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1. For each function, determine whether it definitely has a maximum, definitively does not have a
maximum, or that there is not enough information to tell, using the Weierstrass Theorem. If it
definitely has a maximum, prove that this is the case.

(a)

(b)

f iR =R, f(zr) =2 We cannot used the Weierstrass theorem given that the domain is
not compact (not bounded). By looking at the function we know that there is not a local
nor global maximum for this function in the real numbers.

f:[-1,1] —» R, f(xr) = = By Weierstrass theorem we know that there exists a global
maximum (in [—1,1]), since the domain is compact and the function is continuous. In
particular the maximum is attained at z = 1.

f:(=1,1) = R, f(xr) =2 We cannot used the Weierstrass theorem given that the domain
is not compact (not closed). By looking at the function we know that there is not a local
nor global maximum in the domain, since f is strictly increasing therefore the supremum
1 is not attained in the set.

f:[-1L1] = R, f(z) = 0if z 7.1 We cannot use Weierstrass since the function
x otherwise

is not continuous. In any case by looking at the function we know that there is not a

maximum in the domain, since the discontinuity happens at x = 1.

f:Ryy =R, f(z) = Ololtfhir;vize We cannot use Weierstrass since the function is not

continuous. From the definition of the function we can see that the global maximum (not

strict) is attained at z =5

2. Consider the standard utility maximization problem

max U(x), where B(p,I) ={z e R} |p-x < I}
xz€B(p,I)

Prove a solution exists for any U(x) continuous, I > 0 and p € R’ . Show a solution may not
necessarily exist if p € R”}.

We just need to show that B(p,I) is a compact set, if so, then we are in the conditions of
the Weierstrass theorem and therefore we know that there exists a solution to the utility maxi-
mization problem.

B(p,I) is bounded since B(p,I) C B (O L), where ppin = ming{p;}

? Pmin

Claim 0.1 B(p,I) is closed since B(p, 1) is open

Proof. The easy way to prove it is to show that B(p,1)¢ = R N B*(p,I) where B*(p,I) =
{z € R"| p-x > I} where by definition R’} is open in R}. Then we just need to prove that
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B*(p,I) is open. We need to prove that for all x € B*(p, I) there exists some r > 0 such that
B(z,r) € B*(p,I). Since we know that © € B*(p,I), then we know that pz > I. Therefore
consider, if we are considering the Euclidean metric consider r = mini{pgp_f }, then we have that
B(z,r) C B*(p,I). m

Additionally we have that if at least one of the prices is zero the argument breaks down. For
example let’s imagine that p; = 0, then any amount of x; is affordable, and therefore the set
B(p,I) is not bounded.

. Search for local maxima and minima in the following functions. More specifically, find the points
where DF'(x) = 0, and then classify then as a local maximum, a local minimum, definitely not a
maximum or minimum, or can’t tell. Also, check whether the functions are concave, convex, or
neither. The answers (except for the concavity/convexity part) are found in the back of Simon
and Blume, Exercises 17.1 - 17.2.

(a) F(a,y) =" +2° — 6y + 3y
DF(z) = | 42®+2x — 6y —6x+ 6y |

therefore we have that the critical points are given by (0,0), (1,1) and (—1,—1).

o o [ 122242 —6
D*F(x) = { 6 6
So we have that 3 )
) [ 2 -6
DERO.0)=| S g |
then (0,0) is a saddle point.
9 14 —6]
DF(l,l)___6 6 |

since the first order leading principal minor is 14 and the second order leading principal
minor is 14 x 6 —6 x 6 = 6(14 —6) > 0, then the hessian is positive definite, therefore (1, 1)
is a local minimum. Finally

D*F(-1,-1) = [ M6 }

-6 6

since the first order leading principal minor is 14 and the second order leading principal
minor is 14 x 6 — 6 x 6 = 6(14 — 6) > 0, then the hessian is positive definite, therefore
(—1,-1) is a local minimum.

(b) F(z,y) = 2? — 6oy +2y? + 102+ 2y — 5
Done in class.
(¢) Fla,y) =zy® + 2’y —zy
Done in class.
(d) F(z,y) = 3a* + 32%y — ¢°
DF(z) = [ 1223 + 6zy 3z% — 3y* |
therefore we have that the critical points are given by (0, 0), (—%, —%) and (%, —%)

[ 3622 +6y 6z

2
D?F(x) 62 6y
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So we have that
9 100
D*F(0,0) = [ 0 0 ]

11 6 -3
2 I
DF(_z’ 2)_{—3 3}

since the first order leading principal minor is 6 and the second order leading principal
minor is 6 x 3 —3 x 3 = 9 > 0, then the hessian is positive definite, therefore (1,1) is a

local minimum. Finally
1 1 6 3
2 _, — = =
D°F <2’ 2) [ 3 3 ]

since the first order leading principal minor is 6 and the second order leading principal

minor is 9 > 0, then the hessian is positive definite, therefore (l —l) is a local minimum.

272
(e) F(x,y,2) = 2%+ 6xy +y? — 3yz + 422 — 10z — 5y — 212
DF(z)=[2c+6y—10 6z+2y—32—5 —3y+8z—21 |

therefore we cannot tell.

therefore we have that the critical point is given by (2,1, 3).

2 6 0
D?F(z)=|6 2 -3
0 -3 38

so we have that the first order leading principal minor is 2, the second order principal minor
is -32, therefore (2,1,3) is a saddle point.

(f) Fa,y,2) = (a2 + 2y + 32°) o~ (@ +y"+27)
2.%'6_(932+y2+z2 21‘) (CE2 + 2y2 + 3z2) e_($2+y2+z2)
DF(JJ) = 4y€_(I2+y2+22 2y) ((EQ + 2y2 + 322) e_($2+y2+22)
62’6_(w2+y2+z2) + (_22) (m2 + 2y2 I 322) e_($2+92+22)

)+(_
)+(_

9z (2797 +2%) (1— (22 + 2y + 327))
DF(x) = | 2ye” (") (2— (2% 4 29 + 3:2))
22~ (V) (3 (22 4+ 292 + 327))
The first row of the Hessian is given by
(2 — 622 — 4y? — 622) ¢~ () | (L22)20 (1 — (22 4 242 4 322)) e~ (FH7+7)
D*Fla) = (—8yw) ("4 1 (g2 (1= (@ 4 297 + 8:2)) e ()
(—12z2) e~ () 1 (222)20 (1 - (02 + 297 4 322)) e (T4
The second row of the Hessian is given by
(—8ya) e (V=) (L2202 (1 — (a2 4 292 + 322) ) e~ (P47 +7)
DPF(a)s = | (4—20% = 1292 = 622) e~ (" V") (“oy)2y (2 (2% + 2% + 327)) (T H07+5)
(—12zy) e (FH°+2") 4 (L2229 (2 — (a2 4 22 + 322)) e~ (47 +2)

The third row of the Hessian is given by

(—12z2) e~ (" +0° =) 4 (“22)22 (1— (22 + 292 + 322)) e (@t +2?)
DQF($)3 = (—12zy) e_(w2+y2+22> + (_22)2y (2 _ (x2 + 2y2 + 32’2)) e—(z2+y2+22)
| (6207 242 — 622) " (") (222022 (2 (2 4 297 4 322)) e ()

So the critical points are going to be defined by the following three conditions
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(a) 2 =0o0r1— (2% +2y* + 32?) =
(b) y=0or2— (22 + 2y + 32?)
(c) z=0o0r 3 — (z? + 2y + 32?)

0
0
0



