Math Camp

Unconstrained Optimization Solutions¹

Math Camp 2012

- 1. For each function, determine whether it definitely has a maximum, definitively does not have a maximum, or that there is not enough information to tell, using the Weierstrass Theorem. If it definitely has a maximum, prove that this is the case.
 - (a) $f: \mathbb{R} \to \mathbb{R}$, f(x) = x. We cannot used the Weierstrass theorem given that the domain is not compact (not bounded). By looking at the function we know that there is not a local nor global maximum for this function in the real numbers.
 - (b) $f: [-1,1] \to \mathbb{R}$, f(x) = x By Weierstrass theorem we know that there exists a global maximum (in [-1,1]), since the domain is compact and the function is continuous. In particular the maximum is attained at x = 1.
 - (c) $f:(-1,1)\to\mathbb{R},\ f(x)=x$ We cannot used the Weierstrass theorem given that the domain is not compact (not closed). By looking at the function we know that there is not a local nor global maximum in the domain, since f is strictly increasing therefore the supremum 1 is not attained in the set.
 - (d) $f:[-1,1] \to \mathbb{R}$, $f(x) = \begin{cases} 0 \text{ if } x = 1 \\ x \text{ otherwise} \end{cases}$ We cannot use Weierstrass since the function is not continuous. In any case by looking at the function we know that there is not a maximum in the domain, since the discontinuity happens at x = 1.
 - (e) $f: \mathbb{R}_{++} \to \mathbb{R}$, $f(x) = \begin{cases} 1 \text{ if } x = 5 \\ 0 \text{ otherwise} \end{cases}$ We cannot use Weierstrass since the function is not continuous. From the definition of the function we can see that the global maximum (not strict) is attained at x = 5
- 2. Consider the standard utility maximization problem

$$\max_{x \in B(p,I)} U(x), \text{ where } B(p,I) = \{x \in \mathbb{R}^n_+ | \ p \cdot x \leq I\}$$

Prove a solution exists for any U(x) continuous, I > 0 and $p \in \mathbb{R}^n_{++}$. Show a solution may not necessarily exist if $p \in \mathbb{R}^n_+$.

We just need to show that B(p, I) is a compact set, if so, then we are in the conditions of the Weierstrass theorem and therefore we know that there exists a solution to the utility maximization problem.

B(p,I) is bounded since
$$B(p,I) \subset B\left(0,\frac{I}{p_{min}}\right)$$
, where $p_{min} \equiv \min_i\{p_i\}$

Claim 0.1 B(p,I) is closed since $B(p,I)^C$ is open

Proof. The easy way to prove it is to show that $B(p,I)^C = \mathbb{R}^n_+ \cap B^*(p,I)$ where $B^*(p,I) = \{x \in \mathbb{R}^n | p \cdot x > I\}$ where by definition \mathbb{R}^n_+ is open in \mathbb{R}^n_+ . Then we just need to prove that

¹If you find any typo please email me: Maria_Jose_Boccardi@Brown.edu

 $B^*(p,I)$ is open. We need to prove that for all $x \in B^*(p,I)$ there exists some r > 0 such that $B(x,r) \subset B^*(p,I)$. Since we know that $x \in B^*(p,I)$, then we know that px > I. Therefore consider, if we are considering the Euclidean metric consider $r \equiv \min_i \{\frac{px-I}{2p_i}\}$, then we have that $B(x,r) \subset B^*(p,I)$.

Additionally we have that if at least one of the prices is zero the argument breaks down. For example let's imagine that $p_1 = 0$, then any amount of x_1 is affordable, and therefore the set B(p, I) is not bounded.

3. Search for local maxima and minima in the following functions. More specifically, find the points where $DF(\mathbf{x}) = 0$, and then classify then as a local maximum, a local minimum, definitely not a maximum or minimum, or can't tell. Also, check whether the functions are concave, convex, or neither. The answers (except for the concavity/convexity part) are found in the back of Simon and Blume, Exercises 17.1 - 17.2.

(a)
$$F(x,y) = x^4 + x^2 - 6xy + 3y^2$$

$$DF(x) = \begin{bmatrix} 4x^3 + 2x - 6y & -6x + 6y \end{bmatrix}$$

therefore we have that the critical points are given by (0,0), (1,1) and (-1,-1).

$$D^{2}F(x) = \begin{bmatrix} 12x^{2} + 2 & -6 \\ -6 & 6 \end{bmatrix}$$

So we have that

$$D^2F(0,0) = \left[\begin{array}{cc} 2 & -6 \\ -6 & 6 \end{array} \right]$$

then (0,0) is a saddle point.

$$D^2F(1,1) = \left[\begin{array}{cc} 14 & -6 \\ -6 & 6 \end{array} \right]$$

since the first order leading principal minor is 14 and the second order leading principal minor is $14 \times 6 - 6 \times 6 = 6(14 - 6) > 0$, then the hessian is positive definite, therefore (1,1) is a local minimum. Finally

$$D^2F(-1,-1) = \left[\begin{array}{cc} 14 & -6 \\ -6 & 6 \end{array} \right]$$

since the first order leading principal minor is 14 and the second order leading principal minor is $14 \times 6 - 6 \times 6 = 6(14 - 6) > 0$, then the hessian is positive definite, therefore (-1, -1) is a local minimum.

(b)
$$F(x,y) = x^2 - 6xy + 2y^2 + 10x + 2y - 5$$

Done in class.

(c)
$$F(x,y) = xy^2 + x^3y - xy$$

Done in class.

(d) $F(x,y) = 3x^4 + 3x^2y - y^3$

$$DF(x) = \begin{bmatrix} 12x^3 + 6xy & 3x^2 - 3y^2 \end{bmatrix}$$

therefore we have that the critical points are given by $(0,0), (-\frac{1}{2},-\frac{1}{2})$ and $(\frac{1}{2},-\frac{1}{2})$.

$$D^2F(x) = \begin{bmatrix} 36x^2 + 6y & 6x \\ 6x & -6y \end{bmatrix}$$

Math Camp 3

So we have that

$$D^2F(0,0) = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right]$$

therefore we cannot tell.

$$D^2F\left(-\frac{1}{2}, -\frac{1}{2}\right) = \begin{bmatrix} 6 & -3\\ -3 & 3 \end{bmatrix}$$

since the first order leading principal minor is 6 and the second order leading principal minor is $6 \times 3 - 3 \times 3 = 9 > 0$, then the hessian is positive definite, therefore (1,1) is a local minimum. Finally

$$D^2F\left(\frac{1}{2}, -\frac{1}{2}\right) = \begin{bmatrix} 6 & 3\\ 3 & 3 \end{bmatrix}$$

since the first order leading principal minor is 6 and the second order leading principal minor is 9 > 0, then the hessian is positive definite, therefore $(\frac{1}{2}, -\frac{1}{2})$ is a local minimum.

(e)
$$F(x, y, z) = x^2 + 6xy + y^2 - 3yz + 4z^2 - 10x - 5y - 21z$$

$$DF(x) = \begin{bmatrix} 2x + 6y - 10 & 6x + 2y - 3z - 5 & -3y + 8z - 21 \end{bmatrix}$$

therefore we have that the critical point is given by (2, 1, 3).

$$D^2F(x) = \begin{bmatrix} 2 & 6 & 0 \\ 6 & 2 & -3 \\ 0 & -3 & 8 \end{bmatrix}$$

so we have that the first order leading principal minor is 2, the second order principal minor is -32, therefore (2,1,3) is a saddle point.

(f)
$$F(x,y,z) = (x^2 + 2y^2 + 3z^2) e^{-(x^2+y^2+z^2)}$$

$$DF(x) = \begin{bmatrix} 2xe^{-\left(x^2+y^2+z^2\right)} + \left(-2x\right)\left(x^2+2y^2+3z^2\right)e^{-\left(x^2+y^2+z^2\right)} \\ 4ye^{-\left(x^2+y^2+z^2\right)} + \left(-2y\right)\left(x^2+2y^2+3z^2\right)e^{-\left(x^2+y^2+z^2\right)} \\ 6ze^{-\left(x^2+y^2+z^2\right)} + \left(-2z\right)\left(x^2+2y^2+3z^2\right)e^{-\left(x^2+y^2+z^2\right)} \end{bmatrix}'$$

$$DF(x) = \begin{bmatrix} 2xe^{-\left(x^2+y^2+z^2\right)}\left(1-\left(x^2+2y^2+3z^2\right)\right) \\ 2ye^{-\left(x^2+y^2+z^2\right)}\left(2-\left(x^2+2y^2+3z^2\right)\right) \\ 2ze^{-\left(x^2+y^2+z^2\right)}\left(3-\left(x^2+2y^2+3z^2\right)\right) \end{bmatrix}'$$

The first row of the Hessian is given by

$$D^{2}F(x)_{1} = \begin{bmatrix} (2 - 6x^{2} - 4y^{2} - 6z^{2}) e^{-(x^{2} + y^{2} + z^{2})} + (-2x)2x \left(1 - (x^{2} + 2y^{2} + 3z^{2})\right) e^{-(x^{2} + y^{2} + z^{2})} \\ (-8yx) e^{-(x^{2} + y^{2} + z^{2})} + (-2y)2x \left(1 - (x^{2} + 2y^{2} + 3z^{2})\right) e^{-(x^{2} + y^{2} + z^{2})} \\ (-12zx) e^{-(x^{2} + y^{2} + z^{2})} + (-2z)2x \left(1 - (x^{2} + 2y^{2} + 3z^{2})\right) e^{-(x^{2} + y^{2} + z^{2})} \end{bmatrix}'$$

The second row of the Hessian is given by

$$D^{2}F(x)_{2} = \begin{bmatrix} (-8yx)e^{-(x^{2}+y^{2}+z^{2})} + (-2z)2x\left(1 - (x^{2}+2y^{2}+3z^{2})\right)e^{-(x^{2}+y^{2}+z^{2})} \\ (4 - 2x^{2} - 12y^{2} - 6z^{2})e^{-(x^{2}+y^{2}+z^{2})} + (-2y)2y\left(2 - (x^{2}+2y^{2}+3z^{2})\right)e^{-(x^{2}+y^{2}+z^{2})} \\ (-12zy)e^{-(x^{2}+y^{2}+z^{2})} + (-2z)2y\left(2 - (x^{2}+2y^{2}+3z^{2})\right)e^{-(x^{2}+y^{2}+z^{2})} \end{bmatrix}'$$

The third row of the Hessian is given by

$$D^{2}F(x)_{3} = \begin{bmatrix} (-12zx) e^{-\left(x^{2}+y^{2}+z^{2}\right)} + (-2z)2x \left(1-\left(x^{2}+2y^{2}+3z^{2}\right)\right) e^{-\left(x^{2}+y^{2}+z^{2}\right)} \\ (-12zy) e^{-\left(x^{2}+y^{2}+z^{2}\right)} + (-2z)2y \left(2-\left(x^{2}+2y^{2}+3z^{2}\right)\right) e^{-\left(x^{2}+y^{2}+z^{2}\right)} \\ \left(6-2x^{2}-2y^{2}-6z^{2}\right) e^{-\left(x^{2}+y^{2}+z^{2}\right)} + (-2z)2z \left(2-\left(x^{2}+2y^{2}+3z^{2}\right)\right) e^{-\left(x^{2}+y^{2}+z^{2}\right)} \end{bmatrix}'$$

So the critical points are going to be defined by the following three conditions

(a)
$$x = 0$$
 or $1 - (x^2 + 2y^2 + 3z^2) = 0$

(b)
$$y = 0$$
 or $2 - (x^2 + 2y^2 + 3z^2) = 0$

(c)
$$z = 0$$
 or $3 - (x^2 + 2y^2 + 3z^2) = 0$