 0 then ∃K s.t d(xn, x) < ε for all n ≥ K, where d(xn, x) =
√∑N

i=1((xi)n − xi)2,
therefore it has to be the case that ((xi)n − xi)

2 < ε2 for all i ∈ {1, .., N} for all n ≥ K, which
in turn implies that |(xi)n − xi| < ε for all i ∈ {1, .., N} for all n ≥ K that is {(xi)n} → xi for
all i ∈ {1, .., N}.
Proof. [⇐] Suppose that {(xi)n} → xi ∈ R for all i ∈ {1, 2, .., N}, We want to show that
{xn} → x ∈ RN .

Fix ε > 0 for all i ∈ {1, ..., N} there exists Ki such that |(xi)n − xi| < ε√
N

for all n ≥ Ki.
Define K ≡ max{K1, ...,KN}, then

d(xn, x) =

√√√√ N∑
i=1

((xi)n − xi)2 ≤
√

N
ε2

N
= ε

for all n ≥ K, and therefore {xn} → x. QED

4. The sequence {xn}∞n=1 =
{
(1, 1

2 ), (1,
1
3 ), (1,

1
4 ), . . .

}
converges to (1, 0).

It is straightforward using the result from 3 and the fact that {xn} = { 1n} → 0.

5. The sequence {xn}∞n=1 =
{
( 12 ,

1
2 ), (

2
3 ,

1
3 ), (

3
4 ,

1
4 ), . . .

}
converges to (1, 0).

Idem previous exercises using also the result from part 1 of the previous exercise.


