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1. For each function, determine whether it definitely has a maximum, definitively does not have a

maximum, or that there is not enough information to tell, using the Weierstrass Theorem. If it
definitely has a maximum, prove that this is the case.

(a) f : R → R, f(x) = x. We cannot used the Weierstrass theorem given that the domain is
not compact (not bounded). By looking at the function we know that there is not a local
nor global maximum for this function in the real numbers.

(b) f : [−1, 1] → R, f(x) = x By Weierstrass theorem we know that there exists a global
maximum (in [−1, 1]), since the domain is compact and the function is continuous. In
particular the maximum is attained at x = 1.

(c) f : (−1, 1)→ R, f(x) = x We cannot used the Weierstrass theorem given that the domain
is not compact (not closed). By looking at the function we know that there is not a local
nor global maximum in the domain, since f is strictly increasing therefore the supremum
1 is not attained in the set.

(d) f : [−1, 1] → R, f(x) =

{
0 if x = 1
x otherwise We cannot use Weierstrass since the function

is not continuous. In any case by looking at the function we know that there is not a
maximum in the domain, since the discontinuity happens at x = 1.

(e) f : R++ → R, f(x) =

{
1 if x = 5
0 otherwise We cannot use Weierstrass since the function is not

continuous. From the definition of the function we can see that the global maximum (not
strict) is attained at x = 5

2. Consider the standard utility maximization problem

max
x∈B(p,I)

U(x), where B(p, I) = {x ∈ Rn
+| p · x ≤ I}

Prove a solution exists for any U(x) continuous, I > 0 and p ∈ Rn
++. Show a solution may not

necessarily exist if p ∈ Rn
+.

We just need to show that B(p, I) is a compact set, if so, then we are in the conditions of
the Weierstrass theorem and therefore we know that there exists a solution to the utility maxi-
mization problem.

B(p,I) is bounded since B(p, I) ⊂ B
(
0, I

pmin

)
, where pmin ≡ mini{pi}

Claim 0.1 B(p,I) is closed since B(p, I)C is open

Proof. The easy way to prove it is to show that B(p, I)C = Rn
+ ∩ B∗(p, I) where B∗(p, I) =

{x ∈ Rn| p · x > I} where by definition Rn
+ is open in Rn

+. Then we just need to prove that

1If you find any typo please email me: Maria_Jose_Boccardi@Brown.edu
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B∗(p, I) is open. We need to prove that for all x ∈ B∗(p, I) there exists some r > 0 such that
B(x, r) ⊂ B∗(p, I). Since we know that x ∈ B∗(p, I), then we know that px > I. Therefore
consider, if we are considering the Euclidean metric consider r ≡ mini{px−I2pi

}, then we have that
B(x, r) ⊂ B∗(p, I).
Additionally we have that if at least one of the prices is zero the argument breaks down. For
example let’s imagine that p1 = 0, then any amount of x1 is affordable, and therefore the set
B(p, I) is not bounded.

3. Search for local maxima and minima in the following functions. More specifically, find the points
where DF (x) = 0, and then classify then as a local maximum, a local minimum, definitely not a
maximum or minimum, or can’t tell. Also, check whether the functions are concave, convex, or
neither. The answers (except for the concavity/convexity part) are found in the back of Simon
and Blume, Exercises 17.1 - 17.2.

(a) F (x, y) = x4 + x2 − 6xy + 3y2

DF (x) =
[
4x3 + 2x− 6y −6x+ 6y

]
therefore we have that the critical points are given by (0, 0), (1, 1) and (−1,−1).

D2F (x) =

[
12x2 + 2 −6
−6 6

]
So we have that

D2F (0, 0) =

[
2 −6
−6 6

]
then (0, 0) is a saddle point.

D2F (1, 1) =

[
14 −6
−6 6

]
since the first order leading principal minor is 14 and the second order leading principal
minor is 14× 6− 6× 6 = 6(14− 6) > 0, then the hessian is positive definite, therefore (1, 1)
is a local minimum. Finally

D2F (−1,−1) =
[

14 −6
−6 6

]
since the first order leading principal minor is 14 and the second order leading principal
minor is 14 × 6 − 6 × 6 = 6(14 − 6) > 0, then the hessian is positive definite, therefore
(−1,−1) is a local minimum.

(b) F (x, y) = x2 − 6xy + 2y2 + 10x+ 2y − 5

Done in class.
(c) F (x, y) = xy2 + x3y − xy

Done in class.
(d) F (x, y) = 3x4 + 3x2y − y3

DF (x) =
[
12x3 + 6xy 3x2 − 3y2

]
therefore we have that the critical points are given by (0, 0),

(
− 1

2 ,−
1
2

)
and

(
1
2 ,−

1
2

)
.

D2F (x) =

[
36x2 + 6y 6x

6x −6y

]
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So we have that
D2F (0, 0) =

[
0 0
0 0

]
therefore we cannot tell.

D2F

(
−1

2
,−1

2

)
=

[
6 −3
−3 3

]
since the first order leading principal minor is 6 and the second order leading principal
minor is 6 × 3 − 3 × 3 = 9 > 0, then the hessian is positive definite, therefore (1, 1) is a
local minimum. Finally

D2F

(
1

2
,−1

2

)
=

[
6 3
3 3

]
since the first order leading principal minor is 6 and the second order leading principal
minor is 9 > 0, then the hessian is positive definite, therefore

(
1
2 ,−

1
2

)
is a local minimum.

(e) F (x, y, z) = x2 + 6xy + y2 − 3yz + 4z2 − 10x− 5y − 21z

DF (x) =
[
2x+ 6y − 10 6x+ 2y − 3z − 5 −3y + 8z − 21

]
therefore we have that the critical point is given by (2, 1, 3).

D2F (x) =

 2 6 0
6 2 −3
0 −3 8


so we have that the first order leading principal minor is 2, the second order principal minor
is -32, therefore (2, 1, 3) is a saddle point.

(f) F (x, y, z) =
(
x2 + 2y2 + 3z2

)
e−(x

2+y2+z2)

DF (x) =

 2xe−(x
2+y2+z2) + (−2x)

(
x2 + 2y2 + 3z2

)
e−(x

2+y2+z2)

4ye−(x
2+y2+z2) + (−2y)

(
x2 + 2y2 + 3z2

)
e−(x

2+y2+z2)

6ze−(x
2+y2+z2) + (−2z)

(
x2 + 2y2 + 3z2

)
e−(x

2+y2+z2)


′

DF (x) =

 2xe−(x
2+y2+z2) (1− (x2 + 2y2 + 3z2

))
2ye−(x

2+y2+z2) (2− (x2 + 2y2 + 3z2
))

2ze−(x
2+y2+z2) (3− (x2 + 2y2 + 3z2

))

′

The first row of the Hessian is given by

D2F (x)1 =


(
2− 6x2 − 4y2 − 6z2

)
e−(x

2+y2+z2) + (−2x)2x
(
1−

(
x2 + 2y2 + 3z2

))
e−(x

2+y2+z2)

(−8yx) e−(x
2+y2+z2) + (−2y)2x

(
1−

(
x2 + 2y2 + 3z2

))
e−(x

2+y2+z2)

(−12zx) e−(x
2+y2+z2) + (−2z)2x

(
1−

(
x2 + 2y2 + 3z2

))
e−(x

2+y2+z2)


′

The second row of the Hessian is given by

D2F (x)2 =

 (−8yx) e−(x
2+y2+z2) + (−2z)2x

(
1−

(
x2 + 2y2 + 3z2

))
e−(x

2+y2+z2)(
4− 2x2 − 12y2 − 6z2

)
e−(x

2+y2+z2) + (−2y)2y
(
2−

(
x2 + 2y2 + 3z2

))
e−(x

2+y2+z2)

(−12zy) e−(x
2+y2+z2) + (−2z)2y

(
2−

(
x2 + 2y2 + 3z2

))
e−(x

2+y2+z2)


′

The third row of the Hessian is given by

D2F (x)3 =

 (−12zx) e−(x
2+y2+z2) + (−2z)2x

(
1−

(
x2 + 2y2 + 3z2

))
e−(x

2+y2+z2)

(−12zy) e−(x
2+y2+z2) + (−2z)2y

(
2−

(
x2 + 2y2 + 3z2

))
e−(x

2+y2+z2)(
6− 2x2 − 2y2 − 6z2

)
e−(x

2+y2+z2) + (−2z)2z
(
2−

(
x2 + 2y2 + 3z2

))
e−(x

2+y2+z2)


′

So the critical points are going to be defined by the following three conditions
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(a) x = 0 or 1−
(
x2 + 2y2 + 3z2

)
= 0

(b) y = 0 or 2−
(
x2 + 2y2 + 3z2

)
= 0

(c) z = 0 or 3−
(
x2 + 2y2 + 3z2

)
= 0


