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1. Introduction

Financial frictions have been shown to amplify the business cycle. This paper argues that 
they can also be its engine. It studies a model of an open economy with a flow collateral 
constraint, whereby external debt is limited by the value of tradable and nontradable income. 
This environment has been extensively used to shed light on important issues in open economy 
macroeconomics such as inefficient credit booms, overborrowing, and sudden stops. However, 
the related literature has limited attention to economies driven by exogenous stochastic distur-
bances. The contribution of the present paper is to show that the mere presence of the financial 
friction can engender cyclical fluctuations. To highlight this result we abstract from any source 
of uncertainty and characterize perfect foresight equilibria. Furthermore, we focus on parameter-
ization for which the equilibrium is unique.

The first result of the paper is a full analytical characterization of the debt policy function (i.e., 
the choice of current debt as a function of the level of past debt) in infinite-horizon environments 
in which agents are impatient (β(1 + r) < 1) and lines of credit are tied to income. These two 
features are defining elements of the literature to which this paper contributes. To the best of our 
knowledge, this is the first paper to achieve this task. Although numerical characterizations in 
stochastic environments do exist. The paper shows that the debt policy function is continuous but 
nonmonotonic. Importantly, it shows that the maximum of the debt policy function lies above 
the 45-degree line and occurs at a level of debt below the steady state, that is, below the largest 
constant level of debt that satisfies the collateral constraint and guarantees positive consumption. 
This characteristic of the debt policy function gives rise to endogenous equilibrium dynamics in 
which the economy oscillates around the steady state level of debt and suffers from recurring 
inefficient credit booms followed by debt deleveraging.

The second contribution of the paper is to show that for conditions that obtain under plausible 
calibrations, the aforementioned oscillatory dynamics are periodic, which means that the econ-
omy perpetually fluctuates around the steady state without ever converging to it. The economy 
exhibits cycles of periodicity three. By the Li and Yorke (1975) theorem, this implies the exis-
tence of cycles of any periodicity and chaos. The endogenous cycles identified in this paper share 
a number of features of business cycles observed in emerging market economies. In particular, 
during the expansionary phase of the cycle, external credit grows, domestic absorption expands, 
the real exchange rate appreciates, and the current account deteriorates. At some point, the finan-
cial constraint binds, the credit boom comes to a stop, there is widespread debt deleveraging, the 
real exchange rate depreciates, and the current account experiences a reversal.

The emergence of endogenous cycles has to do with three key features of the class of models 
to which this paper belongs. One is that agents are impatient in the sense that their subjective 
discount rate exceeds the market discount rate (β(1 + r) < 1). This feature drives agents to front 
load consumption. Absent financial frictions, household debt would rise monotonically and ap-
proach the natural debt limit. The second is a financial friction taking the form of a collateral 
constraint. The third feature of the model that is key for the emergence of endogenous cycles is 
the well known fact that when collateral depends on equilibrium prices, the collateral constraint 
creates a pecuniary externality. In the present model collateral is the sum of tradable and non-
tradable income so that the relative price of nontradables in terms of tradables affects the value 
of collateral measured in units of tradable goods. By this externality, agents fail to internalize 
the full costs of temporarily borrowing beyond the maximum level of debt that is sustainable 
in the long run. In particular, they fail to see that their individual borrowing, in the aggregate, 
fuels the credit boom by raising the value of collateral through real exchange rate appreciation 
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and that their deleveraging by depreciating the real exchange rate exacerbates the credit crunch. 
Debt deleveraging has a cleansing effect, as debt levels must fall significantly below the level 
that is sustainable in the long run. At this point, impatient consumers feeling financially stronger 
embark on another credit boom and the story repeats itself.

The third result of the paper is to show that endogenous debt cycles are inefficient in the sense 
that they imply greater fluctuations in consumption than is socially optimal. We characterize 
analytically the debt policy function of the Ramsey planner. This characterization is also novel 
as only numerical approximations for stochastic economies are presented in the related literature. 
As is well known, the Ramsey planner behaves like an individual who becomes more patient in 
periods in which the collateral constraint is slack in the current period but binding in the next. 
Thus she puts more weight on the future costs of deleveraging than do private households. We 
present conditions under which it is optimal for the Ramsey planner to eliminate endogenous 
cycles altogether.

Finally, we characterize the associated optimal capital control policy and show that the planner 
puts capital control taxes into place when next-period debt in the laissez-faire economy exceeds 
the level of debt that is sustainable in the long run. This result is a refinement of an existing 
one in stochastic versions of the present economy, namely, that the Ramsey planner imposes 
capital controls in the current period when the probability that the collateral constraint will bind 
under the optimal allocation in the next period is strictly positive. This finding shows that capital 
controls can be optimal in deterministic environments.

This paper is related to a large and growing literature on financial constraints in open economy 
models. The type of flow collateral constraint we study was introduced in open economy models 
by Mendoza (2002) to understand sudden stops caused by fundamental shocks. The pecuniary 
externality that emerges in this framework and the consequent room for macroprudential policy 
is studied in Korinek (2011), Lorenzoni (2008), Bianchi (2011), Benigno et al. (2013, 2016), 
Schmitt-Grohé and Uribe (2017a, 2017b), Dávila and Korinek (2018), and Jeanne and Korinek 
(2019), among others. Multiple equilibria have been identified in models with stock collateral 
constraints, where debt is limited by the value of capital or land, by Jeanne and Korinek (2019)
and Schmitt-Grohé and Uribe (2017a) and in models with flow collateral constraints, where debt 
is limited by income, in Schmitt-Grohé and Uribe (forthcoming). By contrast, the present paper 
focuses on parameterizations for which the equilibrium is unique and characterizes conditions 
under which there exist deterministic cycles taking the form of periodic equilibria or chaos.

The paper is also related to a closed-economy literature showing that financial frictions 
can give rise to endogenous instability in both infinite-horizon and overlapping-generations 
economies. Benhabib et al. (2016) show the existence of chaotic equilibrium dynamics when 
the financial friction takes the form of limited enforcement in the banking sector. Woodford 
(1989) shows that periodic equilibria and chaos can occur when the financial friction takes the 
form of market segmentation whereby workers are hand-to-mouth consumers and firms finance 
investment from retained earnings. Beaudry et al. (2020) characterize periodic equilibria in a 
New Keynesian model with consumer default risk and bank monitoring costs. Suarez and Suss-
man (1997) show the possibility of boom bust cycles in models with asymmetric information in 
financial markets and Dong and Xu (2020) in a model with banks and financially constrained het-
erogeneous firms. Matsuyama (2007) emphasizes agency problems in credit markets as a source 
of cycles. Azariadis et al. (2016) show the existence of self-fulfilling credit cycles in a model with 
unsecured corporate debt, Benhabib et al. (2018) in an economy with adverse selection in credit 
markets, and Cui and Kaas (forthcoming) in a model with corporate default. Gorton and Ordoñez
(2014, 2020) and Chousakos et al. (2020) analyze overlapping generations frameworks in which 
3



S. Schmitt-Grohé and M. Uribe Journal of Economic Theory 192 (2021) 105195
financial constraints are informational in nature and information and productivity comove in such 
a way as to create credit-led boom bust cycles. Gu et al. (2013) show that endogenous credit cy-
cles may arise in an economy with endogenous debt constraints due to limited commitment to 
repay. Martin and Ventura (2012) and Miao and Wang (2018) introduce financial frictions in 
models of rational bubbles to generate booms and busts in net worth and asset prices.

The remainder of the paper is organized as follows. Section 2 presents the model. Section 3
shows that in equilibrium the financial constraint must bind in an infinite number of periods and 
characterizes the steady state of the economy. Section 4 provides an analytical characterization 
of the debt policy function. Section 5 derives conditions under which deterministic cycles ex-
ist. Section 6 characterizes the Ramsey allocation and establishes conditions under which it is 
optimal to eliminate endogenous cycles. Section 7 concludes.

2. The model

This section presents a model of an open economy with tradable and nontradable goods in 
which debt is limited by a fraction of the value of tradable and nontradable income. This collateral 
constraint introduces a pecuniary externality because the price of nontradables, which affects the 
value of the nontradable component of income, is taken as exogenous by individual agents, but 
is endogenously determined in equilibrium. The present formulation is a workhorse model in the 
sudden stop literature. To isolate the role of financial frictions in generating endogenous business 
cycles, the model abstracts from any source of uncertainty.

Consider an open economy populated by a large number of identical households with prefer-
ences of the form

∞∑
t=0

βtU(ct ), (1)

where ct denotes consumption in period t , U(·) denotes an increasing and concave period utility 
function, and β ∈ (0, 1) denotes the subjective discount factor. The period utility function takes 
the CRRA form

U(c) = c1−σ − 1

1 − σ
,

with σ > 0. Consumption is assumed to be a composite of tradable and nontradable goods, taking 
the CES form

ct = A(cT
t , cN

t ) ≡
[
acT

t

1−1/ξ + (1 − a)cN
t

1−1/ξ
]1/(1−1/ξ)

, (2)

with ξ > 0, a ∈ (0, 1), and where cT
t denotes consumption of tradables in period t and cN

t denotes 
consumption of nontradables in period t . Households are assumed to have access to a one-period 
internationally-traded bond denominated in terms of tradable goods, which pays the interest rate 
r > 0. The household’s sequential budget constraint is given by

cT
t + ptc

N
t + dt = yT + pty

N + dt+1

1 + r
, (3)

where pt denotes the relative price of nontradables in terms of tradables (or the real exchange 
rate), dt denotes the amount of debt assumed in period t − 1 and due in period t , and yT , yN > 0
denote the endowments of tradables and nontradables, respectively. Households are subject to 
the standard no-Ponzi-game constraint limt→∞(1 + r)−t dt ≤ 0.
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The collateral constraint takes the form

dt+1 ≤ κ(yT + pty
N), (4)

where κ > 0 is a parameter. The pecuniary externality arises because of the presence of the 
relative price of nontradables, pt , on the right-hand side of the collateral constraint (4). Each in-
dividual household takes pt as exogenously determined, even though, collectively, the absorption 
of goods by households is a determinant of this relative price.

The following assumption makes the collateral constraint economically relevant by ruling out 
an equilibrium in which it never binds:

Assumption 1. The parameters κ and r satisfy

κ <
1 + r

r
. (5)

As will become clear shortly, this assumption says that the collateral constraint is violated 
at the natural debt limit—when debt is so high that the entire endowment of tradables must be 
devoted to pay interest and tradable consumption is nil.

A key assumption in the related literature, which we also maintain here, is that households 
discount future period utilities at a rate higher than the market discount rate:

Assumption 2. β(1 + r) < 1.

Households choose sequences cT
t > 0, cN

t > 0, ct > 0, and dt+1 to maximize (1) subject to 
(2)-(4), taking as given the path of the real exchange rate, pt , and the initial debt position, d0. 
The first-order conditions of this problem are (2)-(4),

U ′(A(cT
t , cN

t ))A1(c
T
t , cN

t ) = λt , (6)(
1

1 + r
− μt

)
λt = βλt+1, (7)

pt = 1 − a

a

(
cT
t

cN
t

)1/ξ

, (8)

μt ≥ 0, (9)

μt

[
dt+1 − κ(yT + pty

N)
]

= 0, (10)

and the transversality condition

lim
t→∞

dt

(1 + r)t
= 0, (11)

where βtλt and βtλtμt denote the Lagrange multipliers on the sequential budget constraint (3)
and the collateral constraint (4), respectively.

In equilibrium, the market for nontradables must clear, that is, cN
t = yN for all t . Combining 

this market clearing condition with the household’s sequential budget constraint, equation (3), 
we obtain the economy’s resource constraint

cT
t + dt = yT + dt+1

. (12)

1 + r

5
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An equilibrium is then a set of sequences {cT
t , λt , μt , pt , dt+1}∞t=0 satisfying the collateral 

constraint (4), the Euler equation (7), the nonnegativity constraint (9), the complementary slack-
ness condition (10), the transversality condition (11), the resource constraint (12), and

U ′(A(cT
t , yN))A1(c

T
t , yN) = λt , (13)

pt = 1 − a

a

(
cT
t

yN

)1/ξ

, (14)

and

cT
t > 0, (15)

given the initial level of debt, d0.

3. The recurrent nature of a binding collateral constraint

A property of the present economy that is important for establishing the existence of endoge-
nous cycles is that an equilibrium in which the collateral constraint never binds does not exist. To 
see this, suppose, contrary to the claim, that the collateral constraint never binds in equilibrium, 
that is, (4) always holds with a strict inequality. By (10) it then must be the case that μt = 0 for 
all t ≥ 0. In this case, the Euler equation (7) and the assumption that β(1 + r) < 1 imply that λt

converges to ∞. This in turn implies that cT
t converges to 0, which follows from equation (13)

and the assumed functional forms for U(·) and A(·, ·). The resource constraint (12) then implies 
that in the limit debt evolves according to the expression dt+1 = (1 + r)dt − (1 + r)yT . Since 
r > 0, we have that dt must converge to the steady state of this expression,

d̄ ≡ yT (1 + r)

r
,

(the natural debt limit), for otherwise dt will converge to infinity in absolute value at the rate 
r , violating the transversality condition (11). The fact that cT

t converges to 0 implies by equa-
tion (14) that the relative price of nontradables must converge to 0, limt→∞ pt = 0 (that is, 
tradables become infinitely expensive). Finally, with pt → 0 and dt+1 → yT (1 + r)/r , in the 
limit the collateral constraint (4) becomes yT (1 + r)/r ≤ κyT , which violates Assumption 1. We 
have therefore established that an equilibrium in which the collateral constraint never binds is 
impossible. We summarize this result in the following proposition:

Proposition 1 (The recurrent nature of a binding collateral constraint). If r > 0, and Assump-
tions 1 and 2 hold, then in equilibrium the collateral constraint binds in an infinite number of 
periods.

We next establish that if Assumptions 1 and 2 hold, a steady state exists, is unique, and features 
a binding collateral constraint. A steady state is defined as an equilibrium in which all variables 
are forever constant. Proposition 1 shows that an equilibrium in which the collateral constraint is 
always slack does not exist. We therefore have the following corollary:

Corollary 1. If a steady state exists, it must feature a binding collateral constraint.
6



S. Schmitt-Grohé and M. Uribe Journal of Economic Theory 192 (2021) 105195
To analyze existence of a steady state, it is convenient to express the right-hand side of the 
collateral constraint, equation (4), as a function of dt+1 and dt . To this end use the resource con-
straint, equation (12), to eliminate cT

t from equation (14), and then use the resulting expression 
to eliminate pt from the collateral constraint. This yields

κ(yT + pty
N) = F(dt+1, dt ) ≡ κ

⎡
⎣yT + 1 − a

a

(
yT + dt+1

1+r
− dt

yN

)1/ξ

yN

⎤
⎦ , (16)

with F1 > 0 and F2 = −(1 + r)F1 < 0. The collateral constraint (4) can then be written as

dt+1 ≤ F(dt+1, dt ).

The object F(dt+1, dt ) is the value of collateral in equilibrium. The intuition for why in equilib-
rium the value of collateral depends on the amount of debt taken on by the country in period t , 
dt+1, is as follows. All other things equal, an increase in dt+1 implies an increase in consump-
tion. Given the relative price of nontradables, pt , households would like to spend the additional 
borrowing on both tradable and nontradable consumption. However, in equilibrium the supply of 
nontradables, yN , is fixed. Consequently, market clearing in the nontraded sector requires an in-
crease in the relative price of nontradables. In turn, the increase in pt raises the value of income, 
yT + pty

N , which in equilibrium is F(dt+1, dt )/κ .
From Corollary 1, we have that if a steady state exists, there must be a scalar d̃ such that the 

collateral constraint holds with equality when dt = dt+1 = d̃ . Formally, suppose that dt = dt+1 =
d , then the steady-state collateral constraint becomes

d ≤ F(d, d) = κ

⎡
⎣yT + 1 − a

a

(
yT − rd

1+r

yN

)1/ξ

yN

⎤
⎦ . (17)

Fig. 1 plots the left- and right-hand sides of the steady-state collateral constraint, equa-
tion (17). The left-hand side is the 45-degree line. The right-hand side, F(d, d), is unambiguously 
downward sloping. The steady-state level of debt, d̃, is the value of d at which the left- and 
right-hand sides intersect, that is, where the steady state collateral constraint is binding. By As-
sumption 1, the collateral constraint is violated at the natural debt limit, d = d̄ ≡ yT (1 + r)/r . 
Also, it is clear that the collateral constraint is slack when d = 0. This means that d̃ exists, is a 
unique positive scalar smaller than the natural debt limit (0 < d̃ < d̄), and is implicitly given by

d̃ = F(d̃, d̃). (18)

Because d̃ is below the natural debt limit, the associated steady state value of cT
t is strictly 

positive.
To complete the proof of the existence of a steady state, it remains to show that when dt = d̃

for all t , the Euler equation (7), the nonnegativity constraint (9), and the transversality con-
dition (11) all hold. The latter condition is trivially satisfied for any constant value of debt. 
Evaluating (7) at d̃ we obtain 1 = β(1+r)

1−(1+r)μt
, which by Assumption 2 implies that μt is pos-

itive and equal to μ̃ ≡ 1/(1 + r) − β > 0, so that (9) holds. Intuitively, this expression for μ̃
says that the more impatient the household is (the smaller β is), the larger μ̃ will be, reflecting 
the fact that more impatient households would be willing to pay a higher price for the right to 
increase their debt by one unit. We have therefore shown that all the equilibrium conditions are 
satisfied when dt = d̃ for all t , that is, we have demonstrated the existence of a steady state. We 
summarize this result in the following proposition:
7
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Notes. The figure plots the right-hand side of the steady-state collateral constraint (17) (the downward sloping line) and 
its left-hand side (the 45-degree line). On the horizontal axis, d̃ denotes the steady-state level of debt, that is, the solution 
to d = F(d, d), and d̄ ≡ yT (1 + r)/r denotes the natural debt limit. On the vertical axis, κyT is the value of collateral at 
the natural debt limit (i.e., when cT

t = pt = 0).

Fig. 1. The steady-state collateral constraint.

Proposition 2 (Existence of the steady state). If Assumptions 1 and 2 hold, then a steady state 
exists and is unique. Furthermore, the steady state features a binding collateral constraint and a 
level of debt implicitly given by d̃ = F(d̃, d̃).

4. Characterization of the debt policy function

In this section we characterize the debt policy function, which we denote by

dt+1 = D(dt ).

To this end we reduce the set of equilibrium conditions as follows. Using the resource con-
straint (12) to eliminate cT

t from (13), we can express λt as the following function of dt+1 and 
dt :

λt = �(dt+1, dt ) ≡ U ′
(

A

(
yT + dt+1

1 + r
− dt , y

N

))
A1

(
yT + dt+1

1 + r
− dt , y

N

)
,

with �1 < 0 and �2 = −(1 + r)�1 > 0.
An equilibrium is then a pair of sequences {dt+1, μt }∞t=0 satisfying

�(dt+1, dt ) = β(1 + r)

1 − (1 + r)μt

�(dt+2, dt+1), (19)

dt+1 ≤ F(dt+1, dt ), (20)

μt [F(dt+1, dt ) − dt+1] = 0, (21)

μt ≥ 0, (22)

yT + dt+1 − dt > 0, (23)

1 + r

8
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and

lim
t→∞

dt

(1 + r)t
= 0, (24)

given the initial level of debt, d0. With equilibrium sequences for dt+1 and μt in hand, cT
t can 

then be obtained from (12), λt from (13), and pt from (14).
To avoid the type of multiplicity of equilibria identified in Schmitt-Grohé and Uribe 

(forthcoming), we restrict attention to parameter configurations for which the slope of the right-
hand side of the collateral constraint with respect to dt+1 evaluated at the steady state is less than 
one,

Assumption 3. F1(d̃, d̃) < 1.

The interpretation of this condition is that in the vicinity of the steady state, if the country takes 
on more debt, the collateral constraint tightens. To see this, recall that the slack in the collateral 
constraint equals F(dt+1, dt ) −dt+1. When Assumption 3 is not satisfied, the collateral constraint 
behaves perversely, in the sense that in equilibrium an increase in debt relaxes the collateral 
constraint. Schmitt-Grohé and Uribe (forthcoming) show that when Assumption 3 is not satisfied, 
multiple equilibria exist. Thus, Assumption 3 differentiates the analysis in the current paper from 
that in Schmitt-Grohé and Uribe (forthcoming) by showing that even if the equilibrium is unique, 
the economy may display endogenously generated credit cycles. Assumption 3 is neither a strong 
nor a weak assumption in the sense that there are equally plausible calibrations for which it 
is satisfied and for which it fails. As we will show below, for example, it is satisfied for the 
calibration adopted in Bianchi (2011), which is often used in the related literature.

For the analysis that follows it will be convenient to define the pairs (dt+1, dt ) such that 
equilibrium condition (20) holds with equality, that is, the pairs (dt+1, dt ) that satisfy dt+1 =
F(dt+1, dt ). We write this relationship as

G(dt ) = {dt+1 : dt+1 = F(dt+1, dt )} . (25)

4.1. Cobb-Douglas consumption aggregator

Before considering the case of a CES consumption aggregator, as a stepping stone, we study 
the special case of a Cobb-Douglas aggregator, which results under a unit intratemporal elasticity 
of consumption substitution,

ξ = 1.

Under this parameterization, the equilibrium value of collateral, F(dt+1, dt ), becomes a linear 
function of debt,

F(dt+1, dt ) = κyT + κ
1 − a

a

(
yT + dt+1

1 + r
− dt

)
(26)

and the requirement that collateral increases less than one-for-one with dt+1, Assumption 3, 
becomes

κ 1 − a
< 1.
1 + r a

9
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Notes. The solid line depicts the debt policy function, d ′ = D(d). The variable d̃ corresponds to the steady state and the 
variable db indicates the value of debt such that the collateral constraint is slack for d < db and is binding for d > db .

Fig. 2. The debt policy function with a Cobb-Douglas aggregator.

When the aggregator function is Cobb-Douglas, by (25), we have that

G(dt ) ≡ κ + κ 1−a
a

1 − κ
1+r

1−a
a

yT − κ 1−a
a

1 − κ
1+r

1−a
a

dt .

By Assumption 3, in this case G(·) is downward sloping.
The main finding of this section is that the policy function, D(·), looks like the function 

depicted in Fig. 2. In particular, it is everywhere continuous and crosses the 45-degree line once 
and from above. Importantly, the slope of the policy function changes sign at a level of debt 
db satisfying 0 < db < d̃ . For levels of debt higher than db, the collateral constraint is binding 
and the policy function is the linear decreasing function G(dt). For values of debt lower than 
db, the collateral constraint is slack, and the policy function is upward sloping. Interestingly, 
for debt levels, dt , in the range [db, d̃), debt increases (dt+1 > dt ) even though the collateral 
constraint is binding. Thus, within this range, a binding collateral constraint is not associated with 
deleveraging. We summarize the properties of the policy function in the following proposition:

Proposition 3 (Properties of the policy function when ξ = 1). If ξ = 1 and Assumptions 1 to 3
hold, then the policy function, dt+1 = D(dt ), is continuous and crosses the 45-degree line once 
and with negative slope at d̃ . There exists a level of debt db < d̃ satisfying D(db) > db above 
which the collateral constraint binds and the policy function is downward sloping and below 
which the collateral constraint is slack and the policy function is upward sloping.

Proof. See Appendix A. �
The assumptions of Proposition 3 are satisfied for reasonable parameterizations, such as the 

one shown in Table 1 with ξ = 1, which, except for this parameter, is the one adopted in Bianchi 
(2011).
10



S. Schmitt-Grohé and M. Uribe Journal of Economic Theory 192 (2021) 105195
Table 1
Calibration.

Parameter Value Description

β 0.91 Subjective discount factor
r 0.04 Annual interest rate
κ 0.32(1 + r) Parameter of collateral constraint
σ 2 Inverse of intertemporal elasticity of consumption
ξ 0.83, 1 Elasticity of substitution between tradables and nontradables
a 0.31 Parameter of CES aggregator
yT , yN 1 Endowments

Notes. The time unit is a year. When ξ = 0.83, all parameter values are as in Bianchi (2011). In that study, the collateral 
constraint is expressed as dt+1/(1 + r) = κ(yT + pty

N ), which means that the value of κ in this paper must be set to 
(1 + r) times the value of 0.32 in Bianchi’s work.

4.2. CES consumption aggregator

Under certain conditions to be specified here, Proposition 3 also applies when the intratempo-
ral elasticity of substitution between tradables and nontradables is less than one,

0 < ξ < 1.

The key difference with the Cobb-Douglas case (ξ = 1) is that when ξ ∈ (0, 1), the right-hand 
side of the collateral constraint, F(dt+1, dt ), ceases to be linear in dt+1 and becomes strictly 
convex. As a result, the equation dt+1 = F(dt+1, dt ) may admit two solutions for dt+1 given 
a dt . In other words, the relation G(dt ) defined in (25) may not be single valued. This feature 
of the model can potentially give rise to multiple equilibria of the type analyzed in Schmitt-
Grohé and Uribe (forthcoming), which are not the focus of the present analysis. However, if one 
imposes the selection criterion of allowing only the lower value of dt+1 for which the collateral 
constraint binds,1 then G(dt ) is again single valued and decreasing. The shape of the debt policy 
function depends not only on the function G(·), but also on the composed function G(G(·)), 
which specifies the evolution of debt when the collateral constraint binds in two consecutive 
periods. Appendices B.1 and B.2 formally characterize the functions G(·) and G(G(·)). Here, 
we describe them in a graphical fashion.

Fig. 3 plots the right-hand side of the collateral constraint, F(d ′, d), as a function of next-
period debt, d ′, for three levels of current-period debt, d , which define the domains of the 
functions G(·) and G(G(·)): dU , d�, and dτ . As a reference, it also plots the right-hand side of 
the collateral constraint for the steady-state level of debt, d̃. The left-hand side of the collateral 
constraint, d ′, is the 45-degree line, shown with a broken line. The figure reproduces from Fig. 1
the right-hand side of the steady-state collateral constraint, F(d ′, d ′). The level of debt dU is the 
upper bound of debt for which an equilibrium exists. As shown in the figure when d = dU , the 
collateral constraint binds with a slope exactly equal to zero. The slope of the right-hand side of 
the collateral constraint, F1(d

′, d), vanishes when consumption of tradables is zero, cT = 0. Any 
level of debt greater than dU is unsustainable. Proposition B.1 in Appendix B establishes this 
result formally. The debt level d� is the level of debt such that if the collateral constraint binds, 
it can place the economy at dU next period, dU = F(dU , d�). In this case, G(G(d�)) would be 
associated with zero consumption of tradables. So this function would not be defined for debt 

1 This selection criterion is implicitly imposed in much of the sudden stop literature.
11
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Notes. The figure plots the right-hand side of the collateral constraint, F(d ′, d) as a function of next-period debt, d ′ , for 
four levels of current period debt, d, namely, d̃ , dU , d�, and dτ . The left-hand side of the collateral constraint is the 
45-degree line. The figure reproduces from Fig. 1 the right-hand side of the long-run collateral constraint F(d ′, d ′).

Fig. 3. The collateral constraint with a CES consumption aggregator, 0 < ξ < 1.

levels less than or equal to d�. Finally, dτ is the smallest level of debt for which the collateral 
constraint can bind. At this level of debt, the right-hand side of the collateral constraint meets 
the left-hand side only once and at a point of tangency, denoted dτ ′

, where dτ ′ = F(dτ ′
, dτ ). For 

levels of current debt below dτ , the collateral constraint is slack for any choice of next-period 
debt, d ′. So the function G(·) is not defined for debt levels lower than dτ .

The following proposition states that under certain regularity conditions on the function 
F(·, ·), the debt policy function for the economy with a CES consumption aggregator has the 
same characteristics as that associated with the economy with a Cobb Douglas consumption 
aggregator (see Fig. 2).

Proposition 4 (Properties of the policy function with a CES aggregator). If 0 < ξ < 1, and 
Assumptions 1 to 3 and B.1 (given in Appendix B) hold, then under the equilibrium selection 
criterion of allowing only the lower value of debt for which the collateral constraint is binding, 
the policy function, dt+1 = D(dt ), is continuous and crosses the 45-degree line once and with 
negative slope at d̃ . There exists a level of debt db < d̃ satisfying D(db) > db above which the 
collateral constraint binds and the policy function is downward sloping and below which the 
collateral constraint is slack and the policy function is upward sloping.

Proof. See Appendix B. �
The assumptions of Proposition 4 are satisfied for the calibration shown in Table 1 with ξ =

0.83, which is the calibration assumed in Bianchi (2011).

5. Endogenous debt cycles

The present economy can exhibit bounded equilibrium dynamics that do not converge to the 
steady state. Because the parameterizations we focus on yield a single-valued policy function, 
12
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the equilibrium is unique. This means that the equilibrium dynamics in this class of open econ-
omy models are inherently cyclical even in the absence of (fundamental or nonfundamental) 
uncertainty.

5.1. Stability of the steady state d̃

Consider first the equilibrium dynamics in the vicinity of the steady state, d̃. We have shown 
that for dt > db, the policy function is given by dt+1 = G(dt ). Because db < d̃ , we have that the 
local stability of the steady state is determined by G′(d̃). The steady state is stable if |G′(d̃)| < 1
and is unstable otherwise. Recalling that the function G(·) is defined as the solution of dt+1 =
F(dt+1, dt ) for dt+1 given dt , we have that

G′(d̃) = − (1 + r)F1(d̃, d̃)

1 − F1(d̃, d̃)
.

The fact that F1 is positive together with Assumption 3 guarantees that G′(d̃) is negative. This 
means that the steady state is locally stable if and only if F1(d̃, d̃) < 1/(2 + r). This condition 
says that local stability of the steady state requires that for each unit increase in debt the value 
of collateral increase by less than one half. We summarize this result in the following proposi-
tion:

Proposition 5 (Local stability of the steady state). Suppose that Assumptions 1 to 3 hold. Then, 
the steady state is locally stable if and only if F1(d̃, d̃) < 1/(2 + r).

If the stability condition of Proposition 5 is not met, then a small deviation of d from its 
steady-state value d̃ will trigger dynamics leading away from and never converging back to d̃.

Fig. 4 shows that this is indeed the case for parameterizations commonly used in the sudden 
stop literature. It plots F1(d̃, d̃) as a function of the intratemporal elasticity of substitution, ξ . 
All other parameters of the model take the values shown in Table 1. For values of ξ larger than 
0.7, F1(d̃, d̃) lies in the interval (1/(2 + r), 1) and therefore the steady state is locally unstable. 
This is the case, in particular, for ξ = 0.83. As we will see shortly, in this parameter region, the 
equilibrium is unique but the economy displays endogenous cycles. For values of ξ less than 
0.7, F1(d̃, d̃) > 1 and therefore Assumption 3 is violated. In this parameter region, as shown in 
Schmitt-Grohé and Uribe (forthcoming), the economy displays multiple equilibria.

5.2. Limit cycles

A natural question is how debt behaves globally when the steady state is unstable. As it turns 
out, the model possesses attracting forces that prevent debt from exploding. Specifically, if the 
steady state is unstable, then the equilibrium exhibits bounded oscillating dynamics, which never 
converge to the steady state. To see this, note that, given an arbitrary initial debt level d0: (a) 
if the steady state is unstable, the economy will not converge to it; and, from Propositions 3
and 4 (with graphical representation in Fig. 2); (b) when dt < d̃ , then dt+1 > dt ; (c) if dt < d̃ , 
then there is a finite J such that dt+J ≥ db; (d) if dt ∈ (db, d̃), then dt+1 > d̃ ; and finally (e) 
if dt > d̃ , then dt+1 < d̃ . Thus, the economy fluctuates perpetually around the steady state d̃
without ever converging to it or exploding. This type of dynamics arises because the steady 
state is locally repellent but globally attracting. Therefore, the equilibrium consists of an infinite 
13



Notes. Values of ξ for which F1(d̃, d̃) ∈ (1/(2 + r), 1) are associated with an unstable steady state. The bullet indicates 
the value of F1(d̃, d̃) at ξ = 0.83. All other parameters of the function F(·, ·) are set at the values shown in Table 1.

Fig. 4. Stability condition and the intratemporal elasticity of substitution.

sequence of episodes in which debt expansions (credit booms) are followed by debt contractions 
(macroeconomic deleveraging). We then have the following proposition:

Proposition 6 (Endogenous debt cycles). Suppose that F1(d̃, d̃) ∈ (1/(2 + r), 1) and that ξ = 1
and the conditions of Proposition 3 are satisfied or that ξ ∈ (0, 1) and the conditions of Propo-
sition 4 are satisfied. Then, the equilibrium exhibits bounded oscillating dynamics in which debt 
perpetually fluctuates around its steady state d̃ without ever converging to it.

5.3. Two-period cycles

Figs. 5 and 6 plot the equilibrium path of debt for an arbitrary initial condition in two 
calibrated economies. In Fig. 5 all parameters take the values shown in Table 1 with ξ = 1 (Cobb-
Douglas aggregator). In the economy depicted in Fig. 6, all parameters are set at the values shown 
in Table 1 with ξ = 0.83 (CES aggregator).

Under both parameter configurations debt converges to a two-period cycle. In the limit cycle, 
periods of slack collateral constraints coincide with periods of debt growth (credit booms) and 
periods of binding collateral constraints coincide with debt deleveraging. During a credit boom, 
consumption of tradables expands, equation (12), and the real exchange rate appreciates, equa-
tion (14). The opposite happens when the economy deleverages, namely, domestic absorption 
falls and the real exchange rate depreciates.

It is of interest to ascertain how volatile common indicators of the business cycle, such as con-
sumption or the trade balance, are in the model. At the calibration shown in Fig. 6, which targets 
the Argentine economy (see Bianchi, 2011, for details), the standard deviation of consumption 
implied by the 2-period cycle is 2.2 percent. For the Argentine data, Bianchi (2011) reports a 
S. Schmitt-Grohé and M. Uribe Journal of Economic Theory 192 (2021) 105195
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Note. The structural parameters take the values shown in Table 1 with ξ = 1.

Fig. 5. Convergence to a two-period cycle: Cobb-Douglas aggregator.

Note. The structural parameters take the values shown in Table 1 with ξ = 0.83.

Fig. 6. Convergence to a two-period cycle: CES aggregator.
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standard deviation of consumption of 6.2 percent. Further, the implied standard deviation of the 
trade-balance-to-output ratio is 0.6 percentage points, compared to an observed standard devia-
tion of 2.4 percentage points. Thus, the model predicts standard deviations for consumption and 
the trade balance that are one half and one fourth of their empirical counterparts, respectively. We 
interpret this result as suggesting that the amplitude of the business cycle associated with the peri-
odic equilibrium is not negligible. The amplitude of the endogenous credit cycle is most sensitive 
to the value of the subjective discount factor, β . In the model impatient households negotiate a 
tradeoff between front-loading consumption by taking on more debt in the short run than is sus-
tainable in the long and having to deleverage in the future. The more impatient households are, 
the larger their attempts to frontload consumption and the larger the necessity to deleverage will 
be. In the open economy literature with financial constraints, households are typically calibrated 
to be highly impatient. The reason is that the more impatient households are, the more likely it 
is that the financial constraints will be binding frequently in equilibrium. For example, Arellano 
(2008) and Chatterjee and Eyigungor (2012) in the context of models with imperfect enforce-
ment of international debt contracts assume a value of β of 0.953 at a quarterly frequency, which 
is equivalent to setting this parameter at 0.825 at an annual frequency. Setting β to 0.825, while 
leaving all other parameters at their values given in Table 1, implies the existence of a two-period 
cycle in which the standard deviation of consumption and the trade-balance-to-output ratio are 
6 percent and 1.7 percentage points, respectively. These values are fairly close to their empirical 
counterparts.

Let’s now explore more formally the existence and stability of two-period cycles. Consider a 
two-period cycle in which the collateral constraint binds every other period, which, for example, 
is the case for the two-period cycles shown in Figs. 5 and 6. Let dc and du be the levels of debt 
in periods in which the economy is constrained and unconstrained, respectively. In a period in 
which the constraint is slack, the Lagrange multiplier on the collateral constraint is nil (μ = 0), 
so that the equilibrium Euler equation (19) takes the form

�(du, dc) = β(1 + r)�(dc, du).

When the economy is constrained, the next-period debt satisfies

dc = G(du).

The above two equations uniquely determine du and dc. If in addition the collateral constraint is 
satisfied in the period in which the economy is unconstrained, du ≤ F(du, dc), and if consump-
tion is positive in both states, yT +dt+1/(1 + r) −dt > 0 for (dt+1, dt ) = (dc, du), (du, dc), then 
a two-period cycle exists, with periodic points du and dc. When the aggregator function is Cobb-
Douglass (ξ = 1), both of the above equations are linear, which allows for a closed-form solution 
of the cycle. When the aggregator function is of the CES form (ξ ∈ (0, 1)), the two-period cycle 
can be computed using numerical methods.

Consider now the stability of the two-period cycle. Does the economy converge to the cycle 
(dc, du) for arbitrary initial debt levels in the vicinity of dc or du? Suppose that the economy is 
sufficiently close to the limit cycle, so that it continues to be the case that it is constrained every 
other period. Let dt be a period in which the collateral constraint is slack. Then, the period-t Euler 
equation holds with μt = 0, and the period t +1 collateral constraint is binding, dt+2 = G(dt+1). 
So we have that the Euler equation in period t can be written as

�(G−1(dt+2), dt ) = β(1 + r)�(dt+2,G
−1(dt+2)), (27)
16
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where G−1(·) is the inverse function of G(·), so that dt+1 = G−1(dt+2). Equation (27) is a first-
order difference equation defining the law of motion of debt chosen in periods in which the 
collateral constraint is binding, which can be written as

dt+2 = C2(dt ),

where the subscript indicates the periodicity of the cycle. The steady state of this equation is dc. 
The two-period cycle is locally stable (attracting) if |C′

2(d
c)| < 1, provided C2(·) is differentiable 

in the vicinity of dc. In this case, full differentiation of (27) evaluated at dt = dt+2 = dc yields

C′
2(d

c) = (1 + r)G′(du)

1 − β(1 + r)
�1(d

c,du)
�1(d

u,dc)
[G′(du) − (1 + r)] < 0,

where du = G−1(dc). The fact that C′
2 is negative means that if the two-period cycle is attracting, 

the convergence to it is oscillatory, as can be observed in Figs. 5 and 6.
The stability of the two-period cycle, however, cannot be determined by simple inspection 

of this expression. Although a closed-form solution for C′
2(d

c) can be obtained when ξ = 1
(Cobb-Douglas aggregator), it is an involved function of the structural parameters of the model. 
One must therefore resort to a numerical evaluation of C′

2(d
c). We note that this is an exact 

numerical evaluation. When ξ < 1 (CES aggregator), C′
2(d

c) can be approximated numerically 
to any degree of accuracy. Setting ξ = 1 and setting all other parameters at their values given in 
Table 1 yields C′

2(d
c) = −0.56, confirming that the two-period cycle shown in Fig. 5 is stable. 

Similarly, setting ξ = 0.83 yields C′
2(d

c) = −0.74, which says that the two-period cycle shown 
in Fig. 6 is also attracting. We conclude that the economy exhibits an attracting two-period cycle 
for parameterizations commonly used in the sudden stop literature.

5.4. Three-period cycles

Suppose that for a given parameterization both the steady state and the two-period cycle are 
unstable (G′(d̃), C′

2(d
c) < −1). What do the equilibrium dynamics look like in this case? We 

have already established that when G′(d̃) < −1, the equilibrium level of debt fluctuates perpetu-
ally around d̃ without converging to it (Proposition 6).

Here, we show that there exist parameterizations for which the equilibrium dynamics exhibit 
three-period cycles. This type of periodic equilibria comes in only two forms: one featuring 
two consecutive periods with a slack collateral constraint followed by a period with a binding 
constraint, and the other featuring a period with a slack collateral constraint followed by a period 
with a binding constraint in which nonetheless credit expands, followed by another period with 
a binding constraint, in which the economy is forced to deleverage.

Three-period cycles in which the collateral constraint is always binding are impossible. To 
see this, suppose that such a cycle exists. Let the periodic debt levels be denoted dc, dcc, and 
dccc. Suppose, without loss of generality, that dc ∈ (db, d̃), and that it is followed by dcc. Then, 
since d̃ = G(d̃) and G′(·) < 0, we have that dcc = G(dc) > d̃ , dccc = G(dcc) < d̃ , and dc =
G(dccc) > d̃ , which is a contradiction. Similarly, three-period cycles in which the economy is 
always unconstrained are impossible by Proposition 1.

Consider the first type of three-period cycle, namely, the one in which the economy is uncon-
strained in two periods and constrained in the third.2 Let du be the level of debt chosen when 

2 The characterization of the second type of period-3 cycles goes along similar lines, and we therefore omit it.
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the economy is financially unconstrained in the current and the next period, and let duu be the 
level of debt chosen when the economy is unconstrained in the current period but constrained in 
the next. And let dc be the level of debt chosen in periods in which the economy is financially 
constrained. When the chosen level of debt is du or duu, the multiplier μ is nil, and the Euler 
equations take the form, respectively,

�(du, dc) = β(1 + r)�(duu, du),

and

�(duu, du) = β(1 + r)�(dc, duu).

When the collateral constraint is binding, next-period debt satisfies

dc = G(duu). (28)

The above expressions form a system of three equations in three unknowns, which can be solved 
for du, duu, and dc. If the collateral constraint is not violated at either of the two periodic points in 
which the economy is unconstrained, du ≤ F(du, dc) and duu ≤ F(duu, du), and if consumption 
of tradables is positive at the three periodic points, yT + dt+1/(1 + r) − dt > 0 for (dt+1, dt ) =
(duu, du), (du, dc), (dc, duu), then the triplet (dc, du, duu) represents a three-period cycle.

Three-period cycles of this type can be found for parameterizations close to the one given 
in Table 1. To facilitate computations, we focus on the Cobb-Douglas case (ξ = 1) as it admits 
a closed-form solution. Three-period cycles do not exist when all parameters take the values 
shown in Table 1 with ξ = 1. But plausible calibrations do exhibit this type of endogenous fluc-
tuations. As an example, consider the parameter configuration a = 0.23, β = 0.88, κ = 0.32, 
r = 0.091, and σ = 1.7. Fig. 7 displays the path of debt along the three-period cycle associated 
with this parameterization. The elevated segments of the time path are the periods in which the 
economy is unconstrained, dt+1 = du, duu. The troughs correspond to periods in which the col-
lateral constraint binds and the economy deleverages, dt+1 = dc. The fact that the economy has 
a three-period cycle implies, as we will discuss shortly, that it must also have a two-period cycle, 
which is shown in Fig. 7 with a broken line. For the particular parameterization considered, the 
amplitude of the three-period cycle is larger than that of the two-period cycle.

The three-period cycle displayed in Fig. 7 is stable, while, by construction, the two-period 
cycle and the steady state (the one-period cycle) are unstable (recall that we are focusing attention 
on parameter values for which this is the case). The stability of the three-period cycle can be 
verified by simulation, as shown in Fig. 8, or analytically following the same steps as in the 
stability analysis of the two-period cycle. For the latter approach, write the equilibrium law of 
motion of debt near the three-period cycle as

�(dt+1, dt ) = β(1 + r)�(G−1(dt+3), dt+1) (29)

and

�(G−1(dt+3), dt+1) = β(1 + r)�(dt+3,G
−1(dt+3)). (30)

Combining these two expressions to eliminate dt+1 yields an implicit function describing the 
evolution of debt in periods in which the collateral constraint binds

dt+3 = C3(dt ).

The steady state of this difference equation is dc, that is, dc = C3(d
c). Local stability of the 

three-period cycle requires that |C′ (dc)| < 1, provided that C3(·) is differentiable at dc. If this 
S. Schmitt-Grohé and M. Uribe Journal of Economic Theory 192 (2021) 105195
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Notes. The structural parameters take the following values: a = 0.23, β = 0.88, κ = 0.32, r = 0.091, σ = 1.7, ξ = 1, and 
yT = yN = 1. Debt is expressed in deviations from its mean value.

Fig. 7. Three-period cycles.

Notes. The structural parameters take the following values: a = 0.23, β = 0.88, κ = 0.32, r = 0.091, σ = 1.7, ξ = 1, and 
yT = yN = 1.

Fig. 8. Convergence to a three-period cycle: Cobb-Douglas aggregator.
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is the case, then fully differentiating (29) and (30) and evaluating the derivatives at dt = dc, 
dt+1 = du, dt+2 = duu, and dt+3 = dc, we have

C′
3(d

c) = (1 + r)A

1 − β(1 + r)
�1(d

uu,du)
�1(d

u,dc)
(1 + r)

[
A

(1+r)G′(duu)
− 1

] < 0,

where

A ≡ (1 + r)G′(duu)

1 − β(1 + r)
�1(d

c,duu)
�1(d

uu,du)
[G′(duu) − (1 + r)] < 0.

The inequality follows from the fact that A
(1+r)G′(duu)

< 1 and implies that, if the three-period 
cycle is attracting, then the convergence toward it is oscillatory. Evaluating the above expression 
at the periodic values of debt (dc, du, and duu), we obtain that C′

3(d
c) = −0.53, confirming the 

attracting nature of the cycle.

5.5. Cycles of any periodicity and chaos

In a seminal contribution, Li and Yorke (1975) show that if a univariate difference equation has 
a cycle of periodicity three, then it has cycles of any periodicity and chaos. Chaotic dynamics are 
dynamics in which debt does not converge asymptotically to a cycle of any periodicity (including 
a unit periodicity, the steady state). Since as shown above, three-period cycles exist for plausible 
parameterizations, we have the following proposition:

Proposition 7. If the conditions of Proposition 3 hold, then there exist plausible parameteriza-
tions for which the economy displays cycles of any periodicity and chaos.

Proof. See Appendix C. �
The theorem of Li and Yorke, however, does not indicate the measure of the set of initial 

debt levels that give rise to chaotic dynamics. Indeed, such set may be of measure zero. For the 
economy studied in this paper, we could not detect, using numerical methods, parameters for 
which the equilibrium dynamics converge to cycles with periodicity higher than three. However, 
as shown in Fig. 8, the transitional dynamics converging to a three-period cycle can look quite 
complex for long periods of time. Specifically, in the figure, a clear convergence pattern is dis-
cernible only after more than 3,000 years, even though the economy starts from a point near the 
cycle.

6. Optimal policy

Would a benevolent government wish to eliminate the endogenous cycles that inevitably occur 
under laissez-faire? To address this question, we consider the constrained optimal allocation, 
defined as the solution to the problem of a benevolent social planner who faces the collateral 
constraint and internalizes that in equilibrium the relative price of nontradables—and thereby the 
value of collateral—depends on aggregate absorption and that the market for nontradables must 
clear. We first show that the constrained optimal allocation does not display endogenous cycles 
and then describe a fiscal policy that supports the desired equilibrium.
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6.1. Ramsey optimal policy

The optimization problem of the Ramsey planner is to choose sequences {cT
t , dt+1}∞t=0 to 

maximize
∞∑
t=0

βtU(A(cT
t , yN))

subject to

cT
t + dt = yT + dt+1

1 + r
, (31)

dt+1 ≤ H(cT
t ) ≡ κ

[
yT +

(
1 − a

a

)
cT
t

1
ξ yN 1− 1

ξ

]
, (32)

with cT
t > 0 and limt→∞ dt (1 + r)−t ≤ 0. Let λR

t and λR
t μR

t denote the Lagrange multipliers 
on the resource constraint (31) and the collateral constraint (32), respectively. The optimality 
conditions associated with this problem are

U ′(A(cT
t , yN))A1(c

T
t , yN) = λR

t

[
1 − H ′(cT

t )μR
t

]
and (

1 − (1 + r)μR
t

)
λR

t = β(1 + r)λR
t+1.

The planner’s Euler equation is identical to that of the individual household. However, her 
marginal utility of wealth, λR

t , is different, as she internalizes that a unit increase in consumption 
of tradables has a positive shadow value when the collateral constraint is binding stemming from 
its positive effect on the value of collateral via the boosting of the relative price of nontradables, 
H ′(cT

t ) > 0.
Using the resource constraint to eliminate cT

t from the collateral constraint, noting that 
H ′(cT

t ) = (1 + r)F1(dt+1, dt ) and letting, as before, �(dt+1, dt ) = U ′(A(cT
t , yN))A1(c

T
t , yN), 

we have that the constrained optimal allocation are sequences {cT
t , dt+1, μR

t }∞t=0 satisfying

�(dt+1, dt )

1 − (1 + r)F1(dt+1, dt )μ
R
t

[
1 − (1 + r)μR

t

]
= β(1 + r)

�(dt+2, dt+1)

1 − (1 + r)F1(dt+2, dt+1)μ
R
t+1

(33)

dt+1 ≤ F(dt+1, dt ) (34)

μR
t ≥ 0, (35)

μR
t

[
dt+1 − F(dt+1, dt )

] = 0, (36)

yT + dt+1

1 + r
− dt > 0, (37)

and

lim
t→∞

dt

(1 + r)t
= 0. (38)

It can readily be established that Propositions 1 and 2 hold. That is, in the Ramsey optimal 
equilibrium the collateral constraint binds in an infinite number of periods. And this implies that 
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Note. The figure is drawn for the calibration shown in Table 1 with ξ = 1 (Cobb-Douglas aggregator). The variable d̃
corresponds to the steady state level of debt. Under the Ramsey policy the collateral constraint is slack for dt < d̃ and 
binding otherwise.

Fig. 9. The Ramsey optimal debt policy function.

in the steady state the collateral constraint binds and debt is given by d̃. Thus, the steady state 
is the same in the Ramsey and unregulated equilibria. We collect this result in the following 
proposition:

Proposition 8 (Steady state of the Ramsey economy). If Assumptions 1 to 3 hold, then in the 
Ramsey equilibrium the collateral constraint binds in an infinite number of periods. A steady 
state exists and is unique. Further, the steady state features a binding collateral constraint and a 
level of debt implicitly given by d̃ = F(d̃, d̃).

The Ramsey planner finds it optimal to eliminate the endogenous cycles that exist under 
laissez-faire. Fig. 9 plots the debt policy function, dt+1 = Dr(dt ), associated with the constrained 
optimal allocation for the calibration shown in Table 1 with ξ = 1 (Cobb-Douglas aggregator). 
For comparison, it reproduces from Fig. 5 the debt policy function under laissez-faire. Under 
the Ramsey optimal policy, for levels of debt below the steady state (dt < d̃), debt converges to 
the steady state monotonically and in finite time. Along the transition the collateral constraint 
is slack. Once debt exceeds the threshold db1 (to be characterized in Proposition 9 below), the 
policy function becomes constant and equal to d̃, implying that for any level of debt between 
db1 and d̃ the economy reaches the steady state d̃ in one period. This means that if the initial 
level of debt is below d̃ , then the economy does not suffer a binding collateral constraint fol-
lowed by deleveraging anywhere along the transition path. For initial levels of debt above d̃, the 
economy deleverages for one period to a value of debt below the steady state and then converges 
monotonically to the steady-state d̃ in finite time from below.
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The absence of cycles under the Ramsey policy is not limited to the calibration shown in 
Table 1. The planner is also able to eliminate cycles, for example, for the calibration considered 
in section 5.4, which delivers a three-period cycle under laissez-faire. The following proposition 
provides conditions under which cycles are impossible in the Ramsey equilibrium.

Proposition 9 (No endogenous cycles or deleveraging under Ramsey optimal policy). Suppose 
ξ = 1, Assumptions 1 to 3 hold, and F1(d̃, d̃) > 1/[1 + β(1 + r)]. Then there exists an integer 
i ≥ 0 such that the Ramsey equilibrium path of debt is of the form (dt , dt+1, . . . , dt+i , d̃, d̃, . . . ). 
If dt < d̃ , the equilibrium path satisfies dt < dt+1 < · · · < dt+i < d̃ . And if dt > d̃ , it satisfies 
dt+1 < dt+2 < · · · < dt+i < d̃ < dt .

Proof. See Appendix D. �
The maximum level of debt chosen by the planner is d̃, that is, Dr(dt ) ≤ d̃ , for all dt . By 

contrast, as we established in section 5, in the laissez-faire equilibrium, the economy converges 
to a cycle in which periodically agents choose levels of debt exceeding d̃, which subsequently 
force them into deleveraging. When the economy is still unconstrained but close to a binding 
collateral constraint, the planner avoids borrowing beyond d̃ and therefore a future deleveraging 
crisis by becoming effectively more patient than agents in the laissez-faire economy. To see this, 
consider the Euler equation of the planner in a period in which the collateral constraint is slack 
(μR

t = 0) but binds in the following period (μR
t+1 > 0):

�(dt+1, dt ) = βR
t+1(1 + r)�(dt+2, dt+1),

where βR
t+1 ≡ β

1−(1+r)F1μ
R
t+1

> β . This situation occurs for any dt ∈ [db1, d̃). In the laissez-faire 

equilibrium the effective discount factor is time invariant and equal to β . The decrease in the 
effective discount factor of the planner makes her put greater value on the costs of a future 
deleveraging while leaving the benefits of current spending unchanged. Therefore, she resolves 
the tradeoff between curbing spending today and deleveraging tomorrow in favor of the former. 
By contrast, private agents faced with the same tradeoff but a lower discount factor (β < βR

t+1) 
choose not to curb spending today and to deleverage in the future.

If the condition F1(d̃, d̃) > 1/[1 + β(1 + r)] in Proposition 9 is not met, then the Ram-
sey optimal debt policy function ceases to be flat to the left of d̃. Instead, like its counter-
part in the unregulated economy, it peaks before d̃ and the collateral constraint binds, i.e., 
dt+1 = G(dt ), to the right of this peak. Under such parameterizations, the planner is not 
able to avoid that for some initial debt levels the economy borrows beyond the maximum 
long-run sustainable debt level d̃ and then suffers a binding constraint and debt deleverag-
ing.

One way to gauge the difference between the allocation under the Ramsey optimal policy 
and under laissez-faire is to compute the welfare costs of the latter relative to the former. Con-
sider the calibration shown in Table 1 with ξ = 0.83. As shown earlier, for this parameterization 
the laissez-faire economy displays an attracting 2-period cycle, whereas the Ramsey economy 
reaches the steady state, d̃ , in finite time. The average welfare cost of living in the cyclical equi-
librium is 0.02 percent of consumption each period. This number is small as is often the case in 
models of the business cycle including models of sudden stops. For example, in a version of the 
present model under the same calibration but driven by fundamental shocks calibrated to match 
the volatility of tradable and nontradable output in Argentina—arguably one of the most volatile 
23



S. Schmitt-Grohé and M. Uribe Journal of Economic Theory 192 (2021) 105195
Note. The figure is drawn for the calibration shown in Table 1 with ξ = 1 (Cobb-Douglas aggregator).

Fig. 10. The optimal capital control policy.

emerging countries in the world,—Bianchi (2011) finds an average welfare cost of 0.135 percent 
of consumption.

We note, nonetheless, that like the amplitude of the endogenous cycle, the welfare cost of the 
periodic equilibrium is sensitive to the degree of impatience displayed by agents. For the level 
of impatience used in Arellano (2008) and Chatterjee and Eyigungor (2012) (β = 0.825), the 
average welfare cost of living in the economy with the endogenous cycle relative to living in 
the Ramsey economy is 0.11 percent of consumption, which is more than five times larger than 
when β takes its baseline value of 0.91. For very high levels of impatience, the welfare gains of 
internalizing the pecuniary externality can be substantial. For example, setting β = 0.6 yields an 
average welfare gain of 0.67 percent of consumption.

6.2. Optimal capital control policy

We have established that left to its own devices the economy displays a unique equilibrium 
characterized by endogenous debt cycles and that a benevolent government finds such cycles 
undesirable. As is well known, in environments like the one studied here, the Ramsey optimal 
allocation can be supported by a capital control tax (see, for example, Korinek, 2011; Bianchi, 
2011; Benigno et al., 2013 and 2016; Bianchi and Mendoza, 2018; Dávila and Korinek, 2018; 
Jeanne and Korinek, 2019; and the survey by Rebucci and Ma, 2019). Specifically, suppose the 
government imposes capital controls that take the form of a proportional tax on debt at the rate 
τt . In this case the household’s budget constraint becomes

cT
t + ptc

N
t + dt = yT + pty

N + 1 − τt
dt+1 + Tt , (39)
1 + r
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where Tt denotes lump-sum transfers, which the government uses to rebate any revenues from 
the capital control tax. The equilibrium Euler equation becomes

[(1 − τt ) − (1 + r)μt ]�(dt+1, dt ) = β(1 + r)�(dt+2, dt+1). (40)

For any dt < d̃ , the Ramsey optimal capital control tax results from evaluating this expression 
at μt = 0, dt+1 = Dr(dt ) and dt+2 = Dr2(dt ), and solving for τt . Therefore having obtained the 
Ramsey optimal debt policy, solving for the optimal tax rate is straightforward.

Fig. 10 plots the Ramsey optimal tax rate, τt , for the calibration shown in Table 1 with ξ = 1. 
For dt ≤ db1 the tax rate is zero and the Ramsey planner’s collateral constraint is slack in periods 
t and t + 1. For this reason the planner lets capital flow unfettered. The planner begins to impose 
capital controls when the collateral constraint is slack in period t but binding in t + 1, that is, for 
dt ∈ (db1, d̃). The closer dt is to d̃ , the higher the tax rate will be. The tax rate reaches 5.4 percent 
at its peak, which means that the effective annual interest rate charged to domestic households, 
given by (1 + r)/(1 − τt ) − 1, reaches 9.9 percent.

As stressed in the related literature, the purpose of the optimal capital control tax is to make 
households internalize that their collective absorption, by appreciating the real exchange rate, 
elevates the value of collateral. The novel insight of the present analysis is that government 
intervention is called for even in the absence of fundamental uncertainty. The reason is that 
the equilibrium in the laissez-faire economy features inefficient oscillations around the highest 
sustainable level of debt, d̃ . These oscillations can be periodic (if endogenous cycles exist) or 
dampening. But they always imply inefficient credit booms followed by costly Fisherian defla-
tions.

7. Conclusion

In much of the open economy literature, financial constraints play the role of amplifying 
the effects of exogenous shocks. Credit cycles are driven by exogenous fundamental or non-
fundamental disturbances. In this paper, the financial constraint itself is the source of aggregate 
fluctuations. The paper establishes the existence of endogenous deterministic debt cycles in a 
canonical open economy model with a flow collateral constraint. Three features of the model 
make endogenous cycles possible: impatient households, a collateral constraint, and a pecuniary 
externality created by the dependence of the value of collateral on a relative price. For plausible 
parameter configurations, the model has a unique equilibrium exhibiting endogenous cycles in 
which periods of debt growth are followed by periods of debt deleveraging. In particular, three-
period cycles are shown to exist, which implies by the Li-Yorke Theorem the presence of cycles 
of any periodicity and chaos.

Intuitively, when external debt is relatively low, the collateral constraint is slack, and impa-
tient households embark on elevated consumption fueled by capital inflows. During this phase 
of the cycle, the trade balance deteriorates and the real exchange rate appreciates. In turn, the 
real exchange rate appreciation, by raising the value of the nontraded component of collateral, 
expands borrowing capacity. Eventually, debt exceeds the level that is sustainable in the long run, 
the collateral constraint binds, and a period of credit contraction ensues. Consumption falls, the 
current account reverses sign, and the real exchange rate depreciates, which exacerbates the con-
traction by lowering the value of the nontraded component of collateral. Once debt deleveraging 
has run its course, individual agents find themselves in a better financial condition and foreign 
lenders observing an improvement in fundamentals resume capital inflows. At this point the debt 
cycle starts all over again.
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The endogenous credit cycles just described are inefficient because agents fail to fully inter-
nalize the welfare cost of expanding credit beyond its long-run sustainable level. In particular, 
agents do not take into account that their own decline in absorption has a negative effect on the 
value of collateral via a fall in market prices. A benevolent social planner who internalizes the 
pecuniary externality resolves the tradeoff between less debt expansion during the boom and 
larger debt deleveraging during the contraction in favor of the former. Under certain conditions, 
it is optimal for the planner to eliminate endogenous cycles altogether. This result provides a 
rationale for capital control policy even in the absence of uncertainty.

The analysis in this paper emphasizes the role of financial frictions and household demand for 
assets in generating endogenous instability. An interesting line of future research is to extend the 
analysis by introducing production, endogenous labor supply, and capital accumulation. In such 
an environment financial constraints would naturally impact not only intertemporal consumption 
decisions but also the availability of working capital for financing wages and intermediate inputs 
and the financing of capital investment projects. A question for future research is to ascertain 
whether in such an environment endogenous credit cycles of the type characterized in this paper 
would still emerge and how they would affect the cyclical properties of output, employment, and 
investment.

Appendix

This appendix contains the proofs of Propositions 3, 4, 7, and 9.

Appendix A. Proof of Proposition 3

We construct the proof through a series of lemmas and propositions. When convenient, we 
use the notation d for the current stock of debt, d ′ for next period debt, and d ′′ for debt in the 
period after the next.

Using the result that at the steady state the collateral constraint is binding (Proposition 2), we 
have that the steady-state level of debt, d̃, is given by

d̃ = G(d̃) = κ(1 + r)

a(1 + r) + (1 − a)κr
yT .

Lemma A.1. If d < (>)d̃ and the collateral constraint binds, then d ′ > (<)d .

Proof. When the collateral constraint binds, we have that d ′ = G(d). The result then follows 
immediately from the fact that G′ < 0 and that, by definition, d̃ = G(d̃). �
Lemma A.2. If dt < d̃ and the collateral constraint is slack, then dt+1 > dt .

Proof. Suppose, on the contrary, that dt+1 ≤ dt . The fact that the collateral constraint must bind 
in finite time (Proposition 1) and that G(x) > x for any x < d̃ (Lemma A.1) means that debt must 
increase at some finite time. Thus, at some finite time when the collateral constraint is slack, the 
path of debt must be of the form d ≥ d ′ < d ′′. This implies that �(d ′, d) > β(1 + r)�(d ′′, d ′)
(recall that �1 < 0 and �2 > 0), which violates the Euler equation (19), since μ = 0 when the 
collateral constraint is slack. �
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Proposition A.1. The collateral constraint binds for any dt > d̃ . Thus, the policy function is 
dt+1 = G(dt ) for any dt ≥ d̃ .

Proof. Suppose, on the contrary, that the collateral constraint is slack. Recall that for any d > d̃ , 
G(d) < d̃ . Thus if the collateral constraint is slack, then d ′ < G(d) < d̃ < d . Then by Lemma A.1
and Lemma A.2, d ′′ > d ′. By the Euler equation (19) it must be that μ > 0, which is a contradic-
tion. �
Proposition A.2. There exist scalars db, db ′

, and db′′
satisfying db < d̃ < db ′

, db ′′
< d̃ , and

�(db ′
, db) = β(1 + r)�(db ′′

, db ′
)

db ′ = G(db)

and

db ′′ = G(db ′
).

Proof. Let

H(x) ≡ �(G(x), x) − β(1 + r)�(G(G(x)),G(x)).

Since d̃ = G(d̃) = G(G(d̃)) and β(1 + r) < 1, we have that

H(d̃) > 0.

Since �1 < 0, �2 > 0, and G′ < 0, we have that

H ′(x) > 0.

Let x be the value of x at which yT +G(G(x))/(1 + r) −G(x) = 0 (so that cT ′
is zero). Clearly, 

x < d̃ and G(x) > x > 0. We then have that

lim
x→x

H(x) = −∞.

By continuity, the above three expressions imply that there exists a value of x < d̃ , such that 
H(x) = 0. �
Proposition A.3. The collateral constraint binds for any dt ∈ (db, d̃). Thus, the policy function 
is dt+1 = G(dt ) for any d ∈ (db, d̃).

Proof. Suppose, contrary to the claim, that dt ∈ (db, d̃) and that the collateral constraint is slack. 
By Lemma A.2, we have that as long as the collateral constraint is slack, debt will grow over 
time. Also, by Proposition 1, the collateral constraint must bind in finite time. Let d be the level 
of debt in the period prior to the one in which the collateral constraint binds for the first time. 
Thus, we have that d ′′ = G(d ′). Also, d > db, d ′ < G(d) < G(db), and d ′′ = G(d ′) > G(db ′

) =
G(G(db)). Thus, we have that

�(d ′, d) − β(1 + r)�(d ′′, d ′) > �(G(db), db) − β(1 + r)�(G(G(db)),G(db))

= 0,

which contradicts the assumption that the collateral constraint is slack. In the above expression, 
the inequality follows from the fact that �1 < 0 and �2 > 0, and the equality from the definition 
of db given in Proposition A.2. �
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Proposition A.4. The collateral constraint does not bind for any dt < db.

Proof. Suppose, contrary to the claim, that d < db and that the collateral constraint binds. Since 
G′ < 0, we have that d ′ = G(d) > G(db) > db. The fact that d ′ > db implies, by Proposi-
tions A.1 and A.3 that the collateral constraint binds in the next period, so that d ′′ = G(d ′) <
G(db ′

) = G(G(db)). We can then write

�(d ′, d) − β(1 + r)�(d ′′, d ′) < �(G(db), db) − β(1 + r)�(G(G(db)),G(db))

= 0,

which implies that the multiplier μ must be negative. In the above expression, the inequality 
follows from the fact that �1 < 0 and �2 > 0, and the equality from the definition of db given in 
Proposition A.2. �
Proposition A.5 (Continuity and slope of the policy function). The debt policy function, dt+1 =
D(dt ), is continuous, strictly increasing for dt < db, and strictly decreasing for dt > db.

Proof. Suppose that dt > db. Then, by Propositions A.1 and A.3 we have that D(dt ) = G(dt ), 
which is continuous and strictly decreasing under the maintained assumption that F1 < 1 when 
the collateral constraint binds.

Suppose now that dt = d̂t < db. By Proposition 1, the collateral constraint must bind at some 
finite horizon. Let the first period in which it binds be t + Ĵ , where Ĵ depends on d̂t in a way to 
be explained shortly. Then, it must be the case that d

t+Ĵ+1 = G(d
t+Ĵ

). For all 0 ≤ j ≤ Ĵ − 1, 
the Euler equation (19) holds with μt+j = 0. Therefore, the policy function is implicitly given 
by the solution to

�(dt+1, d̂t ) − β(1 + r)�(dt+2, dt+1) = 0

... (A.1)

�(d
t+Ĵ

, d
t+Ĵ−1) − β(1 + r)�(G(d

t+Ĵ
), d

t+Ĵ
) = 0.

This is a system of Ĵ equations in Ĵ unknowns, dt+1, . . . , dt+Ĵ
. Let the solution be denoted 

d̂t+1, . . . , d̂t+Ĵ
. The policy function associated with d̂t is d̂t+1, that is, D(d̂t ) = d̂t+1.

Holding Ĵ fixed, the solution is continuous and differentiable at d̂t because the system (A.1)
is composed of the continuous and differentiable functions �(·, ·) and G(·). Moreover, the so-
lution is strictly increasing at d̂t . To establish this property, consider a small increase in d

t+Ĵ
. 

The last equation of system (A.1) and the facts that �1 < 0, �2 > 0 and G′ < 0 imply that 
d
t+Ĵ−1 > d̂

t+Ĵ−1 and that �(d
t+Ĵ

, d
t+Ĵ−1) is larger than �(d̂

t+Ĵ
, d̂

t+Ĵ−1). In turn, this re-

sult implies, from the penultimate equation of system (A.1) that d
t+Ĵ−2 > d̂

t+Ĵ−2 and that 

�(d
t+Ĵ−1, dt+Ĵ−2) > �(d̂

t+Ĵ−1, d̂t+Ĵ−2). By backward induction, it follows that dt+1 > d̂t+1

and that dt > d̂t . We have therefore established that holding Ĵ constant, dt+1, . . . , dt+Ĵ
are all 

continuous, differentiable, and strictly increasing functions of dt for any dt ≤ db.
The first period in which the collateral constraint binds, t + Ĵ , is determined by the require-

ment that d̂
t+Ĵ−1 ≤ db (to ensure that the economy is unconstrained in t + Ĵ − 1) and that 

d̂ ˆ ≥ db (to ensure that the economy is constrained in t + Ĵ ).

t+J
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Suppose that d̂t is such that d̂
t+Ĵ−1 < db and d̂

t+Ĵ
> db. In this case, by continuity, Ĵ does 

not change for dt in the vicinity of d̂t . This establishes that in this case the policy function D(dt)

is continuous, differentiable, and strictly increasing at d̂t .
Consider now a debt level d̂t < db such that d̂

t+Ĵ
= db. This is a special case in which al-

though the collateral constraint holds with equality in period t + Ĵ , it does not constrain the 
household’s choices (μ̂

t+Ĵ
= 0). In this situation, a small decline in d̂t results in a change in the 

period in which the collateral constraint holds with equality for the first time. However, as we 
will see, in this case a change in the period in which the collateral constraint holds with equality 
for the first time does not create a discontinuity in the policy function. (Though it might create 
a discontinuity in its derivative.) Since by definition the economy is unconstrained in t + Ĵ − 1, 
we have that d̂

t+Ĵ−1 < db . Consider first a small perturbation dt > d̂t . Then, if the perturba-

tion is sufficiently small, d
t+Ĵ−1 < db and d

t+Ĵ
> db . Therefore, Ĵ is unchanged and the policy 

function is right-continuous. To establish left continuity, consider a small perturbation dt < d̂t . 
Then, d

t+Ĵ
< db, which means, by Proposition A.4, that the collateral constraint does not hold 

with equality in period t + Ĵ . Therefore, the first period in which the collateral constraint holds 
with equality for the perturbed value of dt must be greater than t + Ĵ . We next show that this 
period is t + Ĵ +1. Let’s examine the Euler equation in period t + Ĵ evaluated at the unperturbed 
allocation, that is, the one associated with d̂t ,

0 = �(d̂
t+Ĵ+1, d̂t+Ĵ

) − β(1 + r)

1 − (1 + r)μ̂
t+Ĵ

�(G(d̂
t+Ĵ+1), d̂t+Ĵ+1)

= �(db ′
, db) − β(1 + r)�(G(db ′

), db ′
).

The second equality follows from the fact that d̂
t+Ĵ

= db and the definition of db in Proposi-
tion A.2. A small decrease in dt results in a decline in both d

t+Ĵ
and d

t+Ĵ+1, so that d
t+Ĵ

< db

and d
t+Ĵ+1 > db, ensuring that period t + Ĵ + 1 this is the first period in which the collateral 

constraint holds with equality under the perturbed value of dt . The policy function for the per-
turbed allocation is given by the set of continuous functions given by the Euler equations for 
periods t to t + Ĵ all with μt+j = 0 for j = 0 to Ĵ . We have therefore established that the policy 
function is both right- and left-continuous at this particular value of d̂t .

Finally, consider the debt level d̂t = db. Then the policy function is d̂t+1 = G(d̂t ). Let dt be 
a small perturbation larger than db. Then the policy function is dt+1 = G(dt ). Since G(·) is a 
continuous function, right continuity obtains. For the particular value of debt we are considering, 
the policy function is also implicitly given by �(d̂t+1, d̂t ) − β(1 + r)�(G(d̂t+1), d̂t+1) = 0. Let 
dt be a sufficiently small perturbation less than db. Then we conjecture that the policy function 
is the solution for dt+1 of �(dt+1, dt ) − β(1 + r)�(G(dt+1), dt+1) = 0. To ensure that this 
conjecture is correct, the solution must satisfy dt+1 ≥ db. But this is guaranteed by the continuity 
of �(·, ·) and G(·) and the fact that in the above equation limdt→db dt+1 = db ′

> db. �
Appendix B. Proof of Proposition 4

B.1. Characterization of the function G(·)

Definition B.1. Let dU and dU ′
, respectively, be the debt levels d and d ′ that satisfy

d ′ = F(d ′, d)
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and

F1(d
′, d) = 0.

From (16), we have that

dU = yT + κ
yT

1 + r

and

dU ′ = κyT .

Recalling that the slope of the RHS of the CC vanishes when cT is zero, we have that dU and 
dU ′

are the levels of current- and next-period debt at which the CC binds and cT = 0. In this 
case, the only economically sensible of the two values of d ′ at which the CC binds is the larger 
one, at which the slope of the RHS of the CC is larger than 1.

Lemma B.1. dU ′
< d̃ .

Proof. By Proposition 2 a steady state exists and features a binding collateral constraint. That is, 
F(d̃, d̃) = d̃ and c̃T > 0, where c̃T ≡ yT − rd̃

1+r
denotes the steady-state level of consumption. 

Then d̃ = F(d̃, d̃) = κyT + κ(1 − a)/ayN 1−1/ξ (
c̃T

)1/ξ
> κyT = dU ′

. �
Lemma B.2. dU > d̃ .

Proof. By Proposition 2, F(d̃, d̃) = d̃ . By Assumption 3, F1(d̃, d̃) < 1. Then by convexity of 
F(·, ·) in its first argument, we have that F(x, d̃) > x for any x < d̃ . Since, by Lemma B.1 dU ′

<

d̃ , we have that F(dU ′
, d̃) > dU ′ = F(dU ′

, dU), where the equality follows from Definition B.1. 
Finally, because F2 < 0, it must be that d̃ < dU . �
Proposition B.1. In any equilibrium, d < dU .

Proof. The proof proceeds in four lemmas.

Lemma B.3. If d ≥ dU , then d ′ 
= d .

Proof. Suppose to the contrary that d ≥ dU and that d ′ = d . Because dU > d̃ (Lemma B.2), and 
because F(x, x) is decreasing in x, we have that d ′ = d ≥ dU > d̃ = F(d̃, d̃) > F(dU , dU) ≥
F(d, d) = F(d ′, d), so that the collateral constraint is violated. �
Lemma B.4. If d = dU , then d ′ ≮ dU .

Proof. Let d ′ = κyT < dU . The inequality follows from Lemmas B.1 and B.2. By Defini-
tion B.1, F(κyT , dU) = κyT , that is, the collateral constraint is satisfied. However, at d = dU

and d ′ = κyT , we have, from Definition B.1, that cT = 0. Thus d ′ = κyT cannot be an equilib-
rium. Similarly, because cT = yT +d ′/(1 +r) −dU , d ′ < κyT implies cT < 0 and thus d ′ < κyT

cannot be an equilibrium either. Finally, show that no d ′ ∈ (κyT , dU) can be an equilibrium. For 
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d ′ = κyT we have d ′ = F(d ′, dU) and for d ′ = dU we have d ′ > F(d ′, dU) (Lemma B.3). Be-
cause F(d ′, dU) is an increasing and convex function of d ′, it follows that d ′ > F(d ′, dU) for all 
d ′ ∈ (κyT , dU). �
Lemma B.5. If d > dU , then d ′ ≮ d .

Proof. Suppose first that d ′ ≤ κyT , then cT = yT + d ′/(1 + r) − d ≤ yT + κyT /(1 + r) −
d = dU − d < 0, where the equality follows from Definition B.1. But negative consumption is 
impossible. Now suppose that d ′ ∈ (κyT , dU ]. Then d ′ > F(d ′, dU) > F(d ′, d), so the collateral 
constraint is violated. The first inequality follows from Lemmas B.3 and B.4 and the second 
from the fact that F2 < 0. Finally suppose d ′ ∈ (dU , d], then d ′ > dU > F(dU , dU) > F(d, d) ≥
F(d ′, d), so the collateral constraint is violated. The second inequality follows from Lemma B.3, 
the third from the fact that F(x, x) is a decreasing function of x and d > dU , and the last one 
from the fact that F1 > 0 and d ≥ d ′. �
Lemma B.6. If d > dU , then d ′ ≯ d .

Proof. Suppose on the contrary that if d > dU , then d ′ > d . Then either debt will exceed the nat-
ural debt limit in finite time, which is impossible, or debt will converge to a value d̂ > dU . In the 
latter case, in the limit d ′ = d = d̂ . But d ′ = d̂ > dU > F(dU , dU) > F(d̂, d̂) = F(d ′, d), so that 
in the limit the collateral constraint is violated. The second inequality follows from Lemma B.3
and the third inequality from the facts that F(x, x) is decreasing in x and that d̂ > dU . �

This completes the proof of Proposition B.1. �
Definition B.2. Let dτ and dτ ′ be defined as the solution for d and d ′, respectively, of the system

d ′ = F(d ′, d)

and

F1(d
′, d) = 1.

Lemma B.7. dτ < d̃ < dτ ′
.

Proof. We first establish that dτ < d̃ . Since F(d ′, dτ ) is increasing and convex in d ′, and since 
by definition F1(d

τ ′
, dτ ) = 1, and F(dτ ′

, dτ ) = dτ ′
, we have that F(x, dτ ) > x for all x 
= dτ ′

. 
Therefore F(d̃, dτ ) > d̃ unless d̃ = dτ ′

. But because F(dτ ′
, dτ ) = dτ ′

, d̃ = dτ ′
would require 

that dτ = d̃ . But this cannot be the case because F1(d̃, d̃) < 1, whereas F1(d
τ ′

, dτ ) = 1. There-
fore it must be that F(d̃, dτ ) > d̃ = F(d̃, d̃). Because F2 < 0, it follows, that dτ < d̃ . We now 
show that dτ ′

> d̃ . Because F2 < 0, F(x, dτ ) > F(x, d̃) ≥ x for any x ≤ d̃ , where the last in-
equality follows from the facts that F(x, d̃) is increasing and convex in x, F(d̃, d̃) = d̃ , and 
F1(d̃, d̃) < 1. It then follows that the x such that F(x, dτ ) = x must satisfy x > d̃ . �
Definition B.3. The function d ′ = G(d) is defined as the solution to

d ′ = F(d ′, d),

F1(d
′, d) < 1,
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and

cT = yT + d ′

1 + r
− d > 0.

The function G(·) is not defined for d ≤ dτ or d ≥ dU . To see this, recall that: (a) if d <

dτ , then the condition d ′ = F(d ′, d) is violated for all d ′; (b) if d = dτ , then the condition 
d ′ = F(d ′, d) implies that F1(d

′, d) = 1, which violates the condition F1(d
′, d) < 1; and (c) 

if d ≥ dU , then the condition d ′ = F(d ′, d) implies that cT ≤ 0. For d ∈ (dτ , dU), d ′ = G(d)

is the smaller of the two solutions for d ′ of the equation d ′ = F(d ′, d). Furthermore, G′(·) =
−(1 + r)F1(G(d), d)/(1 − F1(G(d), d)) < 0. And finally, d̃ = G(d̃), which follows from the 
fact that by definition d̃ = F(d̃, d̃), from the assumption that F1(d̃, d̃) < 1, and c̃T > 0. We 
therefore have the following lemma:

Proposition B.2. For d ∈ (dτ , dU), G(d) is a continuous and decreasing function and satisfies 
d̃ = G(d̃). For d ≤ dτ or d ≥ dU , the function G(·) is not defined. The scalars dU and dτ are 
introduced in Definitions B.1 and B.2.

This completes the characterization of the function G(·).

B.2. Characterization of the function G(G(·))

The following three lemmas give the smallest value of d for which G(G(d)) is well defined 
(that is, the collateral constraint can bind in two consecutive periods), when d is below its steady-
state level d̃ .

Lemma B.8. If dτ ′
< dU , then G(G(d)) is well defined for all d ∈ (dτ , d̃).

Proof. Suppose dτ < d < d̃ , then by Proposition B.2, d ′ = G(d) exists and d ′ > d̃ . Because 
d > dτ and because G′(·) < 0, it must be that G(d) < G(dτ ) = dτ ′

< dU . We have therefore 
shown that dτ < G(d) < dU , so that G(d ′) exists by Proposition B.2. �

Now consider the case dτ ′
> dU .

Definition B.4. Let d� be the level of current debt d satisfying dU = F(dU , d), where dU is 
introduced in Definition B.1. From (16), we have that

d� = yT + dU

1 + r
−

[
dU − κyT

κyN 1−1/ξ

a

1 − a

]ξ

.

Lemma B.9. If dτ ′
> dU , then dτ < d� < d̃ .

Proof. We first establish that dτ < d�. Because F(·, ·) is increasing and convex in its first ar-
gument, we have from Definition B.2 that F(x, dτ ) > x for all x < dτ ′

. Because dU < dτ ′
, we 

have that F(dU , dτ ) > dU = F(dU , d�), where the equality follows from Definition B.4. Be-
cause F2 < 0, it follows that dτ < d�. We now establish that d̃ > d�. Consider x ∈ (d̃, dτ ′

). From 
Lemma B.7, this interval is non-empty. Then for any x ∈ (d̃, dτ ′

), F(x, d̃) < x < F(x, dτ ). The 
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first equality follows from the assumption that F1(d̃, d̃) < 1 and the second from the fact that 
F1(d

τ ′, dτ ) = 1. Because d̃ < dU < dτ ′
, F(dU , d̃) < dU = F(dU , d�). Finally, since F2 < 0, 

we have that d̃ > d�. �
Lemma B.10. If dτ ′

> dU and d� < d < d̃ , then G(G(d)) exists.

Proof. Suppose d� < d < d̃ , then, by Lemma B.9, d ∈ (dτ , d̃). By Proposition B.2, d ′ = G(d)

exists and d ′ > d̃ and because d > d�, G(d) < G(d�) = dU . We have therefore shown that 
dτ < G(d) < dU , so that G(G(d)) exists by Proposition B.2. �

This completes the characterization of the function G(G(·)).

B.3. Existence of the debt threshold db

Assumption B.1. If dτ ′ < dU , then

lim
x↘dτ

[�(G(x), x) − β(1 + r)�(G(G(x)),G(x))] < 0.

Proposition B.3. There exist scalars db, db ′
, and db ′′

satisfying db < d̃ < db ′
, db ′′

< d̃ , and

�(db ′
, db) = β(1 + r)�(db ′′

, db ′
)

db ′ = G(db)

and

db ′′ = G(db ′
).

Proof. Let

H(x) ≡ �(G(x), x) − β(1 + r)�(G(G(x)),G(x)).

Since d̃ = G(d̃) = G(G(d̃)) and β(1 + r) < 1, we have that

H(d̃) > 0.

Since �1 < 0, �2 > 0, and G′ < 0, we have that

H ′(x) > 0.

Suppose first that dτ ′ > dU . Then, recalling that yT + G(G(d�))/(1 + r) − G(d�) = 0 (so that 
cT ′ = 0) and that d� < d̃ , we have that

lim
x↘d�

H(x) = −∞.

Since d� < d̃ , by continuity, the above three expressions imply that there exists a value of x < d̃ , 
such that H(x) = 0.

Suppose now that dτ ′ < dU . Then, by Assumption B.1, we have that

lim
x↘dτ

H(x) < 0.

Since dτ < d̃ , we have that in this case too there exists a value of x < d̃ , such that H(x) = 0. �
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The proof of Proposition 4 is then identical to that of Proposition 3 (Cobb-Douglas aggrega-
tor), with Proposition B.3 taking the place of Proposition A.2.

Appendix C. Proof of Proposition 7

We begin by reproducing the statement of the Li and Yorke (1975) theorem commonly known 
as ‘period three implies chaos:’

Theorem 1 (Li and Yorke (1975)). Let J be an interval and let D : J → J be continuous. Assume 
there is a point d ∈ J for which the points d ′ = D(d), d ′′ = D2(d), and d ′′′ = D3(d), satisfy

d ′′′ ≤ d < d ′ < d ′′.

Then, for every k = 1, 2, . . . there is a periodic point in J having period k. Furthermore, there 
is an uncountable set S ⊂ J (containing no periodic points), which satisfies the following condi-
tions:

1. For every p, q ∈ S with p 
= q , lim supn→∞ |Dn(p) −Dn(q)| > 0 and lim infn→∞ |Dn(p) −
Dn(q)| = 0.

2. For every p ∈ S and periodic point q ∈ J , lim supn→∞ |Dn(p) − Dn(q)| > 0.

Li and Yorke remark that if there is a periodic point with period 3, then the hypothesis d ′′′ ≤
d < d ′ < d ′′ is satisfied. Section 5.4 shows the existence of plausible calibrations for which the 
model economy has a three-period debt cycle. Further, Proposition 3 establishes that the policy 
function D is continuous. It remains to show that there is an interval J such that D : J → J . The 
following lemma establishes this result.

Lemma C.1. The policy function d ′ = D(d) maps the interval [db′′
, db ′] into itself.

Proof. Proposition 3 shows that D(d) is continuous, increasing for d < db , and decreasing for 
d > db. Thus, D(d) ≤ D(db) = db ′

. Suppose now that d ∈ [db ′′
, db). By Proposition 3, in this 

range D(d) > d , which implies that D(d) > db ′′
. Finally, if d ∈ (db, db ′], we have, by the same 

proposition, that D(d) = G(d). Since G(·) is decreasing, we have that D(d) = G(d) ≥ G(db ′
) =

db ′′
. �

Appendix D. Proof of Proposition 9

The proof proceeds in three lemmas.

Lemma D.1. Suppose β(1 + r) < 1, ξ = 1, F1(d̃, d̃) = κ(1−a)
a(1+r)

< 1, and F1(d̃, d̃) > 1/[1 +β(1 +
r)]. Then the debt policy function in the Ramsey equilibrium, Dr(·), satisfies Dr(dt ) = d̃ for any 
dt ∈ [db1, d̃), with db1 implicitly given by �(d̃, db1) = β(1 + r)�(d̃, d̃).

Proof. We wish to characterize a debt threshold db1 < d̃ with the property that if dt ∈ [db1, d̃), 
then the Ramsey economy reaches the steady state d̃ in one period, that is, Dr(dt ) = d̃ for all dt ∈
[db1, d̃). For this conjecture to be correct, the complete set of Ramsey equilibrium conditions, 
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equations (33)-(38), must be satisfied for all periods greater than or equal to t . Suppose that 
dt ∈ [db1, d̃). Then, by the conjecture, dt+j = d̃ for all j > 0.

Consider first equation (37). We have already shown that in the steady state consumption is 
positive. Thus, we only need to ascertain whether consumption in period t is positive. Note that 
cT
t = yT + d̃/(1 + r) −dt > yT + d̃/(1 + r) − d̃ > 0. Consider next the collateral constraint (34). 

We already established that in the steady state of the Ramsey economy the collateral constraint 
holds with equality (Proposition 8). So we only need to check that it is satisfied in period t . Note 
that dt+1 = d̃ = G(d̃) < G(dt ). The first equality follows from the conjecture and the inequality 
from the fact that G′(·) < 0 and dt < d̃ . Consider now the transversality condition (38). It is 
satisfied under the conjectured path because dt+j is constant for all j > 0. Consider next the 
complementary slackness condition (36). Because the collateral constraint is slack in period t , 
μR

t = 0, so the slackness condition is satisfied in period t . In period t + j for j > 0, the collateral 
constraint holds with equality, d̃ = F(d̃, d̃), therefore (36) also holds. It remains to show that 
under the conjecture the Euler equations (33) and the non-negativity condition (35) are satisfied. 
We have already shown that μR

t = 0. Then the Euler equation in period t takes the form

�(d̃, dt ) = β(1 + r)
�(d̃, d̃)

1 − (1 + r)F1μ
R
t+1

. (D.1)

We omit the arguments of F1 because when ξ = 1, F1 is a constant. Because �2 > 0, μR
t+1 is 

strictly increasing in dt . Let db1 be the smallest level of debt for which μR
t+1 is non-negative. 

We then have that db1 is implicitly given by �(d̃, db1) = β(1 + r)�(d̃, d̃). Clearly, db1 < d̃ , 
and μR

t+1 = 0 when dt = db1. As dt → d̃ , the Euler equation (D.1) implies that μR
t+1 satisfies 

μR
t+1 → 1−β(1+r)

(1+r)F1
> 0. In period t + j , for j ≥ 1, the Euler equation (33) becomes

[1 − (1 + r)F1μ
R
t+j+1] = β(1 + r)

1 − (1 + r)μR
t+j

[1 − (1 + r)F1μ
R
t+j ],

which determines μR
t+j+1 as a function of μR

t+j . It is convenient to introduce the variable trans-

formation st+j ≡ 1 − (1 + r)F1μ
R
t+j . Then, the Euler equation in period t + j , for j ≥ 1, can be 

written as

st+j+1 = β(1 + r)F1st+j

F1 − 1 + st+j

≡ π(st+j ), (D.2)

with π ′(·) < 0. Note that π(st+j ) has a discontinuity at st+j = 1 − F1 and converges to infinity 
(minus infinity) as st+j approaches 1 − F1 from the right (left). The nonnegativity condition 
on μR

t+j , equation (35), restricts st+j ≤ 1. The initial condition st+1 ranges continuously from 

β(1 + r) when dt → d̃ to 1 when dt = db1. It follows that a necessary condition for st+2 ≤ 1 for 
any dt ∈ [db1, d̃) is

β(1 + r) > 1 − F1. (D.3)

The difference equation (D.2) has two steady states, st+j = 0 and st+j = 1 −F1[1 −β(1 + r)] >
1 −F1. The first steady state lies outside the range of initial conditions for st+1, [β(1 + r), 1], and 
the second steady state lies inside. This fact together with π ′(·) < 0, implies that the maximum 
possible value of st+j+1, for all j ≥ 1, is

max{π(β(1 + r)),π2(1)} = π(β(1 + r)) = β2(1 + r)2F1
.

F1 − 1 + β(1 + r)
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The first equality follows from the fact that π(1) = β(1 + r). Thus β2(1+r)2F1
F1−1+β(1+r)

must be less than 

unity if μR
t+j+1 is to be nonnegative for all j ≥ 1. This will be the case if

F1 >
1

1 + β(1 + r)
.

This restriction is more stringent than the one given in (D.3). �
We have defined db1 as

�(d̃, db1) − γ�(d̃, d̃) = 0.

We now generalize this definition.

Definition D.1. Let dbi , for i ≥ 2, be given by

�(dbi−1, dbi) − γ�(dbi−2, dbi−1) = 0,

with db0 ≡ d̃ .

Clearly, dbi < dbi−1 for any i ≥ 1.

Lemma D.2. Suppose β(1 + r) < 1, ξ = 1, F1(d̃, d̃) = κ(1−a)
a(1+r)

< 1, and F1(d̃, d̃) > 1/[1 +β(1 +
r)]. Then, for any dt < db1, there exists an integer i ≥ 1 such that the Ramsey equilibrium path of 
debt is of the form (dt , dt+1, dt+2, . . . , dt+i , d̃, d̃, . . . ), with dt < dt+1 < dt+2 < · · · < dt+i < d̃ .

Proof. Suppose that dt ∈ [dbi+1, dbi) for i ≥ 1. Conjecture that debt converges to d̃ in i + 1
periods, and that its equilibrium path, denoted (dt , dt+1, dt+2, . . . , dt+i , d̃, d̃, . . . ), is given by 
the solution of

�(dt+i , dt ) − γ�(d̃, dt+i ) = 0, (D.4)

if i = 1, and

�(dt+i , dt+i−1) − γ�(d̃, dt+i ) = 0
... (D.5)

�(dt+1, dt ) − γ�(dt+2, dt+1) = 0

if i ≥ 2. Clearly, dt+k ∈ [db(i−k+1), db(i−k)), for all k = 1, . . . , i, so the conjectured conver-
gence to d̃ is monotonic. The collateral constraint (34) is satisfied with strict inequality along 
the proposed equilibrium path since dt < dt+1 < dt+2 < · · · < dt+i < d̃ and G(x) > d̃ for any 
x < d̃ . Because the collateral constraint holds with inequality, satisfaction of the slackness con-
dition (36) requires that μR

t , μR
t+1, . . . , μ

R
t+i = 0. This implies that (35) holds. The systems (D.4)

and (D.5) together with the fact that μR
t+k = 0 for k = 1, ..., i guarantee that the Euler equa-

tion (33) is satisfied. Along the conjectured solution, consumption is positive so that (37) is 
satisfied. To see this note that cT

t+k = yT + dt+k+1/(1 + r) − dt+k > yT − rdt+k/(1 + r) >
yT − r/(1 + r)d̃ > 0 for all k = 1, . . . , i. Finally, debt is bounded above by d̃, so that the transver-
sality condition (38) holds. This establishes that the conjectured solution is indeed the Ramsey 
equilibrium path. �
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Lemma D.3. Suppose β(1 + r) < 1, ξ = 1, F1(d̃, d̃) = κ(1−a)
a(1+r)

< 1, and F1(d̃, d̃) > 1/[1 +β(1 +
r)]. Then, for any dt > d̃ , there exists an integer i ≥ 0 such that the Ramsey equilibrium path of 
debt is of the form (dt , dt+1, dt+2, . . . , dt+i , d̃, d̃, . . . ), with dt > dt+1 < dt+2 < · · · < dt+i < d̃ .

Proof. The proof consists in conjecturing that the collateral constraint binds in period t , so that 
dt+1 = G(dt ). Since dt > d̃ = G(d̃) and G′(·) < 0, we have that dt+1 < d̃ . So we know from 
Proposition 9 that starting in t + 1 the economy converges monotonically and in finite time to d̃. 
In particular, we have that dt+2 > dt+1. So, from Lemmas D.1 and D.2 we have that the collateral 
constraint is slack in period t + 1, so that μR

t+1 = 0. The Euler condition in period t is then given 
by

�(dt+1, dt )

1 − (1 + r)F1μ
R
t

(1 − (1 + r)μR
t ) = β(1 + r)�(dt+2, dt+1),

which implies that μR
t > 0 because dt , dt+2 > dt+1 implies that �(dt+1, dt ) > �(dt+2, dt+1). 

This completes the proof. �
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