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“Chronic remorse, as all the moralists are agreed, is a most undesirable sentiment.”
—Aldous Huxley

In Ahmed (2014) and Elga (2022), Arif Ahmed and Adam Elga present a dilemma for Causal Decision
Theory (CDT) which features deterministic laws. My purpose here is to respond to that challenge on
behalf of CDT. I focus on Elga’s paper, “Confessions of a Causal Decision Theorist”, which features
a formal proof, and I aim for absolution. The treatment I present highlights (i) the status of laws as
predictors and (ii) the consequences of decision dependence (Gibbard & Harper, 1978; Skyrms, 1990).

1 The Setup

For expository purposes, it will be helpful to lay out both CDT and its main rival, Evidential Decision
Theory (EDT). Where {A} is a set of available actions, {S} a set of states, and V (·) a value function
on possible worlds, lifted to propositions in the usual way,1 the characterizing equations of causal and
evidential expected utility are:

CEU(A) =
∑
S

PA(S)V (AS)

EEU(A) =
∑
S

P (S | A)V (AS)
(1)

In Elga’s terminology, the two probability functions (1) features, PA(·) and P (· | A), are each the
result of starting with a prior P (·) and supposing that (one chooses) A. Supposing A as such, which
I’ll notate P [+A](·), entails that P [+A](·) is a probability function—obeying the relevant axioms—
and that P [+A](A) = 1. While both imaging (in the CEU equation) and conditioning (in the EEU
equation) satisfy these constraints, each otherwise carries out supposition in a different way.

It is widely accepted that there is an important connection between EDT and learning. This comes
out in the EDT-CDT dialectic in two steps. The first is the norm of Conditionalization, interpreted
diachronically: where P (·) is an agent’s credence function at t and P+(·) is her credence function at a

∗To appear. I am grateful to Calum McNamara, Simon Huttegger, Matt Mandelkern, audiences at Carnegie Mellon
and New York University, and two anonymous Noûs referees for generous commentary and discussion.

1In this paper I will follow Jeffrey (1983) and subsequent literature in treating acts and states as propositions (sets
of possible worlds) that are closed under the usual Boolean operations. Hence V (B) is defined just in case, ∀w,w′ ∈ B,
V (w) = V (w′). In that case, V (B) = V (w) for arbitrary w ∈ B.
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later time t+, a host of arguments support the claim that an agent should use conditional probabilities,
which in turn are defined by the Ratio Formula,2 as a guide to belief revision:

Conditionalization. If an agent learns exactly E between times t and t+, she should
adopt P+(·) = P (· | E).

The second step is immediate from equation (1): the EDTer’s method of supposition is also guided
by conditional probabilities. In this sense, an EDTer recommends estimating the utility of A as if you
were to learn (you did) A.

conditioning imaging
transformation of prior P (S) P (S | A) PA(S)
attitude learning bringing about
expected utility expression

∑
S P (S | A)V (AS)

∑
S PA(S)V (AS)

accompanying decision theory evidential causal

Table 1: Two Types of Supposition, and their entourages.

In the standard dialectic, the CDTer denies this. (S)he estimates utility under a sui generis attitude,
subjunctive supposition, whose formal analogue at the level of credence of is imaging.

Loosely speaking, imaging separates doing A into evidential and causal components, and shifts prob-
ability only according to the latter. For example, if I learn that I have a Rolex instead of a Timex,
that’s good evidence that I’m rich, rather than poor (since typically, only rich people buy Rolexes.)
But if I bring it about that I have a Rolex, rather than a Timex, that causes me to be (more) poor—
because Rolexes cost a lot more than Timexes. So from a position of ignorance about my own wealth,
PRolex(rich) is lower than the prior P (rich), but P (rich | Rolex) is higher.

Only one formal feature of imaging—its key feature—will be of interest to us in what follows.3 It is
that imaging your credence function P on A doesn’t change the value assigned to S ∈ {S} if your
evidence also incorporates the claim that S ∈ {S} are causally independent of A ∈ {A}.

Constraint on Imaging. If the agent is certain that S is causally independent of A for
any S ∈ {S}, A ∈ {A}, then PA(S) = P (S).

2 Two Bets

Elga’s challenge to CDT is very general. He argues that no suppositional operation can both (i) give us
the intuitively correct answer in a betting problem about natural laws, and (ii) two-box in a Newcomb
Problem whose payoffs are tied to the truth of the same set of laws. Of course, this is a particular
problem for the causal decision theorist, since she is committed to two-boxing.

2viz., the formula P (B | A) :=
P (BA)
P (A)

. NB this formulation entails that conditional probabilities are undefined when

P (A) = 0. Treatments that extend the definition to the P (A) = 0 case exist, but will not be relevant to this paper.
3There are many formal treatments of imaging in the literature, and I think it is fair to say that it is an open question—

despite the case for (affirmative) closure made in Lewis (1981)—whether they are all equivalent. A classic account comes
from Gärdenfors (1982) by way of Lewis (1976); this in turn owes a debt to Stalnaker (1968)’s semantics for conditionals.
Another treatment of PA(·), via a reduction to act-conditional chance, is due to Skyrms (1981). More recently, Pearl
(2000) has analyzed imaging on A as conditioning on a related argument do(A), which is in turn understood in terms of
causal models.
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2.1 The first bet, and a (possibly deterministic) Predictor

Elga’s first betting problem (following closely on Ahmed, 2013, 2014) unfolds as follows. Consider a
batch of deterministic laws—a scientific theory—abbreviated D, of which we suppose you to be quite
confident. In the first betting problem, you are simply asked to bet either for or against D.

Problem 1. Where P is you subjective credence function, P (D) ≫ 1/2. Your utility is
linear in dollars. Your value function v1 is:

v1 D D
A1 k 0
A2 0 k

Bet 1.

A1 is raising your hand. A2 is not raising your hand. □

Elga’s intuition is that A1 is the right choice in Problem 1.

While I invite you to share this intuition, it does not follow straightaway from either version of Equation
(1). It does not follow straightaway because P (D) ≫ 1/2 does not entail that PA(D) ≫ 1/2 or that
P (D | A) ≫ 1/2 for A ∈ {A1, A2}. That is: you prior confidence that D is more likely than D
doesn’t entail you hold D to be more likely than D on the supposition that A1 (or A2). It is the latter
question(s) that—according to either form of suppositional decision theory—matter for calculating
(and thus comparing) the expected utility of A1 and A2.

4 If you are a CDTer who nevertheless favors
A1 over A2 in Problem 1, this suggests that you consider your available actions to make no subjunctive
suppositional difference to whether D is true.

Since D/D is, by stipulation, the only outcome your value function v1 is sensitive to in Problem 1, we
note that the two-column payoff table in Bet 1 is equivalent to the following four-column payoff table,
where the D/D outcomes are split along any further distinction, C/C.

v1 (C ∧D) (C ∧D) (C ∧D) (C ∧D)
A1 k 0 k 0
A2 0 k 0 k

Table 2: Bet 1 extended across {C,C}

Thinking of Problem 1 this way will become important later, when we “splice” the bet on D with a
bet on (a particular) C.

We said above that you are highly confident in D. As such, D is your leading candidate for a certain
(contingent) role—the true law role. What, exactly, is this? Perhaps—in addition to issuing true
predictions given appropriately specified initial conditions—the laws must support counterfactuals
(Goodman, 1965; Maudlin, 2004) and interface in a certain way with our inductive practices (Goodman
op. cit.); perhaps they also must in some way necessitate their outcomes (Armstrong 1983).

I will make a significant—but, I think, reasonable—assumption in this mode. I assume that you are
sure that something (even if it turns out not to be D) plays the true law role with respect to the world
you occupy. Your relationship to the law role is thus akin to an ideally rational agent’s relationship
to the role of objective chance (c.f. Lewis, 1971). A rational agent’s uncertainty in respect of Lewis’s
Principal Principle concerns, not whether chance exists, but which probability function plays the chance

4To see this, consider a parallel case in which A1 is raising your hand faster than the speed of light.
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role at the world she inhabits. In parallel fashion, you are sure the laws exist, but you are not sure
which package of functions plays that role. D is your leading candidate.

Moreover, it is a natural(istic) thought that the laws’ predictions include your own, presently available
actions A ∈ {A}. I will write the prediction that you will A as

△A

In keeping with the stipulation that D, along with its confirmation-theoretic rivals, could operate
like a deterministic physical theory, I assume that these predictions depend on some factive input—a
specification of initial conditions.5

We will dramatize the situation as follows.

Add-on: a Predictor. You are certain, in Problem 1 and the Problems to follow, that
you are being observed by a peerlessly accurate predictor who uses the laws to make a
prediction about your choice. Since you are highly confident that the laws are D, your high
P (D) entails high confidence that the predictor’s predictions just are D’s predictions.

We make this assumption because we want to separate two dimensions of your subjective ignorance
regarding the laws:

(a) you don’t know whether D is true at the world you occupy.
(though you’re highly confident it is.)

(b) you don’t know what D predicts about {A}, when D is fed the initial conditions—the unfath-
omably specific historical facts about the world you occupy.
(you aren’t highly confident about anything in the vicinity of this, because you haven’t a clue as
to what the actual initial conditions are.)

(a) and (b) are distinct aspects of your prior uncertainty.6

Of course, other entities make predictions too. Consider your former band-camp roommate Dolly, a
mere human but someone who is nonetheless a highly accurate, opinionated predictor of your choices.
Characters like Dolly are familiar from the literature on standard Newcomb problems, and we will
occasionally appeal to (intuitions about) Dolly as a stand-in for (intuitions about) D in what is to
follow. Where matters like laws of nature are concerned, we can read the definite description “the
Predictor” in Add-on as “the predictive Laws”. In other cases with the same structure (like ones that
might involve Dolly), we can read “the Predictor” more generally as, say, someone behind a curtain in
a game show: someone who may or may not be Dolly—but probably is.

5Given what we know about physical theories, it seems that these would have to be specific to an extreme degree, as
many authors have noted (Lewis, 1971; Latham, 1987; Albert, 2000; Dorr, 2016).

6The analogy with chance can continue to help us here. Suppose you are pretty sure that a particular probability
function π plays the chance role: P (Ch = π) is high. Nonetheless, you are confident as a matter of PP policy that it’s
chance that gets things right. In improbable worlds w where π(·) fails to play the chance role, Pw(q) = E(Ch(q)) is still
true, while Pw(q) = E(π(q)) = π(q) is false.

Indeed, we can say a bit more. Suppose, in the spirit of Lewis, that you believe that D is the history-relative objective
chance function. That is not exactly a radical thought, since D would appear to provide a specification of the (extremal)
objective chances once it is “fed” the initial conditions. Then △ϕ is equivalent, at t, to Ch(ϕ | Ht) = 1. Hence fealty to
PP will entail much of what I say here. Simplifying somewhat:

Pt(¬A | Ch(¬A | Ht) = 1) = 1 Principal Principle
Pt(¬A | △¬A) = 1 The proposed equivalence
Pt(¬A | ¬△A) = 1 D is deterministic w.r.t. history propositions H:

(△¬ϕ) ≡ (¬△ϕ)
Pt(△A | A) = 1 Probabilistic contraposition

. . . where the last equation states the predictor’s strike rate in the main text, for the case where δ = 0.
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We can now make a (Newcomb-)familiar assumption about the predictor’s accuracy, which is that,
conditional on any action A you perform, you have a high fixed credence—which we can write as
(1− δ)—that the predictor predicted you’d do A.

The Predictor’s Strike Rate. For any A ∈ {A} and predictor p:

P (△pA | A) = (1− δ) (2)

. . . where δ is a very small number, perhaps zero (we will focus on the zero case below). This formulation
of the high strike rate entails that your faith in the predictor is resilient. No present change in
{P (A) : A ∈ {A}}—say, via a Jeffrey shift that makes you more confident you will do A1 rather than
A2—would, from your perspective, serve to disconfirm your conviction that the predictor got it right.7

This concludes our detour through the laws. So far as Elga’s intuitions are concerned, nothing interest-
ing has yet happened. To recap: you are very confident that the laws of nature are D (P (D) ≫ 1/2),
and you are asked to either accept (by choosing A1) a bet that pays $k iff they are D, or (by choosing
A2) a bet that pays $k iff they aren’t D. It seems you should choose A1. Moreover: you’re very confi-
dent there is an excellent predictor around, one who very likely uses D itself to predict your actions.
It follows that if you do do A1 (/A2), you should be pretty confident that the predictor predicted you
would.

2.2 The Second Bet

Elga’s second decision problem is a Newcomb Problem.

Problem 2. Once again, A1 is raising your hand, and A2 is not raising your hand. H is
a proposition about the past, over which you are certain you have no causal powers. Your
value function v2, where m (think: a million) and t (think: a thousand) are positive, is:

v2 H H
A1 m 0
A2 m+ t 0 + t

Bet 2

As the payoff matrix illustrates, doing A2 gains you t whether or not H is true.8 But
hark: H is a special proposition. It is the maximally inclusive specification of the initial
conditions which, under D, entail A1 (viz., H = △DA1). (Ahmed, 2014, pg. 120; Elga,
2022, pg. 206) □

7So this formulation of the high strike rate entails, for example, that you aren’t highly confident in the predictor
simply because: (i) you are sure you will do (some particular) A and thus (ii) sure that the predictor predicted A. We
see the latter situation in Robert Stalnaker’s discussion of his first brush with the Newcomb Problem:

. . . let me report on my reaction to the Newcomb Problem when I first encountered it more than forty
years ago. I thought, “It’s obvious that one should take both boxes, and there is no puzzle about how
a predictor could get it right 90% of the time, since surely almost everyone will make this
choice, so the predictor can safely predict that everyone will, and be about 90% accurate” (2018,
pg. 190, emphasis added)

. . . Equation (2) rules out this extensional construal of the predictor’s accuracy, because it requires you to be confident
that the predictor gets it right conditional on any act performed. In context, this would have required Young Stalnaker
to be confident that the predictor was correct about what, say, Fred did, even if he [Young Stalnaker] conditioned on
the fact that Fred one-boxed.

8To make the contrast with Evidential Decision Theory (EDT), which treats supposition as conditionalization, we

can stipulate that P (H | A1) − P (H | A2) >
[1−P (H|A2)]t

m
, and hence that EDT would endorse A1 instead of A2 in

Problem 2. I will presuppose as much in what follows, though nothing important will hinge on it. Careful readers of
Ahmed will note that I have followed Elga in inverting the identities of A1 and A2 (for ease of a combined exposition
with Newcomb’s Problem).
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Causal decision theorists generally accept the verdict that A2 is the right choice in Problem 2: two-
boxing in a Newcomb Problem is, after all, a sine qua non of CDT.9

In Problem 2 there is, by stipulation, only one distinction to which the value function v2 is sensitive:
H vs. H. So once again, we note that the payoff matrix in Bet 2 is equivalent to the one below, for
schematic {E,E}:

v2 (H ∧ E) (H ∧ E) (H ∧ E) (H ∧ E)
A1 m m 0 0
A2 m+ t m+ t 0 + t 0 + t

Table 3: Bet 2, extended across {E,E}

E could be anything—so, in particular, it could be D itself. And indeed, this is the final form of the
problem we will consider (c.f. Elga, pg. 208):

v2 (H ∧D) (H ∧D) (H ∧D) (H ∧D)
A1 m m 0 0
A2 m+ t m+ t 0 + t 0 + t

Table 4: Bet 2 (final), with E = D

Elga (and Ahmed’s) specification of H plugs nicely into our view of laws as predictors. In the vignette,
your commitment to the predictor’s accuracy commits you (we will assume) to P (△A1 | A1) = 1,
which entails P (△A2 ∧ A1) = 0. These extreme values continue to hold when the predictor is D, so
PD(△A2 ∧A1) = 0. This entails P (D ∧H ∧A1) = 0. A similar argument shows P (D ∧H ∧A2) = 0.
These “P -zero” propositions are key to the dialectic to follow.

2.3 Elga’s Dilemma

Tables 2 and 4 above delineate two value functions, v1 and v2. We implicitly assumed these value
functions could be paired with any prior—a fortiori, they could both be paired with the aforementioned
prior P (·) to calculate the expected utility of A1 and A2.

Recall that P (D) is very high. In addition, H is playing its special role, which underwrites credence
zero in the propositions (D ∧H ∧A2) and (D ∧H ∧A1). As we noted in §1, however, to connect this
all to (suppositional) expected utility, we must look at suppositional transformations of P (·), rather
than P (·) itself. To set up his dilemma for CDT, Elga uses a table with variables for the values of
{H,H} × {D,D} under the suppositionally transformed probability functions PA1(·) and PA2(·):

(H ∧D) (H ∧D) (H ∧D) (H ∧D)
PA1 a b x c
PA2 y d e f

Table 5: Credence functions PA1(·) and PA2(·)

We saw in §1 that PX(X) = 1 for any X, and that PX(·) is a probability function. Two things
follow: (i) the sum of the numbers across each row of Table 5 is 1; (ii), PA1(X) = PA1(XA1) and
PA2(X) = PA2(XA2) for any X.

9I nonetheless say CDTers “generally” endorse A2 in Problem 2 because David Lewis—a CDTer—appears to deny in
Lewis (1981, §5) that this type of Newcomb problem is possible on epistemic grounds.
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Since Table 5 lists values for PA1 and PA2 , rather than P , (i) and (ii) do not directly constrain the
values in the table. Elga does, however, assume an indirect constraint: that, while a, b, c, d, e, and f are
all positive, the highlighted values in the table, x and y, are zero. Gloss: the propositions (D∧H ∧A2)
and (D ∧H ∧A1) not only receive credence zero in the prior P , but they continue to receive credence
zero under any suppositional transformation of the prior—even subjunctive supposition.

And here we arrive at last at Elga’s antinomy, which I will present for CEU as set out in Equation 1.

Fact 1. (Elga, 2022, §5). When x = y = 0, there is no probability function P and value functions v1,
v2 such that, in Problem 1, CEU(A2) < CEU(A1) and, in Problem 2, CEU(A1) < CEU(A2).

This means it is impossible for any P to justify A1 in Problem 1 and A2 in Problem 2.

Proof. By the assumption that in Problem 1, CEU(A2) < CEU(A1) (Table 2):

k(d+ f) < k(a) definition of CEU
(d+ f) < a k is a positive number

By the assumption that in Problem 2, CEU(A1) < CEU(A2) (Table 4):

(ma+mb) < [(m+ t)(d) + te+ tf ] definition of CEU
m(a+ b− d) < t(d+ e+ f) simplifying
m(a+ b− d) < t because (d+ e+ f) = 1
(a+ b− d) < t/m m is a positive number
(a+ b− d) ≤ 0 arbitrariness of t,m (t < m and positive)
a ≤ (d− b) arithmetic

Chaining together these two inequalities concerning a, we have:

(d+ f) < (d− b) constraints on a (above)
f < −b arithmetic
f + b < 0 arithmetic
⊥ f, b are positive numbers (by assumption)

3 Elga’s Dilemma and Decision Dependence

The reductio above assumes that PA1 and PA2 are (subjunctive) suppositional transformations of a
shared prior, P . In the next few sections, I will argue that a well-studied version of CDT aimed at
treating decision dependence (Gibbard & Harper, 1978; Hare & Hedden, 2016)—to wit, the delibera-
tional dynamics approach of Skyrms (1990)—has the dialectical resources to block this assumption in
the relevant context.

First, let’s be clear on how Elga’s proof leverages the shared prior assumption (Figure 1). Recall that
the dialectic of the paper begins with a credence function P which is subject to various constraints.
You confront each of Problem 1 and Problem 2 with P . The two problems are linked because
the same pair of acts—or at least, act-types—are available in each: A1 and A2 (raising/lowering your
hand). These acts are the inputs to suppositional transformations of P , PA1 and PA2 , in terms of
which the expected utility of each act in each problem is calculated. Then Elga’s argument shows that
opting for A1 in Problem 1 and A2 in Problem 2 would put jointly unsatisfiable constraints on PA1(·)
and PA2(·)—and thereby, working backwards, onto P itself.

But although you confront Problem 1 and Problem 2 with the same probability function, your
utility functions v1 and v2 in these respective problems are not the same, nor is one a refinement of
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P

Problem 2

imaging

A2 ≽ A1

Problem 1

imaging

A1 ≽ A2

⊥

Figure 1: The Shared Prior.

the other. They are incompatible. The utility function v2 from Problem 2 cares nothing for the D/D
distinction, whereas the utility function v1 from Problem 1 cares only about this distinction.10 That
means there would be a weak link in the argument if the following were true: sometimes, when you
are confronted with a decision problem which presents you with prizes, your prior P must, before you
act, update in some way to reflect that confrontation. If that were the case, then the fact that v1 ̸= v2
would entail that the credence function relevant to the calculation of expected utility in Problem
1 is not the same as the credence function ultimately relevant to the expected utility calculation in
Problem 2. And if that’s right, Elga’s algebraic argument, while valid, does not show what it needs
to show.

3.1 Decision Dependence: A Primer

One might find the “weak link” line of argument I sketched above unattractive, for Humean reasons: it
apparently denies that our credences are independent of our value functions. But I think the prospects
for such an argument are quite good. Decision dependence, which falls out of the way causal decision
theory handles predictor-style cases, registers a modest exception to the Humean picture: it opens up
space for information about prizes to rationally alter one’s credences in one’s own presently available
acts, represented by the probabilities assigned across the act-partition {A}. When these probabilities
change in response to information about prizes, Jeffrey Conditioning then propagates this change across
the probabilities of states, thus bringing about a corresponding change in the (causal) expected utility
of A ∈ {A}.

Here is a classic case—perhaps the classic case—of decision dependence, from Gibbard & Harper (1978).

Death in Damascus. You are in the desert between Damascus and Aleppo at t, when
you learn that Death plans to harvest your soul. Death always follows a fixed schedule—
“work[ing] from an appointment book...made up weeks in advance” (op. cit., pg. 157).
Your available acts are to go to Damascus (Dam) or to go to Aleppo (Alep). Your credence
P (BookAlep | Alep)—that Death’s book says “Aleppo”, given that you go there—is very
high (functionally, 1), as is your subjective probability P (BookDam | Damascus)—that the
book says “Damascus”, given that you go to Damascus. You also know that you have no
causal influence over the book’s contents at the time t of your deliberation.

We stipulate that 10 is the value of surviving in either location, and 0 the value of dying. We assume
the journeys themselves are costless and that, at the start of deliberation, P (BookDam) = 0.6 and
P (BookAlep) = 0.4. CDT thus assigns Dam an expected value of 4 and Alep an expected value of 6.

However, in Death in Damascus, various events might cause you to become more confident that you
are going to do one thing rather than another. Suppose you begin to walk towards Aleppo. This does

10In more detail: according to v1, for any w,w′ ∈ D, v1(w) = v1(w′). But Problem 2 requires that v2(w) ̸= v2(w′) if
w and w′ are not members of the same cell of {H,H}. So v1 and v2 cannot be the same function.
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BookDam BookAlep
Dam 0 10
Alep 10 0

Death in Damascus.

not result in your (yet) becoming certain of any proposition A ∈ {Dam,Alep}, but does directly raise
your confidence in Alep at the expense of Dam. The standard belief revision tool for tracking how such
a shift influences the rest of your credence function is Jeffrey Conditionalization (Jeffrey, 1983).

Jeffrey Conditionalization. If a learning experience directly alters an agent’s prior over
partition {E} between times t and t+, then she should adopt as a posterior

P+(·) =
∑
E

P+(E)P (· | E) (3)

According to Jeffrey Conditionalization, as a self-aware agent executes a particular act Ai in Death
in Damascus, (i) P (BookAi | Ai) ≈ 1 and (ii) P (BookAi | Aj) ≈ 0 for Ai, Aj ̸=i ∈ {Dam, Alep} guide
revision. It follows that the causal expected utility of each option at time t is inversely proportional
to its probability at t. By equation (1):

CEUt(Ai) = PAi
t (BookAi)V (BookAi ∧Ai) + PAi

t (BookAj)V (BookAj ∧Ai)

= PAi
t (BookAi)× 0 + PAi

t (BookAj)× 10

= PAi
t (BookAj)× 10

Since BookAi is causally independent of {Ai, Aj}, PAi
t (BookAi) = Pt(BookAi) by the Constraint on

Imaging we saw in §1. Hence, applying the Law of Total Probability:

CEUt(Ai) = Pt(BookAj)× 10

= [Pt(BookAj | Ai)Pt(Ai) + Pt(BookAj | Aj)Pt(Aj)]× 10

= [(≈ 0)Pt(Ai) + (≈ 1)Pt(Aj)]× 10

≈ Pt(Aj)× 10

≈ [1− Pt(Ai)]× 10

Adapting Hare & Hedden’s slogan: inDeath in Damascus, what you (think you) ought to do depends
(negatively) on what you anticipate you’ll do. No matter which destination you pick, when you get
there, you will believe with certainty that you did worse than you otherwise would have.

The dependence of CEU(A) on P (A) illustrated by Death in Damascus is widespread for CDT. It
holds, for example, in the traditional Newcomb Problem: if one “credally journeys” towards two-boxing
via a Jeffrey shift, one becomes increasingly pessimistic about millionaire. However, the comparative
facts about one-boxing and two-boxing never change: it is still always the case that the causal expected
utility of two-boxing (A2) exceeds the causal expected utility of one-boxing (A1) by t, the (scaled)
value of one thousand dollars (Figure 3). As Joyce (2012, pg. 130) emphasizes, Newcomb is unusual
in this respect: although the two choices’ causal expected utilities do exhibit decision dependence, the
dominance of two-boxing over one-boxing at all values of P (one-box) ensures CDT’s recommendation
never depends on one’s act-probabilities.
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function of P (Ai) in Death in Damascus
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Figure 3: Causal Expected Utility as a function
of P (one-box) in a Newcomb Problem.

3.2 A Nice Time

Decision dependence is a fact of life for CDT. Much of the literature on it is devoted to cases, like
Death in Damascus, which are nasty, or unstable.11 Our purposes, however, will be better served
by focusing on the obverse phenomenon: nice, or self-reinforcing cases. As I will use the terminology,
you are in a nice case if you have multiple (say, two) choices, and each is such that, if you perform
it, you will believe with certainty that you did better than you otherwise would have. Once again,
decision dependence makes this possible. A nice choice, like a nasty one, is in this sense a technical
concept of CDT: EDT lacks the apparatus to model its distinctive subjunctive profile.

Here is an example.

Nice Choices in New Jersey. You live in Hoboken, New Jersey. You are asked to choose
between A1, remaining in Hoboken, and A2, riding a (free) bus to Secaucus. Yesterday, a
very good predictor predicted where you would end up tonight in order to leave you a small
sum of money in that location, and that location alone. She deposited her money like this:

Your value function for this choice, v1a, is thus:

11Richter (1984); Egan (2007); Meacham (2010); Joyce (2012); Levinstein & Soares (2020), multa inter alia.
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In Hoboken in Secaucus
if she predicted Hob, she put $10 $0
if she predicted Sea, she put $0 $15 □.

v1a Pred Hoboken Pred Secaucus
A1 (viz., Hob) $10 $0
A2 (viz., Sea) $0 $15

In Nice Choices in New Jersey, what you ought to do is positively correlated with what you
anticipate you’ll do. It is also asymmetric.12 While (Sea ∧ $15) is the bigger prize in Nice Choices
in New Jersey, some priors heavily skewed towards Pred Hoboken will nonetheless assign a higher
expected utility to Hob than to Sea; one example is a prior according to which P (Hoboken) = P (Pred
Hoboken) = .75 (Figure 4). Since the x-axis in Figure 4 plots P (Sea) as the latter increases towards
certainty, we can see the graph as showing us what would happen to the subjective expected utilities
of each option if the agent were to undergo a Jeffrey Shift that pushes her credence in Sea from
skepticism towards certainty—for example, what would happen if, with self-awareness, she journeyed
towards Secaucus.

0 0.2 0.4 0.6 0.8 1
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20

P (Sea)

C
E
U

Sea
Hob

Figure 4: Decision Dependence in Nice Choices in New Jersey.

The analysis I’ve so far sketched of Nice Choices in New Jersey is standard in the CDT literature.
Before proceeding, though, we should do a sanity check: ensuring that there isn’t any hidden inconsis-
tency in having a prior which skews towards Hoboken and Pred Hoboken, and yet is presented with the
value function v1a we find in Nice Choices in New Jersey. Why would one ever initially be more
confident in Pred Hoboken than Pred Secaucus in such a case? And second: even if one was initially in
such a state, shouldn’t one’s credences evolve as a result of what’s been learned about v1a?

Forestalling the question of evolution for a moment, it does seem possible to be in this situation.
Your priors over your own acts could be anything. For example, in Nice Choices in New Jersey
your priors might skew towards Pred Hoboken from the sheer weight of past experience. Suppose,
for example, that Dolly helps you with the rent each month by leaving cash envelopes for you under
back tables at Dunkin Donuts. You’ve been collecting $10/month from her this way for years—and
specifically, you’ve been accomplishing this by going to the Dunkin Donuts in Hoboken for years. You
know Dolly to be an astonishingly accurate predictor of your movements: indeed, she uses a Laplace-o-
meter to decide where to leave the money. Hence, you have very high initial credence that the money
is in Hoboken as usual this month.

12These cases are mashups of two of Hare & Hedden (2016)’s cases, the Asymmetrically Nasty Demon (pg 614) and
the Nice Demon (pg 606; preceded by an identical case with the same name in Skyrms, 1982, pg. 706). See also Lewis
(1981, §11)’s Hunter-Richter Problem. Cases with a similar “asymmetrically nice” structure can also be found in the
ethics literature: see, for example, Harman (2009).
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So much for the prior. However, today you suddenly learn something new, which effectively places
you in the decision problem Nice Choices in New Jersey describes. For example, you could simply
learn that, all this time, Dolly has been following the algorithm listed above (repeated):

In Hoboken in Secaucus
if she predicted Hob, she put $10 $0
if she predicted Sea, she put $0 $15 □.

The algorithm entails that if Dolly’s device predicted Sea instead of Hob this time around, there’s
currently $15 for you in Secaucus, and nothing in Hoboken! (Naturally, Dolly’s device also makes
predictions about whether you made the discovery about her algorithm that you just in fact made.)
So the question now is: do you “stick” with your prior, which still—recall Figure 4—indicates that the
expected utility of Hob exceeds the expected utility of Sea, or not? And if you do not, how should the
prior evolve: what credal dynamics does rationality require, given the information you now possess?

4 Deliberational Dynamics

Skyrms (1990) provides a family of standard answers to the dynamical question, which are widely
endorsed in the literature on decision dependence.13 To understand his view, it will help to extend the
notion of causal expected utility to the status quo (henceforth ‘SQ’). This is your expected value of
CEU over the partition {A}—or, in Skyrms’s terminology, the expected utility of the vector consisting
of available acts A and their current probabilities according to P .

CEU(SQ) =
∑
A

P (A)CEU(A) (4)

Figure 5 shows CEU(SQ) for Nice Choices in New Jersey as a function of P (Sea). A bit of
calculation shows this function is quadratic, reflecting a contour by which causal expected utility dips
before rising as P (Sea) increases.14 In a game theoretic context, CEU(SQ) also represents the causal
expected utility of the mixed act consisting of performing each A ∈ {A} with chance P (A)—a point
we will return to below.

Skyrms’s dynamics uses a preliminary (viz., prior-relative) calculation of CEU(SQ) as input to a dy-
namical rule that incrementally increases the probability of acts Ai such that CEU(Ai) > CEU(SQ)
and decreases the probability of acts Aj such that CEU(Aj) < CEU(SQ) (see the Appendix for the
particular rules he considers.) The theory thus introduces a feedback loop between causal expected

13See, for example, Joyce (2007, 2012); Lauro & Huttegger (2020); Harper (2022).
14By Equation (4):

CEUt(SQ) = Pt(Sea)CEUt(Sea) + Pt(Hob)CEUt(Hob)

We know from calculations analogous to those in Death in Damascus that:

CEUt(Sea) = Pt(Sea) · 15

CEUt(Hob) = Pt(Hob) · 10
Hence:

CEUt(SQ) = Pt(Sea)
2 · 15 + Pt(Hob)2 · 10

= Pt(Sea)
2 · 15 + [1− Pt(Sea)]

2 · 10

this is the equation graphed in Figure 5.
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Figure 5: CEU(SQ) as a function of P (Sea)
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Figure 6: Feedback loop.

utility, probabilities over acts, and—via Jeffrey Conditioning—probabilities over dependency hypothe-
ses (Figure 6). A series of theorems (for example, Skyrms, 2022) show that these processes terminate
at some Pfinal, such that additional cycling through the dynamics does not alter act-probabilities or
act-utilities any further.

Skyrms CDT sees asymmetric nice cases—and other instances of decision dependence—as cases where
your act-credences are constrained to seek the local good; you do, in that sense, remain in the grip of
the starting point provided by your prior, even if you do not remain at your prior. In the context of
Nice Choices in New Jersey, this means Skyrmsian dynamics will move the agent’s P (Sea) to the
left from the black dot in Figure 5—that is, towards the local maximum 10 at the posterior Pfinal(Hob)
= 1.

As I discuss below, there is some appeal to a version of CDT that differs from Skyrms on precisely this
point. Such an view follows “if you would have peace, prepare for war”-type reasoning: if you would
maximize (causal) expected utility in the long run, be prepared to minimize it in the short run. In the
context of our example in Figure 5, this is the difference between moving towards the left equilibrium
point (in blue) and the right equilibrium point (in red).

4.1 Stacked and Sequential Problems

For the moment, though, I want to put the differences between Skyrms 1990 and myself to one side.
Our mutual interest is in blocking Elga’s argument. To see how, consider what happens when we add
a second decision problem—a Newcomb problem—into the mix.

Newcomb in New Jersey. As before, you live in Hoboken and must choose between A1,
remaining in Hoboken, and A2, riding the bus to Secaucus. This time, though, a second,
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wealthier predictor (who also has a Laplace-o-meter) has decided to offer you some money!
Her plan was as follows: last night, she made a prediction about whether you would go to
Secaucus or Hoboken, and she put $20 in your bank account iff she predicted you would
remain in Hoboken. Additionally, however, she ensured that there is $5 in a transparent
box for you at the Dunkin’ Donuts in Secaucus, which you can have just in case you travel
there instead.

Your payoff matrix for this predictor alone is thus the following value function, v2a, which exhibits the
familiar Newcomb asymmetries:

v2a Pred Hoboken Pred Secaucus
A1 (viz., Hob) $20 $0
A2 (viz., Sea) $25 $5

Skyrmsian decision theory—like any form of CDT—is a two-boxing decision theory. When Newcomb
in New Jersey is considered on its own, then, Sea (viz., A2) is the right choice relative to any prior
P (recall Figure 3) for any of the dynamical rules Skyrms considers. If you are rational and follow
through, then as you execute A2—the equivalent of riding the bus to Secaucus, dutifully updating
along the way—your credence in Pred Sea rises.

Thus Skyrmsian CDT, when it considers each of the two New Jersey problems in isolation, recommends
different actions: A1 (viz., Hob) in the first case and A2 (viz., Sea) in the second. So what? The example
shows how Skyrms can reject the following inference:

P1. No rational agent can choose A2 in Newcomb in New Jersey and A1 in Nice Choices in
New Jersey while calculating causal expected utilities with respect to the same probability
function P .

to

C1. No agent with prior P can choose A1 in Nice Choices in New Jersey and A2 in Newcomb
in New Jersey.

P1 is true, because of decision dynamics: once you have cycled through Skyrms’s feedback loop,
Pfinal(Pred Hob) in Newcomb in New Jersey ̸= Pfinal(Pred Hob) in Nice Choices in New Jersey.
This must be the case, because in Newcomb in New Jersey P (Pred Hob) approaches zero, and
relative to that distribution, A1 does not maximize CEU in Nice Choices in New Jersey. But C1
is false, because it concerns the prior, not the (Skyrmsian) posterior: as we just saw, an agent with
prior P (Pred Hoboken) = .75 and P (Pred Secaucus) = .25 will indeed, on Skyrms’s theory, choose A1

in Nice Choices in New Jersey and A2 in Newcomb in New Jersey. So here is the diagnosis
of Elga’s argument: P1 is the equivalent of what his formal proof shows. But to indict CDT, it is C1
that is needed.

For completeness—and before circling back to my disagreement with Skyrms—it is worth checking
that the reasoning we just looked at is consistent with every interpretation of Elga’s argument. What
we just considered was a case where an agent with prior P can either evolve towards greater certainty
in Hob (in Nice Choices in New Jersey) or a greater certainty in Sea (in Newcomb in New
Jersey) as a rational response, respectively, to (i) facing the first problem alone, or (ii) facing the
second problem alone. There is, of course, another possible way of considering the dialectical force
of the two problems—one could stipulate that you are facing them simultaneously at the same world.
This way of interpreting the problem goes with taking Elga’s talk of the same two acts, A1 and A2,
being available in Problem 1 and Problem 2 as token identity, rather than type identity. Then
our response does not really work: surely I cannot have one “Skyrms-evolved” credence function P
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(according to which Hob is highly likely) and some other sort of “Skyrms-evolved” credence function
P ⋆ (according to which Sea is highly likely) in the same world at the same time!

. . . This is certainly true, though I do not think it will remedy Elga’s argument. If you confront
Nice Choices in New Jersey and Newcomb in New Jersey simultaneously, you face a different
problem, with a single, novel utility function, v∗(·) = v1a(·) + v2a(·). This is illustrated in Figure 9.
(Naturally, you expect both predictors to be correct, which is why only two columns are needed to
characterize the value function v∗.)

Stacked Predictors in New Jersey.

v∗ Pred Hoboken Pred Secaucus
A1 (viz., Hob) $30 $0
A2 (viz., Sea) $25 $20
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Figure 7: Decision Dependence in the “Stacked” problem

The intersection point in Figure 7, where CEU(Sea) = CEU(Hob), is at P (Sea) = .2. Since, by
hypothesis, your prior P assigns 25% to Sea, Skyrmsian dynamics will favor riding to Secaucus in this
problem. As the payoff matrix makes plain, Stacked Predictors is not a Newcomb Problem—the
second row of the payoff matrix does not dominate the first. So the CDTer faces no particular conflict of
loyalties here. That is to say: it is no betrayal of CDT’s characteristic commitments vis-à-vis Newcomb
Problems for the theory to recommend either A1 or A2 in Stacked Problems in New Jersey.

4.2 Dynamics Unbound

Above, I signaled affection for a form of CDT with deliberational dynamics that, unlike the versions
explored by Skyrms et. al., is not constrained to mechanisms of expected utility maximization that
are local with respect to the agent’s prior. Such a view would permit an increase in the probability of
acts which suppress the causal expected utility of the status quo in the short term, but increase it the
long term.

In the remainder of this section, I take up the point of view of such a form of CDT. In asymmetric
nice cases like Nice Choices in New Jersey, this opens up new deliberational pathways that seem
practically advantageous and epistemically innocent. At a first pass, this theory simply takes as input
the entire space of Jeffrey-conditionalizations available from the prior—the equivalent of the whole
curve in Figure 5. It is permissive, allowing the agent to e.g. ride all the way to Secaucus in Nice
Choices in New Jersey in light of the fact that, once she gets close, she converges upon confidence
that her choice maximizes causal expected utility after all.
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(For those EDTers keeping score: Skyrmsian dynamics relative to the Hob-skewed prior reverses the
recommendations of EDT for both Nice Choices in New Jersey and Newcomb in New Jersey.
The latter is obvious; the former holds because EDT simply “pre-conditionalizes” on each available
act, assigning Hob and expected utility of 10 and Sea an expected utility of 15. The alternative to
Skyrmsian dynamics on offer here does the latter but not the former; it permits, without requiring,
Sea in Nice Choices in New Jersey.)

With this much of the positive view on the table, we return to betting on the laws. Recall that in our
gloss on Problem 1, we were aware that some predictor was present and using the true laws to predict
our actions; while we weren’t certain the laws were D, we were very confident of it. The payouts for
A1 and A2 were:

v1 (H ∧D) (H ∧D) (H ∧D) (H ∧D)
A1 k 0 k 0
A2 0 k 0 k

Table 3 (repeated): Bet 1

For the sake of argument, I granted in §2 that you should do A1 if you face this choice by itself and
k > 0. But since H is, given D, equivalent to the prediction that you would choose A1, your credence
across {HD,HD} is sensitive here to your act-probabilities, which are in turn (via the feedback loop)
sensitive to your utilities. It might be that new information about prizes substantively increases your
credence that the predictor predicted A2 instead. This will have knock-on effects on CEU and, through
Jeffrey Conditioning, would ramify into your credences across your own actions.

v2 (H ∧D) (H ∧D) (H ∧D) (H ∧D)
A1 m m 0 0
A2 m+ t m+ t 0 + t 0 + t

Table 2 (repeated): Bet 2

Problem 2 (repeated here) is a standard Newcomb problem, where the good news hypothesis is H.
In this problem dynamically permissive CDT, like Skyrmsian CDT, says that A2 is always better than
A1 if m, t > 0, no matter what one’s act-probabilities are or how they evolve (as illustrated in Figure
3). So we get the two verdicts Elga wants regarding the choices the theory makes in each problem.

Now for Elga’s impossibility proof. My permissive causalist—seconded by Skyrms et al—argues that
although the priors with which you face Problems 1 and 2 start out the same, they need not stay the
same; they can permissibly evolve toward A1 (and thereby, towards H) in the first problem and toward
A2 (and thereby, towards ¬H) in the second problem, as a result of the very prizes you have been
offered. That means that, by the time you act, you aren’t working with the same credence function
across the two problems. Once again, the analogue of P1 holds: by Elga’s proof, no rational agent
can choose A1 in Problem 1 and A2 in Problem 2 while calculating causal expected utilities with
respect to the same probability function P . But the analogue of C1 does not hold: it is false, on my
theory, that an agent with prior P therefore cannot choose A1 in Problem 1 and A2 in Problem 2.

As we saw above, a proponent of Elga’s argument can reply by stipulating that the two problems are
faced at the same world and time—hence, with summed payoffs. This is the analogue of Stacked
Problems in New Jersey.

Stacked Problems 1 and 2. You face Problem 1 and Problem 2 simultaneously.

Stacked Problems 1 and 2 is a decision problem in good stead. Once again, though, the thing to
note about Table 6, is that, unless t > k, it is not a Newcomb Problem: the second row does not
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v1 + v2 (H ∧D) (H ∧D) (H ∧D) (H ∧D)
A1 m+ k m k 0
A2 m+ t m+ t+ k 0 + t 0 + t+ k

Table 6: Bets 1 & 2, payouts summed

(strictly) dominate the first. So unless t > k, the sine qua non of CDT—that thou shalt two-box in a
Newcomb Problem—does not constrain the Stacked Problem.

Instead, permissive CDT will analyze this decision problem as a series of tradeoffs, as we can illustrate
by considering (silly, low-stakes) proxies for m, t, and k. To narrate: once again, you believe yourself
to be observed by an infallible predictor. You are very (but not absolutely) sure that the observer is
Dolly (D). Focusing for the moment on this possibility (the odd columns of Table 6), we see that:
should you do A1, you will win a Pabst Blue Ribbon (worth k) iff the predictor is Dolly. Depending on
how much you value cheap beer, then, this may give you a reason to do A1. (It could be a very weak
reason.) And if you do so—since A1 entails one-boxing—you will also sacrifice t, the contents of a tiny
Newcomb box. On the other hand, if you do A2, you secure the tiny-box Newcomb box prize t, but
sacrifice the beer. So in all likelihood, the choice you face is a tradeoff between t and beer. Finally, in
the background: taking the beer rather than the small-box prize is a good sign that a medium box,
the contents of which you will also receive in either case, contains a medium prize m. But it cannot
increase the chances of that.

t tiny Newcomb prize
m medium Newcomb prize
k a Pabst Blue Ribbon beer

Finally, the even columns of Table 6 address the unlikely event that the predictor isn’t Dolly. In that
case, A2 is strictly better than A1, since, in addition to the contents of the medium Newcomb box, you
also get t and a beer to boot. And, of course—to rehearse standard two-boxer reasoning—the medium
box might contain m and it might not. But nothing you can do now will make any difference to that.

. . . It seems clear—at least, to me—that what you should do next will be influenced by how much you
value Pabst Blue Ribbon (viz., k). Suppose you value it a lot. Then you have a very strong reason to
do A1. If you are rational and follow through, then as you execute A1—the equivalent of riding the
bus to Secaucus, dutifully updating your act-probabilities along the way—your credence in H rises. So
your expectation of getting m rises. But you still see yourself as sacrificing t for the (nearly sure-thing)
beer. Suppose on the other hand that you value Pabst Blue Ribbon very little. Then your additional
reason to do A1 is correspondingly weak. If you are rational and follow through, then as you execute
A2, hanging around Hoboken until the sun goes down, your credence in ¬H rises. Your expectation
that the medium box contains m thus falls. You could perfectly well choose t and think (since the
predictor is almost surely Dolly) “it was worth it, though, by doing A2 instead of A1, I am poorer by
one cheap beer.”

It’s worth noting that the way I just told the story said nothing about my initial confidence that I’d
go for the beer (viz., choose A1, the act that gives me a beer only in the very likely event that the
predictor is Dolly). That is the difference between my view and Skyrms’s—mine does not privilege the
prior over acts.

...That was a bit complicated, so I’d like to tell the same story (the story of Table 6) again, beginning
with Newcomb aspect of the problem this time. Here goes. You are (a two-boxer and you’re) in a
Newcomb problem. There is thus a transparent box before you with a free $1000 in it. You can take it
just in case you don’t raise your arm (A2). So, offhand, you think the laws of nature—which are very
likely to be D—predict that you won’t raise your arm. But now: an eccentric offers you $k iff:

(i) D is true and you do raise your arm, or
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(ii) D is false and you do not raise your arm.

Whether the combined choice you now face is decision-dependent depends on the value of k; it is
decision-dependent when k > 1000. Suppose, for example, that k is 2000. You were, recall, initially
quite confident that D predicted you would keep your arm down. If causal expected utilities of A1

and A2 are calculated relative to this “locked” prior, then you believe that doing A1 is very likely to
net you a marginal gain of $0, whereas A2 is a sure-thing marginal $1000 (Figure 8a). The CEU of
the status quo thus drops locally if you increase your confidence in A1. If you nevertheless persist in
increasing your confidence in A1, you thereby increase your confidence in (D ∧ D predicted A1)—viz.,
in (H ∧D). Hence you become more confident as you execute your act that A1 will gain you $2000.

If k < 1000, you have no reason to alter your current credences in the predictions of D, because you are
still in a Newcomb Problem. Say $k is only $100 (Figure 8b). Then keeping your arm down dominates
raising it, no matter what you believe about what D predicts. You decline, so you get the $1000
and your arm stays put. This is a standard Newcomb Problem, except that the margin by which the
expected utility of two-boxing exceeds the expected utility of one-boxing has narrowed slightly (viz.,
it has shrunk by $100).

Summing up, the eccentric has hardly spoiled your day: you’ll either get $1000, or you will get $k,
whichever is bigger. In each case, by following CDT, you will wind up certain you did better than you
otherwise would have.

Before
additional offer D ∧ D pred A1 D ∧ D pred A2

A1 (raise) [big box] [big box]

A2 (don’t raise) [big box] + $1000 [big box] + $1000

After D ∧ D pred A1 D ∧ D pred A2

A1 (raise) [big box] + $2000 [big box]+ $2000
A2 (don’t raise) [big box] + $1000 [big box] + $1000

Figure 8a: k > $1000. Shading indicates high terminal confidence.

Before
additional offer D ∧ D pred A1 D ∧ D pred A2

A1 (raise) [big box] [big box]

A2 (don’t raise) [big box] + $1000 [big box] + $1000

After D ∧ D pred A1 D ∧ D pred A2

A1 (raise) [big box] + $100 [big box]+ $100
A2 (don’t raise) [big box] + $1000 [big box] + $1000

Figure 8b: k < $1000. Shading indicates high terminal confidence.

4.3 Summing Up

In this section, I aim to lay out a preliminary statement of my differences with Skyrms before conclud-
ing.

Skyrms (1990) directs an agent to choose, if possible, an act A:
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(i) which maximizes CEU after the agent’s prior P evolves according to a local dynamical law.

(ii) whose CEU does not fall below the CEU of any other option as its probability approaches 1.

I have hedged the statement of Skyrms’s view with “if possible”, because in nasty cases like Death
in Damascus, whether making such a choice is possible will turn on the availability of mixed acts.15

Should mixed acts be admitted, Skyrms’s (i) entails that there is an equilibrium probability distribution
Pt′ , such that Pt′+1(A) = Pt′(A) for all A ∈ {A}.16 If mixed acts are admitted, therefore, Skyrms’s (i)
entails (ii).

The bare-bones positive view I inclined towards above, by contrast, was simply (ii) without (i): choose,
if possible, an act A:

(ii) whose CEU does not fall below the CEU of any other option as its probability approaches 1.

(ii) is known in the literature as (causal) ratifiability, and my bare-bones view thus coincides with the
views endorsed by other ratifiability-inclined causal decision theorists, such as Harper (1986, 1992);
Weirich (1985); Joyce (2007)17, and Armendt (2019).

5 Conclusion(s)

In this paper, after presenting Elga’s impossibility proof for CDT under determinism, I explored a
way of resisting it. My argument leveraged decision dependence—which arises natively out of Jeffrey
Conditioning and CDT’s characteristic equation—to work around the key assumption of Elga’s proof:
to wit, that in Problems 1 and 2, the CDTer must employ subjunctive-suppositional (rather than ev-
idential) transformations of a shared prior. Achieving absolution did involve some evolution: I stepped
slightly away from Skyrms’s received view, sketching a form of CDT with deliberational dynamics that
helps itself to the idea that act-probabilities can pursue the distal at the expense of the local good.

I am unsure whether there is a substantive disagreement between Skyrms and myself on the issue of
locality. Many of the dynamical laws Skyrms considers make their home in the setting of evolutionary
games and population dynamics, rather than in (subjective, one-shot) decision theory. In evolutionary
game theory contexts—such as the ones studied by Maynard-Smith (1982)—the prior over acts repre-
sents proportions of strategies played by a whole interacting species population, and the dynamics are
stipulated to be driven by Darwinian mechanisms that are clearly local in character. The considerations
raised against locality in this paper do not carry over to these settings.18

In concluding, I would like to touch briefly on three matters relevant to the recent dialectic surrounding
Elga’s paper. The first is a dilemma for the semantics of counterfactuals raised by Cian Dorr (2016).
The second is James Joyce (2016)’s response to Arif Ahmed’s deterministic counterexamples to CDT,
which bear important similarities (flagged by Elga) to the dilemma discussed here. The third is an
intriguing footnote of Elga’s that highlights the possibility of an agent’s being ignorant of her own
value function.

15This depends, in turn, on the agent’s ability to perform mixed acts—at least, on the usual construal of what
equilibrium distributions {P (A) : A ∈ {A}} represent. On the alternative view of Arntzenius (2008), by contrast,
decision theory does not aim to issue in acts (mixed or otherwise), but only in (possibly mixed) credal states. Hence for
Arntzenius the recommendations of CDT do not, strictly speaking, depend on the ability of an agent implement mixing.

16In the symmetric Death in Damascus case, for example, this point is P (Alep) = P (Dam) = .5.
17Though compare Joyce (2012), who argues against ratifiability in Nasty Problems.
18Intriguingly, it is worth noting that even within the context of evolutionary game theory, one can find dissatisfaction

with locality (sometimes called history-dependence). In particular, stochastic evolutionary game dynamics studies the
effect of perturbations—environmental shocks, spontaneous mutations in strategies, and other probabilistic phenomena—
that make equilibrium selection less history-dependent (Wallace & Young, 2014, pg. 239). This treatment ends up with
solution concepts, like risk-dominant equilibria, that more closely approximate ratifiability; see in particular the treatment
of the coordination game in Wallace & Young op. cit., pg. 335.
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5.1 A Question from Dorr (2016)

The commitments I have made in this paper about the imaging operation, which transforms P (·)
into PA(·), are minimal in the extreme. They include the Constraint on Imaging, which is best
understood as a claim about what imaging does not do (rather than what it does do).19 Beyond that,
I have accepted, for the sake of engaging with Elga’s argument, only a very specific further claim: to
wit, that where

• P is one’s prior and {A1, A2} are “mundane” actions such as raising one’s arm,

• D is a deterministic theory of the laws of nature, and

• H is the most inclusive specification of initial conditions which, under D, entail A1,

. . . that we may conclude that PA1(D ∧H) = PA2(D ∧H) = 0. (As noted in §2, the best form of an
argument for this conclusion likely goes not directly through imaging, but first through an appeal to
chance: for example, an argument that Ch(D ∧H ∧A1) = 0 is entailed by the description of the case,
which entails in turn that PA1(D ∧H) = 0 for any P that treats chance as an expert.)

One might argue that, as a defender of CDT, I owe a more positive, and metaphysically general, account
of how imaging does shift values assigned by the prior. Questions of this kind have been raised about
the very general modal relation—sometimes called the “selection function” (Stalnaker, 1968)—that
is held in the literature to underwrite both imaging and the semantics of counterfactuals.20 Take a
question posed by Dorr (2016): supposing Determinism is true, and that (to use Dorr’s example) I did
not blink a moment ago, which of the following counterfactuals:

(1) If I had blinked, the past would have been different.

or

(2) If I had blinked, the laws would have been different.

shall we say is (nonvacuously) true? Each option seems very strange.

In Elga’s dilemma, it looks like we must answer a similar question. Let A∗ rigidly denote the act
in {A1, A2} that the agent in fact performs, and let H∗ be the actually true member of {H,H}.
Since A2 = A1 and A∗ ∈ {A1, A2}, we know that PA∗ ∈ {PA1 , PA2}. Since we’ve granted that
PA1(D∧H) = PA2(D∧H) = 0, we can conclude that if D is true, and either (3) or (4) below is false,
the other must, surprisingly, be true:

(3) If the agent had done otherwise, the past would have been different.

PA∗(H∗) = 0

(4) If the agent had done otherwise, the laws would have been different.

PA∗(D) = 0

And from this observation about counterfactuals, two claims seem to follow.21

Claim 1 (tradeoff). In Elga’s problem, if {D,¬D} is (believed by an agent to be)
counterfactually independent of {A1, A2}, then {H,¬H} is (believed by that agent to be)
counterfactually de-pendent on {A1, A2}, and vice-versa.

19That is to say: when {A} is counterfactually independent of {S}, the Constraint says imaging on {A} does not
change the probability of S ∈ {S}.

20See Lewis (1981, §10) and Lewis (1976, §6). Stalnaker (1968)’s selection function semantics for counterfactuals
A� B is the source of the bridge principle P (A� B) = PA(B) Lewis uses in the 1976 article.

21I am indebted to an anonymous referee for pushing me to consider these claims.
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Claim 2 (powers). In Elga’s problem, if {D,¬D} is (believed by an agent to be) outside
her power to change, then {H,¬H} is (believed by that agent to be) within her power to
change, and vice-versa.

I do not think the decision-dependent approach to CDT defended in this paper is committed to the
truth of either Claim 1 or Claim 2, because it is not committed to the idea that even one of (3)-(4) is
nonvacuous in the relevant sense. I will try here to briefly say why.

Suppose, instead of Elga’s mere high confidence, that we are completely certain that some deterministic
theory—which we might as well continue to call ‘D’—holds, and consider this simple variation on Nice
Choices in New Jersey.

Explicitly Deterministic Nice Choices in New Jersey (EDNCNJ). Yesterday, just
as before, a predictor left $10 in Hoboken iff she believed you would go there, and $15
in Secaucus iff she believed you would go there. You are certain that she used the true
deterministic theory D to make her prediction. So you are certain that: either the objective
chance you will go to Hoboken is 0, or the objective chance that you will go to Secaucus is
0.

As far as I can see, this twist on Nice Choices in New Jersey is entirely compatible with the
permissive deliberational dynamics approach I advocated above. But nothing analogous to Claims
1-2 hold in EDNCNJ: the bare fact that I consider {Predicted Hoboken, Predicted Secaucus} to be
counterfactually independent of my actions—ergo, not within my power to change—does not entail
that I believe of some other state-partition {Y, Y } that’s relevant to determining my utilities that it
is within my power to change.

Rather, EDNCNJ is compatible with the analysis sketched above because all of the following can still
be stipulated to hold in the story:

(1) P (Sea) and P (Hob) are intermediate at t = 0;

(2) P (Predicted Hoboken | Hob) and P (Predicted Secaucus | Sea) are both approximately 1;

(3) {Predicted Hoboken, Predicted Secaucus} is nonetheless counterfactually independent of {Hob,
Sea}, and thus subject to the Constraint on Imaging;

(4) I can alter my act-probabilities across {Hob, Sea} at will;

(5) I update as I do so, if I do so, by Jeffrey Conditionalization;

(6) CEUt(Hob) and CEUt(Sea) are (therefore) decision-dependent.

CDT with deliberational dynamics thus enjoys a tactical advantage in the context of debates about
Determinism: it provides prescriptions for rational decisions even under such (apparently paralyzing)
constraints as Determinism’s fully believed truth.

This is not, of course, to say that Claims 1-2 are false. It is only to say that the answer to the
practical question of what to do in EDNCNJ, like the question of what to do in the original Nice
Choices in New Jersey, does not seem to depend on their truth.

5.2 The view from Joyce (2016)

This neutrality within deliberational dynamics also bears on the comparison between my view and
that of Joyce (2016). Joyce aims, as I do here, to defend CDT from the charge that it cannot bet
rationally on deterministic laws. In a nutshell, his response to gambles where (theories like) D play a
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role in individuating prizes is this. Given what you believe, if D is true, you are not really in a decision
problem at all. This is because one of your apparently available options is (nomically) impossible for
you, though you know not which. It follows, Joyce argues, that decision theorists can de facto ignore
the D-columns of any such decision problem, even when P (D) is high. For example, in Stacked
Problems 1 and 2—the decision problem illustrated in Table 6—we should pay attention to the
recommendations of CDT only where D is false. The problem is quite easily decided in that case,
since, from the CDTer’s point of view, one of the options strictly dominates the other.22

On a “hard” construal of determinism, Joyce’s analysis seems right to me. I suspect that the permissive
form of causalist deliberational dynamics I explored in this paper can be seen as another way of making
the same point. If we are to take naturalistic decision theory seriously, then we should take seriously
the idea that the agent can increase her confidence in any option A ∈ {A} at will. In the case of
D, this means that, even if one of my options is objectively impossible, I can choose which option I
(justifiedly!) believe it is. To put things the other way around: suppose an agent cannot choose which
option she (justifiedly) believes she is bringing about in the way the view I sketched presupposes. Then
I think there is reason to be skeptical, with Joyce, that she is really in a decision problem at all.

5.3 A footnote from Elga

Finally, there is the matter of Elga’s footnote. Here is what he has to say (emphasis added):

Since in [Problem 1] and [Problem 2] you have the same probability function but different
value functions, in at least one of the two situations you are ignorant or incorrect about your
value function. In response to the worry that such ignorance compromises verdicts about
what it is rational to do in [these] situations, there are at least two options. (1) one might
hold that rationality requires one to maximize expected utility even when one is less than
omniscient about one’s values. (2) One might model the whole setup with probabilities
defined over a space of ‘coarsened’ elementary possibilities each of which is silent about the
subject’s values. Doing so would remove the need to say that in either situation the subject
is mistaken about her values. (Elga op cit., ftn. 8, quoted in its entirety)

What I take Elga to be highlighting here is the possibility of taking a strategy quite like the one I took
in this paper. He is flagging that his impossibility result can be blocked if the prior evolves in response
to the prizes featured in the relevant problem(s) before (causal) expected utility is calculated.

Because I do not know how to state a theory of CDT with deliberational dynamics under the more
relaxed assumptions about value Elga sketches in the quoted passage—and he does not offer one
himself—this line of response lies outside the scope my discussion. I confess do not straightaway see
how Elga’s sketch would go. Suppose I know that I’ll get a Coffee Roll iff I raise my arm and a Boston
Kreme otherwise, but I am given no information about how v(Coffee Roll) compares to v(Boston
Kreme). Can expected utility require anything of me here?

If the issue is expectation of v, rather than v itself, then we are in somewhat more familiar territory.
In that case I will say only this: I find it odd to conceptualize the potential weakness of Elga’s proof in
terms of ignorance of one’s (expected) value function. What I, following Skyrms, emphasized was that
the expected value function adapts in response to prizes the world throws up at us. The possibility of
such adaptation seems fundamental—not to some weird ideal of self-transparency, but to the concept
of decisionmaking as such.

22See in particular Joyce op. cit., pg. 226, where he makes a this point about dominance in the context of a very
similar decision problem.
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Appendix

Skyrms CDT sees asymmetric nice cases as ones where your act-credences are constrained to seek the
local good; you must, in that sense, remain in the grip of your prior. Below are some rules that appear
in Skyrms (1990); we consider them with respect to a prior P according to which P (Hob) = .75 and
P (Sea) = .25 (the vertical line in Figure 4).

(1) Nash map: where cov(Ai), the covetability of an act Ai, is max[CEU(Ai)− CEU(SQ), 0]:

P+(Ai) =
P (Ai) + cov(Ai)

1 +
∑

i cov(Ai)

In Nice Choices in New Jersey, cov(Hob) is positive with respect to the prior P , while
cov(Sea) is 0; hence P+(Sea) < P (Sea).

(2) The general Nash map family is parameterized to a weight k:

P+(Ai) =
kP (Ai) + cov(Ai)

k +
∑

i cov(Ai)

Once again, cov(Hob) is positive with respect to the prior P , while cov(Sea) is 0. Thus
∑

i cov(Ai) =

cov(Hob), and so we have P+(Sea) = k·P (Sea)
k+cov(Hob) . Hence whenever k > 1, P+(Sea) ¡ P (Sea).

(3) Darwin (or Maynard Smith23) map:

P+(Ai) = P (Ai)
CEU(Ai)

CEU(SQ)

. . . this map requires that utilities are nonnegative, a condition which is already met by the prizes
in Nice Choices in New Jersey. With respect to the prior P , CEU(Sea) < CEU(SQ). Hence
CEU(Sea)
CEU(SQ) < 1 and so again P+(Sea) < P (Sea).

23Maynard-Smith (1982).

23



References

Ahmed, Arif (2013). “Causal Decision Theory: A Counterexample.” Philosophical Review , 122(2).

Ahmed, Arif (2014). Evidence, Decision and Causality . Cambridge University Press.

Albert, David (2000). Time and Chance. Cambridge, MA: Harvard University Press.

Armendt, Brad (2019). “Causal Decision Theory and Decision Instability.” Journal of Philosophy ,
116(5): pp. 263–277.

Armstrong, David (1983). What Is a Law of Nature? . Cambridge: Cambridge University Press.

Arntzenius, Frank (2008). “No Regrets, or: Edith Piaf Revamps Decision Theory.” Erkenntnis, 68(2):
pp. 277–297.

Dorr, Cian (2016). “Against Counterfactual Miracles.” Philosophical Review , 125(2): pp. 241–286.

Egan, Andy (2007). “Some Counterexamples to Causal Decision Theory.” The Philosophical Review ,
116(1): pp. 93–114.

Elga, Adam (2022). “Confessions of a Causal Decision Theorist.” Analysis, 82(2): pp. 203–213.

Gärdenfors, Peter (1982). “Imaging and Conditionalization.” Journal of Philosophy , 79(12): pp.
747–760.

Gibbard, Allan, and William Harper (1978). “Counterfactuals and Two Kinds of Expected Utility.”
In C. A. Hooker, J. J. Leach, and E. F. McClennen (eds.) Foundations and Applications of Decision
Theory, Vol 1 , Dordrecht: D. Reidel.

Goodman, Nelson (1965). Fact, Fiction, and Forecast . Indianapolis: Bobbs-Merrill.

Hare, Caspar, and Brian Hedden (2016). “Self-Reinforcing and Self-Frustrating Decisions.” Noûs,
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