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1 Proofs of Lemmas

Lemma 1 Given A 2 F and G 2 G, the set EG(A) � RM de�ned by,

EG(A) �
(

(y; �1; ::; �M�1) 2 R�Xj
9A 2 F and (B;P; 
) 2 �(�;A) s.t. y �

P
f2B P

fN f
G(


f )

)
;

is closed, convex, and bounded above in its �rst coordinate.

Proof. Given A 2 F and G 2 G, consider (y; �1; ::; �M�1), (~y; ~�1; ::; ~�M�1) 2
EG(A) together with �nite sets B; ~B � A, probabilities on actions and associ-
ated posteriors, P f ; 
fm for f 2 B and ~P f ; ~
fm for f 2 ~B, all 1 � m � M � 1
such that,

�m =
X
f2B

P f
fm and y �
X
f2B

P fN f
G(


f );

~�m =

fX
f2 ~B

~P f ~
fm and ~y �
X
f2 ~B

~P fN f
G(~


f ):
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De�ne C = B [ ~B and extend P f ; ~P f to this domain by setting them to zero

on the unchosen acts.

Given � 2 (0; 1), de�ne Rf = �P f + (1� �) ~P f and

�fm =
�P f
fm + (1� �) ~P f ~
fm
�P f + (1� �) ~P f

:

It is immediate that �f 2 � all f 2 C and that
X
f2C

Rf�fm = ��m + (1� �)~�m

so that (C; �;R) 2 ��+~�
2 Note that, for each f 2 C

N f
G

�
�f
�

=
MX
j=1

�fmU
f
m �G(�f )

=
�P f

�P f + (1� �) ~P f

MX
j=1


fmU
f
m +

(1� �) ~P f

�P f + (1� �) ~P f

MX
j=1

�
fmU
f
m �G(�f )

� �P f

�P f + (1� �) ~P f
N f
G(


f ) +
(1� �) ~P f

�P f + (1� �) ~P f
N f
G(~


f );

By the convexity of G

Thus we have thatX
f2C

RfN f
G

�
�f
�
=

X
f2C

�
�P f + (1� �) ~P f

�
N f
G

�
�f
�

� �
X
f2B

P fN f
G(


f ) + (1� �)
X
f2 ~B

~P fN f
G(~


f ) = �y + (1� �)�y;

con�rming that �
�
y; �1; ::; �M�1

�
+ (1� �)(~y; ~�1; ::; ~�M�1) 2 EG(A)

To establish closedness, consider a sequence (y(n); �(n)) 2 EG(A) converg-
ing to (yL; �L) (to simplify notation we use the full prior as the second argu-

ment since �M is anyway implied) and corresponding triples (B(n); P (n); 
(n)) 2
�(�(n);A), so that �(n) =

P
f2B(n) P

f (n)
f (n) and y(n) �
P

f2B(n) P
f (n)N f

G(

f (n)).
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We show now that there is no loss of generality in assuming jB(n)j � M +

1. Suppose initially that jB(n)j > M . By Charateodory�s theorem, since

f
f (n) 2 �jf 2 B(n)g contain �(n) in its convex hull, there exists B1(n) �
B(n) with jB1(n)j � M + 1 for which there exists a strictly positive proba-

bility weights P f1 (n) > 0 on f 2 B1(n) such that � =
X

f2B1(n)

P f1 (n)

f (n). If

expected net utility is no lower,

y(n) �
X
f2B(n)

P f (n)N f
G(


f (n)) �
X

f2B1(n)

P f1 (n)N
f
G(


f (n));

we are done. If not, identify the smallest scalar �1 2 (0; 1) such that,

�1P
f
1 (n) = P

f (n);

some f 2 B1(n). That such a scalar exists follows from the fact thatX
f2B1(n)

P f1 (n) =
X
f2B(n)

P f (n) = 1;

with all components in both sums strictly positive and with jB(n)j > jB1(n)j.

We now de�ne a second set of probability weights P f2 (n),

P f2 (n) =
P f (n)� �1P f1 (n)

1� �1 :

for f 2 B1(n). Correspondingly, we de�ne,

B2(n) = ff 2 B(n)jP f2 (n) > 0g;

noting that jB2(n)j � jB(n)j � 1. By construction � =
X
f2B(n)

P f2 (n)

f (n).

Moreover,

X
f2B2(n)

P f2 (n)N
f
G(


f (n)) =
X
f2B(n)

"
P f (n)� �1P f1 (n)

1� �1

#
N f
G(


f (n)) >
X
f2B(n)

P f (n)N f
G(


f (n)):
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Iteration from this point establishes that indeed we can identify a set ~B(n) �
B(n) with

��� ~B(n)��� � M + 1 and ~P (n) > 0 on f 2 ~B(n) such that � =X
f2 ~B(n)

P f1 (n)

f (n) and,

X
f2 ~B(n)

P f1 (n)N
f
G(


f (n)) � y(n):

Given this, there is no loss of generality in assuming that jB(n)j � M + 1 in

our original sequence.

With this, we can focus on a subsequence (we continue to index by n for

notational simplicity) with all sets B(n) of the same cardinality K � M . In
each setB(n) we index the acts in (arbitrary) order by f(k; n) 2 for 1 � k � K,
and correspondingly label that associated posteriors and act probabilities as


k(n); P k(n). Given the compactness of �, we can further select subsequences

to ensure that there is a full set of limit posteriors and limit probabilities �
k

and �P k, for 1 � k � K,

lim
n!1


k(n) = �
k; lim
n!1

P k(n) = �P k

For all acts f 2 A, we can compute the net utility at all limit posteriors,

N f
G(�


k) =
MX
m=1

U fm�

k
m �G(�
k)

Since fU fm 2 RM jf 2 Ag is bounded above then so is N
f
G(�


k) (with respect to

f 2 A). . Since fU fm 2 RM jf 2 Ag is closed, the upper bound is achieved.
Hence we can �nd acts �f(k) 2 A that maximize the above net utilities,

N( �f(k); k) � N(f; k);

all f 2 A.
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We now de�ne �B = [Kk=1 �f(k). Note that, by construction

KX
k=1

�P k�
k = �L;

so that ( �B; �
; �P ) 2 �(�L;A). Note also that, for each for all n,

KX
k=1

�P kN
�f(k)(�
k) �

KX
k=1

�P kN
f(k;n)
G (�
k):

In light of continuity of all functions N f
G, taking the limit on the RHS as

n!1 yields,

KX
k=1

�P kN
�f(k)(�
k) � lim

n!1

KX
k=1

P k(n)N f
G(


f (n)) � yL; (1)

This completes the proof that (yL; �L) 2 EG(A), hence that EG(A) is closed.
Boundedness above of the �rst coordinate follows from the fact that fU fm 2
RM jf 2 Ag is bounded above for all A 2 F .

Lemma 2 Strategy (B;P; 
) 2 �(�;A) is rationally inattentive for G 2 G if
and only if it there exists �m for 1 � m � M � 1 such that property
SH holds:

N g
G(
)�

M�1X
m=1

�m
m � N
f
G(


f )�
M�1X
m=1

�m

f
m;

all f 2 B, g 2 A and 
 2 �.

Proof. Necessity: Given (B;P; 
) 2 �̂(�;A)G ,

 X
f2B

P fN f
G(


f ); �1; ::; �M�1

!
is

an upper boundary point boundary of EG(A). Lemma 1 establishes that such
sets are always closed, convex, and bounded above in the �rst coordinate.

This implies existence of a supporting hyperplane de�ned by normal vector
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(1;��1; :::;��M�1) such that, for all (y0; y1; ::; yM�1) 2 EG(A),

y0 �
M�1X
m=1

�mym �
X
f2B

P fN f
G(


f )�
M�1X
m=1

�m�m =
X
f2B

P f [N f
G(


f )� �m
fm]: (2)

We show now property SH is satis�ed for such a normal vector. Substitution

of (N f
G(


f ); 
f1 ; ::; 

f
M�1) 2 EG(A) on the LHS for f 2 B yields,

N f
G(


f )�
M�1X
m=1

�m

f
m �

X
f2B

P f [N f
G(


f )� �m
fm]:

This implies that these inequalities are in fact equations for all f 2 B, since
this is the only way to prevent one of the sums on the RHS from being strictly

higher than their weighted average on the LHS. This implies that N f
G(


f ) �
M�1X
m=1

�m

f
m can be plugged in to the right hand side of equation 2, which in

turn establishes that, given f; g 2 B, and 
 2 �

N g
G(


g)�
M�1X
m=1

�m

g
m = N

f
G(


f )�
M�1X
m=1

�m

f
m;

as necessary for property SH. Again, equation 2 tells us that all f 2 B, 
f

solves,

max

2�

N f
G(
)�

M�1X
m=1

�m
m;

as again required for SH. The �nal aspect of condition SH to con�rm is that,

given f 2 B, g 2 AnB and 
 2 �

N g
G(
)�

M�1X
m=1

�m
m � N
f
G(


f )�
M�1X
m=1

�m

f
m;

This is again immediate from 2 since (N g(
); 
1; ::; 
M�1) 2 EG(A).

Su¢ ciency: If property SH holds, it directly implies existence of a normal
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vector (1;��1; :::;��M�1) such that, given (y0; y1; ::; yM�1) 2 EG(A),

y0 �
M�1X
m=1

�mym � N f
G(


f )� �m
fm;

any f 2 B. Applying lemma 1, this implies that all points (N f
G(


f ); 
f1 ; ::; 

f
M�1) 2

EG(A) are in the upper boundary of EG(A). Hence this applies also to any con-
vex combination of them such as that de�ned by (

X
f2B

P fN f
G(


f ); �1; ::; �M�1) 2

EG(A), completing the proof.

Lemma 3 Given G 2 G that is di¤erentiable on �I , the interior of �, strategy
(B;P; 
) 2 �(�;A) with 
fm 2 (0; 1) satis�es (B;P; 
) 2 �̂

(�;A)
G if and only

if it satis�es CT, ED, and UB:

1. Common Tangent for Chosen Acts (CT): Given f; g 2 B,

N f
G(


f )�
M�1X
m=1

"
@N f

G(

f )

@
m

#

fm = N

g
G(


g)�
M�1X
m=1

�
@N g

G(

g)

@
m

�

gm:

2. Equal Derivative for Chosen Acts (ED) : Given f; g 2 B,

@N f
G(


f )

@
m
=
@N g

G(

g)

@
m
:

3. Unchosen Act Bound (UB) : Given f 2 B and g 2 BnA,

N g
G(


g)�
M�1X
m=1

"
@N f

G(

f )

@
m

#

gm � N

f
G(


f )�
M�1X
m=1

"
@N f

G(

f )

@
m

#

fm;

where 
g 2 � maximizes on N g
G(
)�

M�1X
m=1

h
@Nf

G(

f )

@
m

i

m on 
 2 �.

Proof. In light of lemma 2, the �rst part requires us to show that, whenG 2 G
is di¤erentiable, property SH is satis�ed for (B;P; 
) 2 �(�;A) with 
fm 2 (0; 1)
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if and only if (B;P; 
) satis�es conditions ED, CT, and UB. That these three

conditions are su¢ cient for property SP is immediate using �m =
@Nf

G(

f )

@
m
for

any f 2 B and applying UB. That they are necessary for SP to be satis�ed in
cases with 
fm 2 (0; 1) and with G di¤erentiable derives from the fact that SP

certainly requires that, for each f 2 B, 
f solves,

max

2�

N f
G(
)�

M�1X
m=1

�m
m:

Given that 
fm 2 (0; 1) and that G 2 G is di¤erentiable, solving this problem
requires �m =

@Nf
G(


f )

@
m
. Given this, SP directly implies CT, ED, and UB as

illustrated in the proof of lemma 1.

2 Proofs of Corollaries

All corollaries apply more generally than to the Shannon model. However for

consistency with the text they are stated only for this case. The appropriate

generalization to separable cost functions is in each case clear.

Corollary 1 (Locally Invariant Posteriors - LIP): If (B;P; 
) 2 �̂(�;A)

and (C;Q; �) 2 �(�;A) with C � B satis�es �f = 
f all f 2 C, then
(C;Q; �) 2 �̂(�;A).

Proof. Note by the necessity aspect of lemma 2 that if (B;P; 
) 2 �̂(�;A)

then condition SH is satis�ed. Neither the prior � 2 � nor the probability map
P : B ! R feature in condition SP, while deletion of acts can only weaken
the check. Hence if (C;Q; �) 2 �(�;A) with C � B satis�es �f = 
f all f 2 C,
condition SH remains valid and the su¢ ciency aspect of lemma 2 implies it is

optimal.

Corollary 2 (Envelope Condition): Given (�;A) 2 ��F such that �m >
0 , the value function V A : � �! R is di¤erentiable at � and has
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continuous partial derivatives,

@V A(�)

@�m
=
@N f

@
m
(
̂f );

where f 2 B̂ some (B̂; P̂ ; 
̂) 2 �̂(�;A).

Proof. Given (�;A) 2 � � F , note that
�
�1; ::; �M�1

�
is in the interior

of X = f(�1; ::; �M�1) 2 RM�1
+ j

PM�1
m=1 �m � 1g. By lemma 1 an optimal

policy exists. Consider a corresponding optimal strategy (B;P; 
) 2 �̂(�;A)

that therefore achieves the value,

V A(�) =
X
f2B

P fN f (
f ):

De�ne a composite act ĥ 2 F with state dependent payo¤s,

U ĥm =
X

P fU fm:

De�ne the net payo¤ function to N ĥ : � ! R in standard fashion, and ap-
ply the envelope theorem of Benveniste and Scheinkman [1979] to functions

V A; N ĥ : � ! R, noting that both are concave, that V (�) � N ĥ(�) on the

interior of X, and that V (�) = N ĥ(�), and that N ĥ(�) is di¤erentiable on the

interior of X. With this we conclude that V A is di¤erentiable at � and that,

@V A

@�m
(�) =

@N ĥ

@
m
(�) =

X
f2B

P f
@N f

@
m
(
f ):

By lemma 3, the ED conditions are satis�ed,

f; g 2 B =) @N f

@
m
(
f ) =

@N g

@
m
(
g);

completing the proof in light of
X

f2B
P f = 1.

Corollary 3 (States Bound Acts - SBA): Given (�;A) 2 � � F , there
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exists a rationally inattentive strategy with jBj �M .

Proof. Consider (B;P; 
) 2 �̂(�;A) such that jBj > M . By the necessity

aspect of lemma 2, condition SH is satis�ed. This condition remains valid

for any subset of acts ~B � B with ~
f = 
f on f 2 ~B. By the su¢ ciency

aspect of lemma 2,
�
~B; ~P ; ~


�
2 �̂(�;A) provided only that � in the convex hull

of the family of vectors
�

fm
	
f2 ~B. Charateodory�s theorem implies that we

can reduce the cardinality of B to M while retaining � in this convex hull,

completing the proof.

Corollary 4 (Unique Posteriors): If (B;P; 
) 2 �̂(�;A) and (B;Q; �) 2
�̂(�;C), then 
(f) = �(f) all f 2 B.

Proof. Note �rst that if (B;P; 
) 2 �̂(�;A) and B � C � A, then (B;P; 
) 2
�̂(�;C). To see this, note from the necessity aspect of lemma 2 that if (B;P; 
) 2
�̂(�;A), then condition SH is satis�ed. Since B � C � A, (B;P; 
) 2 �(�;C) and
condition SH is still satis�ed. Hence (B;P; 
) 2 �̂(�;C) follows in light of the
su¢ ciency aspect of lemma 2. We conclude that since (B;P; 
) 2 �̂(�;A) and
(B;Q; �) 2 �̂(�;C), then (B;P; 
); (B;Q; �) 2 �̂(�;B).

Given f 2 B de�ne Rf = P f+Qf

2
and �f 2 � by,

�fm =
P f
fm +Q

f�fm
P f +Qf

:

By construction, (B; �;R) 2 �(�;B). If 
(f) 6= �(f) some f 2 B, we can

apply the strict version of Jensen�s inequality as in lemma 1 to establish the

contradiction that net utility must be strictly higher at (B; �;R) than at either

(B;P; 
) and (B;Q; �),X
f2B

RfN f (�f ) > �
X
f2B

P fN f (
f ) + (1� �)
X
f2B

QfN f (�f ):
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3 Comparison with KKT Conditions

Following Matejka and McKay [2011], consider the constrained optimization

problem of maximizing expected prize utility less Shannon attention costs,

subject to constraints associated with rational expectations, with act-speci�c

posteriors adding to unity, and with probabilities being non-negative. Let

� 2 RM be the multipliers on the rational expectations constraints and � :

A! R the multipliers on posteriors. With act set A countable, the associated
Lagrangean is,

L =
X
f2A

P f
MX
m=1


fm(U
f
m�� ln 
fm)�

MX
m=1

�m(
X
f2A

P f
fm��m)� �f (
MX
m=1


fm� 1):

Treating this using standard KKTcondition, a necessary condition for (B;P; 
)

to be rationally inattentive is that there exists �̂ 2 RM , �̂ : A ! R, and pos-
teriors 
fm 2 � for f 2 A=B such that conditions KKT 1, KKT 2, and KKT 3
are satis�ed:

KKT1: For f 2 B,

P f
�
U fm � � ln 
fm � �� �̂m

�
� �̂f = 0 for 1 � m �M .

KKT2: For f 2 B, if

P f 2 (0; 1) =)
MX
m=1


fm
�
U fm � �̂m � � ln 
fm

�
= 0;

P f = 1 =)
MX
m=1


fm
�
U fm � �̂m � � ln 
fm

�
� 0:
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KKT3: For f 2 A=B,

MX
m=1


fm
�
U fm � �̂m � � ln 
fm

�
� 0:

The reason that these KKT conditions do not characterize rationally inat-

tentive policies is that the objective function is not concave in the choice

variables, involving as it does product terms as between beliefs and posteriors.

As a result, one can �nd non-optimal solutions. To illustrate, consider the case

in the text with two acts, f and g, with � = 1, and with U f1 = U
g
2 = ln(1 + e)

and U f2 = U
g
1 = 0. Note that an attention strategy can be fully speci�ed by

P f and 
f;g1 2 [0; 1] � 0. Now consider the equal prior � = 0:5 and note that
the following strategy is feasible and, together with the speci�ed multipliers,

satis�es all KKT necessary conditions:

(P f ; 
f1 ; 

g
1) = (1; 0:5; 0:5); �̂1 = ln(1 + e) + ln 2; �̂2 = ln 2; �̂

1 = �̂2 = 0:

Yet (P f ; 
11; 

2
1) is not optimal, since net utility to the feasible triple (0:5,

1+e
2+e
; 1
2+e
)

is strictly higher,

N(0:5;
1 + e

2 + e
;
1

2 + e
) =

�
1 + e

2 + e

�
ln(1+e)�ln 0:5 > ln(2 + e)

2
�ln 0:5 = N(1; 0:5; 0:5):
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