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1 Some Notation

{a, b, c} a set containing the elements a, b, c
∀ for all, for any
∃ there exists
∈ ss contained in, is an element of
3 contains as an element
⊂ is a subset of
[a, b] the closed interval from a to b, the set of points x for which a ≤ x ≤ b
(a, b) the open interval from a to b, the set of points x for which a < x < b

2 Functions

Functions are the main mathematical objects that are used in Economics. A function takes an object
(usually a number or an array of numbers) and assigns exactly one other object (usually another
number or another array of numbers) to it. For example, a utility function takes a consumption
bundle and assigns it a utility level. A production function takes an array of inputs and assigns it an
array of outputs.

De�nition A function f from a set A to a set B is a rule that assigns to each element of A one and
only one object in B. It is denoted f : A→ B. The set A is called the domain of f and the set B is
called the target space.

Note that a function always assigns exactly one element of set B to an element of set A. If it assigns
more than one element of B to an element of A, it is not a function but rather a correspondence. A
function can, however, assign the same element of set B to two di�erent elements of set A. Example:
f : x 7→ x2 assigns the number 4 to both 2 and −2.
Here are some more important concepts associated with functions:

Image, Range, and Preimage Let A and B be two sets and let f be a function from A to B. For
a set C ⊂ A, f(C) is the set of all elements f(x) for x ∈ C, i.e. f(C) = {b ∈ B : b = f(x) for some x ∈
C}. We call f(C) the image of C under f . f(A) is also called the range of f . Obviously f(A) ⊂ B,
but it is not always the case that f(A) = B.

Let V ⊂ B, then f−1(V ) denotes the set of all elements in A such that f(A) ∈ V , i.e. f−1(V ) = {x ∈
A : f(x) ∈ V }. We call f−1(V ) the preimage of V under f .
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2 Single Variable Calculus

Injective, Surjective, Bijective, Inverse The function f is called injective or one-to-one if ∀
b ∈ f(A), ∃ only one x ∈ A with b = f(x). In other words, a function is one-to-one if every output of
the function has at most one input. Or, equivalently, for any x, y ∈ A, if f(x) = f(y), then x = y.

The function f is called surjective or onto if for each element b ∈ B ∃ x ∈ A such that b = f(x).
In other words, every element in B is assigned to some element in A. This is identical to saying the
range of f is equal to the whole target space, f(A) = B.

A function f from A to B is called bijective (or a bijection) if it is both injective and surjective. In
this case, we can de�ne the inverse function f−1 from B to A such that f−1(f(x)) = x for all x ∈ A.
Notice that C is not necessarily equal to f−1(f(C)). If f is onto, it is the case that f(f−1(V )) = V .
For example, let f be a function from R to {1} given by f(x) = 1, and let C = {2}. Then f(C) = {1},
f−1({1}) = R, and f(R) = {1}. So, f(f−1({1}) = {1}, and f−1(f({2})) 6= {2}.

Exercises

1. Show that the inverse function is not well de�ned if f is not injective or not surjective.

2. Consider f(x) = ex mapping from R to R. What is the range of f? What is the image of
[0, 1] under f? What is the preimage of (0, 1]? Is f injective, surjective, or bijective? If it is
bijective, what is the inverse function? If it is not bijective, can you restrict the domain to make
it bijective and �nd the inverse function?

3 Functions in R

Now we will consider functions that map from a subset of the real numbers into the set of real numbers.
Here we can use the fact that in R we can measure the distance between points, i.e. the fact that
R is a metric space. We will consider general metric spaces in the section on real analysis. In the
following, let X and Y be two subsets of R and f a function from X to Y .

Monotonicity Let x1 and x2 be any two numbers in X such that x1 < x2. f is monotonically
increasing if f(x1) ≤ f(x2) and monotonically decreasing if f(x1) ≥ f(x2). f is said to be strictly
monotonically increasing (decreasing) if f(x1) < f(x2) (f(x1) > f(x2)).

Boundedness The function f is bounded if ∃ K ∈ R such that |f(x)| < K ∀ x ∈ X.

Limit We write f(x)→ q as x→ p or

lim
x→p

f(x) = q

if for every ε > 0 we can �nd δ > 0 such that |f(x)− q| < ε for all x for which |x− p| < δ. q is called
the limit of f at the point p.

Continuity The function f is called continuous at the point p ∈ X if

lim
x→p

f(x) = f(p).

This is equivalent to saying that for every ε > 0 we can �nd δ > 0 such that |f(x)− f(p)| < ε for all
x for which |x− p| < δ. f is called continuous if it is continuous at every point of X.
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Concavity & Convexity The function f is concave if ∀ α ∈ [0, 1] and x1, x2 ∈ R, f(αx1 + (1 −
α)x2) ≥ αf(x1) + (1 − α)f(x2). Graphically, this is a function where the chord drawn between any
two points on its graph lies completely below or on the graph.

The function f is convex if ∀ α ∈ [0, 1] and x1, x2 ∈ R, f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2).
Graphically, this is a function where the chord drawn between any two points on its graph lies com-
pletely above or on the graph. This is not to be confused with a convex set.

Exercise

1. Which of the following functions is (1) monotonically increasing or decreasing, (2) bounded, (3)
continuous, (4) concave or convex?

(a) f : R→ R, f(x) = x2

(b) f : R→ R, f(x) = x3

(c) f : R→ R, f(x) =

{
x−1 if x 6= 0

0 if x = 0

(d) f : R→ R, f(x) = ex

(e) f : R++ → R, f(x) = lnx

2. Prove that limx→0 x
2 = 0. (In Proof section)

3. Show that f(x) =

{
1 if x ≥ 0

−1 if x < 0
is not continuous. (In Proof section)

4 Di�erentiation

4.1 De�nition of the Derivative

De�nition We say that a function f is di�erentiable at x if

d

dx
f(x) = lim

h→0

f(x+ h)− f(x)
h

exists. If f is di�erentiable for all x in its domain, then we say f is a di�erentiable function. d
dxf(x)

is called the derivative of f at the point x. It is frequently also denoted as f ′(x).

Interpretation d
dxf(x) is the change in the value of the function if x changes in�nitesimally. It is

the slope of the line that is tangent to the graph of f at point x.

Example Find the derivative of f(x) = x2.

d

dx
f(x) = lim

h→0

(x+ h)2 − x2

h
f ′(x) = lim

h→0

x2 + 2xh+ h2 − x2

h
= lim

h→0

2xh

h
= 2x
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4.2 Derivative Rules

Assume k is an arbitrary constant, and that the two functions u(x) and v(x) are di�erentiable. Then
the following rules hold:

1. Addition Rule
d

dx
(u(x) + v(x)) =

du

dx
+
dv

dx

2. Multiplicative Constant Rule
d

dx
(k · u(x)) = k · du

dx

3. Product Rule
d

dx
(u(x) · v(x)) = du

dx
· v(x) + dv

dx
· u(x)

4. Quotient Rule

d

dx

(
u(x)

v(x)

)
=

du
dx · v(x)−

dv
dx · u(x)

v(x)2

5. Power Rule
d

dx

(
xk
)
= k · xk−1

6. Chain Rule
d

dx
(u(v(x))) =

d

dv
u(v(x)) ∗ d

dx
v(x) = u′(v(x)) ∗ v′(x)

Here are some formulas for the di�erentiation of special functions:

• d
dxe

x = ex

• d
dx lnx = 1

x

• d
dx sinx = cosx d

dx cosx = − sinx

Exercises

1. Find the derivative of 3x2

1+ 4
x

with respect to x.

2. Prove as many of the derivative rules above as you can. Use Simon&Blume if you get stuck.

4.3 Higher Order Derivatives

Note that d
dxf(x) is itself a function of x - to every value of x it assigns the slope of f at that point.

If d
dxf(x) is a continuous function, we call f continuously di�erentiable. The class of all continuously

di�erentiable functions is called C1.

If d
dxf(x) is not only continuous but even di�erentiable, we can take the derivative of d

dxf(x) and call

it d2

dx2 . It is also denoted as f ′′(x) and called the second order derivative.

If the second order derivative is continuous, f is said to be twice continuously di�erentiable. The class
of all twice continuously di�erentiable functions is called C2.

We can continue taking derivatives as long as they exist. The kth order partial derivative is denoted
dk

dxk or f (k). The class of all k-times continuously di�erentiable functions is called Ck.
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Example Find the second order derivative of f(x) = x2.

We have already computed the �rst order derivative: d
dxf(x) = 2x. Take the derivative of 2x by using

the power rule above: d2

dx2 f(x) = 2.

4.4 Critical Points, Mean Value Theorem, Sketching the graph of a func-

tion

Derivatives are helpful in determining the shape of a function. We will return to this when we look
at optimization, but we'll cover the basic results already here.

De�nition A function f has a local maximum at a point p if there exists δ > 0 such that f(q) ≤ f(p)
for all q such that |p− q| < δ.
Similarly, a function has a local minimum if there exists δ > 0 such that f(q) ≥ f(p) for all q such
that |p− q| < δ.

Theorem Let f be a function de�ned on the interval [a, b]. If f has a local maximum at a point
x ∈ (a, b) and if f ′(x) exists, then f ′(x) = 0. The same is true for local minima.

This theorem says that if a function has a local maximum at a point and if its derivative exists at
that point then the derivative has to be equal to zero at that point. A point x at which f ′(x) = 0 is
called a critical value of f . It is a candidate for a local minimum or maximum, but it does not have
to be one.

Mean Value Theorem Let f be a continuous function on the interval [a, b] and let f be di�eren-
tiable on (a, b). Then there is a point x ∈ (a, b) at which

f(b)− f(a) = (b− a)f ′(x).

Theorem Let f be di�erentiable on (a, b). Then the following holds:

1. If f ′(x) ≥ 0 for all x ∈ (a, b), then f is monotonically increasing.

2. If f ′(x) = 0 for all x ∈ (a, b), then f is constant.

3. If f ′(x) ≤ 0 for all x ∈ (a, b), then f is monotonically decreasing.

So the derivative of a function tells us whether a function slopes upwards, downwards, or is constant.
If we want to know what the graph of a di�erentiable function f looks like, we can start by determining
the sign of f ′. It is also helpful to look at limx→±∞ f(x) and to compute f at certain points, e.g. at
0 and at points where f ′ changes signs.

Exercise

1. Prove the �rst theorem above.

2. Sketch the graph of f(x) = x3+2x2+3 using information on the sign of f ′, limx→±∞ f(x), and
values of f at selected points.
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4.5 Taylor Polynomials

In this section we will look further into how derivatives can be used to approximate a function.
As discussed above, f ′(a) is the slope of the line that is tangent to the graph of f at point a.
Approximating the function with its tangent, we can write

f(a+ h) ≈ f(a) + f ′(a)h

Let us de�ne di�erence between the left hand side and the right hand side as the remainder term

R(h, a) = f(a+ h)− f(a)− f ′(a)h.

Then by the de�nition of the derivative,

R(h, a)

h
→ 0 as h→ 0.

So not only does the remainder tend to 0 as h gets smaller, it also tends to 0 faster than h.

We can approximate a di�erentiable function with a polynomial if we use higher order derivatives (for
details why this works see SB Chapter 30.2). De�ne the kth order Taylor polynomial of a Ck function
f around the point a as

Pk(a+ h) = f(a) + f ′(a)h+
1

2!
f ′′(a)h2 + . . .+

1

k!
f ′(a)hk.

De�ne the di�erence between the two sides as the kth order remainder term

Rk(h, a) = f(a+ h)− f(a)− f ′(a)h− 1

2!
f ′′(a)h2 − . . .− 1

k!
f ′(a)hk

Then
Rk(h, a)

hk
→ 0 as h→ 0.

In other words,
f(a+ h) ≈ Pk(a+ h)

and the di�erence between the two sides tends to zero faster than hk. For example, if h = 0.1 and
k = 3, then hk = 0.001 and so Pk(a + h) gives an approximation of f(a + h) that is exact up to the
third decimal after the point. Notice how cool this is: We can approximate a function that is in�nitely
di�erentiable arbitrarily well using polynomials!

5 Integration

Di�erentiation was concerned with the slope of the graph of a function. Integration is concerned
with the area under the graph of the function. The Fundamental Theorem of Calculus tells us that
integration and di�erentiation are closely related: They are basically inverse operations.

5.1 De�nite Integrals

Consider a function f(x). The area under the graph of the function between points x = a and x = b

is denoted by
´ b
a
f(x)dx, and is called the de�nite integral of f(x) between a and b. If f(t) and g(t)

are integrable functions, then the following properties of the de�nite integral hold:

1.
´ b
a
[f(t) + g(t)] dt =

´ b
a
f(t)dt+

´ b
a
g(t)dt
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2.
´ b
a
λf(t)dt = λ

´ b
a
f(t)dt

3.
´ c
a
f(t)dt =

´ b
a
f(t)dt+

´ c
b
f(t)dt

4.
´ b
a
f(t)dt = −

´ a
b
f(t)dt

5.
´ a
a
f(t)dt = 0

5.2 Inde�nite Integrals

If f(x) is given then any function F (x) such that F ′(x) = f(x) is called an inde�nite integral of f(x),
or the anti-derivative. Note that there are in�nitely many anti-derivatives of a function f(x) since
they can di�er by a constant. We denote the anti-derivative by

´
f(x)dx. The following are some

simple rules for �nding anti-derivatives:

1.
´
xndx = xn+1

n+1 + C

2.
´
exdx = ex + C

3.
´
ax ln(a)dx = ax + C

4.
´
f ′(x)ef(x)dx = ef(x) + C

5.
´ f ′(x)

f(x) dx = ln[f(x)] + C

5.3 The Fundamental Theorem of Calculus

If f(x) is continuous on [a, b], and F (x) is the anti-derivative of f(x), then
´ b
a
f(x)dx = F (b)− F (a).

This says that the integral of f from a to b is nothing else than the anti-derivative of F computed at
b minus the anti-derivative computed of F computed at a.

Example 1 Find the area under the curve f(x) = x2 in the region [1, 2].

By rule one given above, we know that the anti-derivative F (x) = 1
3x

3. Therefore, the area under the
curve is F (b)− F (a) = 1

3 · 2
3 − 1

3 · 1
3 = 7

3 .

Example 2 Find the derivative of f(x) = x2

(x+3)(x+2) .

We could use the quotient rule as described in the section on di�erentiation, but we would have to
substitute u = x2 and v = (x + 3)(x + 2). This is likely to give us a big mess. But we can use rule
�ve to calculate it easier.

By rule �ve, ˆ
f ′(x)

f(x)
dx = ln[f(x)].

By the de�nition of an anti-derivative, we know that

d

dx

ˆ
f ′(x)

f(x)
dx =

d

dx
ln[f(x)] =

f ′(x)

f(x)
,

which implies

f ′(x) = f(x) · d
dx

ln[f(x)].
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It is easier to derivate the log of the function and multiply it by f(x) than it is to use the quotient
rule in this case.

f ′(x) =
x2

(x+ 3)(x+ 2)
· d
dx

(2 ln(x)− ln(x+ 3)− ln(x+ 2)) =
x2

(x+ 3)(x+ 2)
·
(
2

x
− 1

x+ 3
− 1

x+ 2

)
=

2x

(x+ 3)(x+ 2)
− x2

(x+ 3)2(x+ 2)
− x2

(x+ 3)(x+ 2)2

5.4 Strategies for Computing Integrals

Computing integrals for complicated functions can be tricky. Here are some methods that can be used
to �nd the integrals of functions that are more complex. However, note that sometimes it can even
be impossible to �nd an explicit expression for the integral.

5.4.1 Integration by Substitution

To �nd an integral of the form
´ b
a
f(g(x))g′(x)dx one can apply the substitution rule:

ˆ b

a

f(g(x))g′(x)dx =

ˆ g(b)

g(a)

f(u)du

where u = g(x) and du = g′(x)dx. (The proof of this rule uses the chain rule for derivatives and the
FTC.)

Example 1 Find
´
(x+ 1)10dx.

In this example, f(x) = x10, g(x) = x + 1 and g′(x) = 1. Let u = x + 1. This implies du =

dx. Substituting into the above equation, we now have to solve the easy integral
´
u10du = u11

11 .

Substituting back in for u we �nd that
´
(x + 1)10dx = (x+1)11

11 . This is much easier than expanding
the function (x+ 1)10 and �nding its integral.

Example 2 Find
´
(3x+ 1)10dx.

In this example, f(x) = x10, g(x) = 3x+1 and g′(x) = 3. We can still apply substitution by rewriting´
(3x+1)10dx = 1

3

´
(3x+1)103dx (the 1

3 in front of the integral and the 3 inside the integral cancel!).
Let u = 3x + 1. This implies du = 3dx. Substituting into the above equation, we now have to solve

the integral 1
3

´
u10du = u11

33 . Substituting back in for u we �nd that
´
(3x+ 1)10dx = (3x+1)11

33 .

Example 3 Find
´ e2
e

1
x [ln(x)]

−3
dx

In this example, f(x) = x−3, g(x) = lnx and g′(x) = 1
x . Let u = ln(x). Therefore du = 1

xdx, the
upper limit of integration is ln(e2) = 2, and the lower limit of integration is ln(e) = 1. The new
integral reads ˆ 2

1

u−3du = −1

2
u−2|21 = −1

2
[2−2 − 1−2] =

3

8
.

Exercises

1. Find
´

20
(4−5x)3 dx.

2. Find
´ 3
1

e
√

x
√
x
dx.

3. Find
´ 3
1
4xex

2

dx
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5.4.2 Integration by Parts

To �nd an integral of the form
´ b
a
f(x) · g′(x)dx one can apply the "integration by parts" rule:

ˆ
f(x) · g′(x)dx = f(x) · g(x)−

ˆ
g(x) · f ′(x)dx

Example 1 Find
´
ln(x)dx.

Let f(x) = ln(x) and g′(x) = 1. Then f ′(x) = 1
xdx and g(x) = x. Then

ˆ
f(x) · g′(x)dx = f(x) · g(x)−

ˆ
g(x) · f ′(x)dx = x · ln(x)−

ˆ
x · 1

x
dx = x[ln(x)− 1].

Example 2 Find
´
xe−xdx.

Let f(x) = x⇒ f ′(x) = 1. Let g′(x) = e−xdx⇒ g(x) = −e−x. Then
ˆ
f(x) ·g′(x)dx = f(x) ·g(x)−

ˆ
g(x) ·f ′(x)dx = −xe−x−

ˆ
−e−xdx = −xe−x−e−x = −e−x(1+x).

Exercises

1. Find
´
x2 ln(x)dx

2. Find
´ 1
0
x3e4xdx
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6 Homework

Di�erentiate the following:

1. f(x) = x2 + 3x− 4

2. y = x−
2
3

3. g(x) = x2 + x−3

4. y = x2+4x+3√
x

5. f(x) = x2ex

6. V (x) = (2x+ 3)
(
x4 − 2x

)
7. f(x) = x

x+ c
x

8. F (y) =
(

1
y2 − 3

y4

) (
y + 5y3

)
9. y = e

√
x

10. y = eax
2+bx+c

11. y = ln(t+ 9)

12. y = ln(x)− ln(1 + x)

Find the following:

1.
´
8x−5dx, x 6= 0.

2.
´
(7ex + 3)dx

3.
´

6x
x2+13dx

4.
´
(x+ 3)(x+ 1)

1
2

5.
´
xexdx

6.
´
x3
√
1 + x2dx

Evaluate the following:

1.
´ 1
0
x(x2 + 6)dx

2.
´ 1
−1(ax

2 + bx+ c)dx

3.
´ 2
1
e−2xdx
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