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This appendix gathers supplementary material to Schmitt-Grohe and Uribe (2011).

1 True Impulse Responses of the Observables in the

Example Economy
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2 Identifiability in the Example Economy: The Iskrev

Test

The example economy of section 2 in Schmitt-Grohé and Uribe (2011) can be written in

vector form as

Xt+1 = hxXt + ηνt+1

Yt = gxXt,

where Xt = [ yt−1 xt ε1
t ε2

t ε2
t−1 ]′, Yt = [ xt vt ]′, νt is a 3 × 1 vector of i.i.d. shocks

with variance/covariance matrix equal to the identity, and

hx =




ρy 0 1 0 0

0 ρx 1 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0




,

gx =

[
0 1 0 0 0

ρy 0 1 1 0

]
,

1



and

η =




0 0 0

σ0 0 0

0 σ1 0

0 0 σ2

0 0 0




.

Iskrev’s (2010) test consists in checking whether the derivative of the autocovariogram of Yt

with respect to the vector of estimated parameters, which we denote by θ ≡ [ σ2
0 σ2

1 σ2
2 ],

has full column rank. It turns out that in our example economy, it suffices to examine the

derivative of the autocovariogram of orders 0, 1, and 2. This derivative is given by




∂vechEYtY ′
t

∂θ
∂vecEYtY ′

t+1

∂θ
∂vecEYtY ′

t+2

∂θ


 =




−1/(ρ2
x − 1) −1/(ρ2

x − 1) −1/(ρ2
x − 1)

0 −ρy/(ρxρyρy − 1) 0

0 1 − ρ2
y/(ρ2

y − 1) 1

−ρx/(ρ2
x − 1) −ρx/(ρ2

x − 1) −ρx/(ρ2
x − 1)

0 1 − (ρxρyρy)/(ρxρyρy − 1) 0

0 −ρ2
y/(ρxρyρy − 1) 0

0 ρy − ρ3
y/(ρ2

y − 1) 0

−ρ2
x/(ρ2

x − 1) −ρ2
x/(ρ2

x − 1) −ρ2
x/(ρ2

x − 1)

0 ρx − (ρ2
xρyρy)/(ρxρyρy − 1) 1

0 −ρ3
y/(ρxρyρy − 1) 0

0 ρ2
y − ρ4

y/(ρ2
y − 1) 0




To see that this matrix has full column rank, consider first the case ρy = 0. In this case, rows

1, 3, and 9 of this matrix form a square matrix of order 3 whose determinant equals 1/(1+ρx),

which is always different from zero. Next, consider the case ρy 6= 0. In this case, rows 1,

2, and 3 form a square matrix of order 3 whose determinant equals ρy/[(ρ2
x − 1)(ρxρy − 1)],

which is always nonzero.

3 Technical Notes On Applying Iskrev’s Test to the

Baseline DSGE Model

Implementing Iskrev’s test consists in checking whether the derivative of the predicted auto-

covariogram of the vector of observables with respect to the vector of estimated parameters
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has a rank equal to the length of the vector of estimated parameters. Formally, let

m(t) ≡ ∂vecE(dtd
′
0)

∂θ
,

for t = 0, . . . T − 1, where dt is the theoretical counterpart of the vector of observables

used to estimate the model, θ is a vector of model parameters whose identifiability the test

establishes, and T is the sample size. Let

M ≡




m(0)
...

m(T − 1)


 .

Then the estimated parameter θ is identifiable if M has full column rank.1

Using the notation in Schmitt-Grohé and Uribe (2004), we can write the solution of the

DSGE model up to first order as

yt = gxxt

and

xt+1 = hxxt + ηεt+1,

where yt is a vector of endogenous controls, xt is a vector of endogenous and exogenous states,

and εt+1 is a white noise vector with identity variance/covariance matrix. The elements of

the vector of observables are a subset of the elements of the vector of endogenous controls.

The two vectors are related by an expression of the form

dt = Dyt

where D is a selection matrix with one unit element per row and at most one unit element

per column and the remaining elements equal to zero. This relation implies that

vec(Edtd
′
0) = (D ⊗ D)vec(Eyty

′
0),

and therefore

m(t) = (D ⊗ D)
∂vecE(yty

′
0)

∂θ
.

Given the structure of the solution of the linearized DSGE model, we can write

E(yty
′
0) = gxh

t
xΣxg

′
x

1The test is performed by our Matlab code iskrev test.m.
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where Σx ≡ Extx
′
t and satisfies function, Σx satisfies

Σx = hxΣxh
′
x + ηη′.

Taking the derivative of vecE(yty
′
0) with respect to θ, we obtain

∂vec(gxh
t
xΣxg

′
x)

∂θ
= (Iy ⊗gxh

t
xΣx)dg′

x +(gx⊗gxh
t
x)dΣx +(gxΣx⊗gx)d(ht

x)+(gxΣxh
′
x
t⊗Iy)dgx.

In this expression, the object dgx denotes ∂vec(gx)/∂θ, and is a matrix of order nynx × nθ,

where ny, nx, and nθ are the lengths of yt, xt, and θ, respectively. Similar notation applies

to other objects.

3.1 Deriving dgx and dhx

Up to first order, the reduced form of the DSGE model can be written as

[
fy′ fx′

]
Et

[
yt+1

xt+1

]
= −

[
fy fx

] [
yt

xt

]
.

Using the solution to the linearized model in the linearized equilibrium conditions, we obtain

[
fy′gxhx fx′hx

] [
xt

xt

]
= −

[
fygx fx

] [
xt

xt

]
,

which implies that

fy′gxhx + fx′hx = −fygx − fx.

Taking derivative with respect to θ, we obtain

(Ix ⊗ fy′gx)dhx + (h′
x ⊗ fy′)dgx + (h′

xg
′
x ⊗ In)dfy′ + (Ix ⊗ fx′)dhx + (h′

x ⊗ In)dfx′

= −(Ix ⊗ fy)dgx − (g′
x ⊗ In)dfy − dfx .

Let

A ≡ (h′
x ⊗ fy′) + (Ix ⊗ fy),

B ≡ (Ix ⊗ fy′gx) + (Ix ⊗ fx′),

and

C ≡ −(h′
xg

′
x ⊗ In)dfy′ − (h′

x ⊗ In)dfx′ − (g′
x ⊗ In)dfy − dfx.
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Then, we can write
[

A B
] [

dgx

dhx

]
= C,

which can be solved to obtain

[
dgx

dhx

]
=

[
A B

]−1

C.

We now explain how to obtain the objects dfx, dfx′, dfy, and dfy′. We explain in detail

how to obtain dfx, the other derivations are identical. We view fx as a function of the

parameter vector θ and of the vector z(θ) ≡ [y(θ)′ x(θ)′]′, which is the steady state of the

vector [y′
t x′

t]
′. Thus, we write fx(θ, z(θ)). Then, we have2

dfx =
∂fx

∂θ
+

∂fx

∂z

∂z(θ)

∂θ

Now, we explain how to obtain ∂z(θ)
∂θ

. We can write the steady state of the model as f(θ, z) =

0, which implicitly defines z(θ). Differentiating we get

∂f(θ, z(θ))

∂θ
+

∂f(θ, z(θ))

∂z

∂z(θ)

∂θ
= 0,

which can be solved to obtain3

∂z(θ)

∂θ
= −

[
∂f(θ, z(θ))

∂z

]−1
∂f(θ, z(θ))

∂θ
.

Deriving dg′x and dh′
x

Let Rh be a matrix such that

vec(h′
x) = Rhvec(hx)

The matrix Rh is a permutation matrix of order n2
x. Its unitary elements are located in row

i column fix((i − 1)/nx) + 1+rem(i − 1, nx)nx, for i = 1, . . . , n2
x. Then we have that

dh′
x = Rhdhx

2The objects∂fx

∂θ and ∂fx

∂z are produced analytically by our Matlab code iskrev anal deriv.m. To facilitate
the numerical evaluation of these symbolic expression, the code writes these derivatives to a Matlab script
file called filename iskrev anal deriv.m, where the prefix filename is an input of iskrev anal deriv.m chosen
by the user.

3The code iskrev anal deriv.m writes this formula into the Matlab script filename iskrev anal deriv.m.
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Similarly, we can deduce that

dg′
x = Rgdgx,

where the matrix Rg is a permutation matrix (i.e., a square matrix with only one element

equal to unity per row and per column and all remaining elements equal to zero) of order

nxny. Its unitary elements are located in row i column fix((i− 1)/nx) + 1+rem(i− 1, nx)ny,

for i = 1, . . . , nxny.

3.2 Deriving dΣx

Using the expression for Σx obtained above, we can write its derivative with respect to θ as

dΣx = (hx ⊗ hx)dΣx + (hxΣx ⊗ Ix)dhx + (Ix ⊗ hxΣx)dh′
x + d(ηη′)

Solving for dΣx, we obtain4

dΣx = [In2
x
− (hx ⊗ hx)]

−1[(hxΣx ⊗ Ix)dhx + (Ix ⊗ hxΣx)dh′
x + d(ηη′)]

3.3 Deriving dht
x

For t = 1, it is dhx, which we already derived. For t ≥ 2, we proceed iteratively, noticing

that ht
x = ht−1

x hx, whose derivative is given by

dht
x = (Ix ⊗ ht−1

x )dhx + (h′
x ⊗ Ix)dht−1

x

3.4 What if M Is Not Full Column Rank

Suppose M is less than full column rank at a parameter value θ0. Then, we conclude that

with the selected observables and sample size, the parameter θ is not identifiable in the

vicinity of θ0. This essentially mean that in this case there will be an infinity number of

parameter vectors θ that will give rise to the same autocovariogram as θ0. When θ is not

identifiable, we can establish what linear combinations of the elements of θ will deliver the

same autocovariogram as θ0.

Let V (θ, T ) be the vectorized covariogram of the vector of observables, dt, of order T .

4The object d(ηη′) is produced symbolically by iskrev anal deriv.m and then written to the script file
filename iskrev anal deriv.m.
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That is,

V (θ) =




vech(Ed0d
′
0)

...

vec(EdT−1d
′
0)




Then, Taylor-expanding around θ0 up to first order, we obtain

V (θ) ≈ V (θ0) + M(θ0)(θ − θ0)

If M(θ0) has full column rank, then V (θ) = V (θ0) if and only if θ = θ0 in the neighborhood

of θ0. If, on the other hand, M(θ0) is rank deficient, then there exists an infinite number of

vectors θ in the vicinity of θ0 satisfying V (θ) = V (θ0). To obtain these vectors, perform a

singular value decomposition of M(θ0)
′. That is, find matrices U , S, and V such that

M(θ)U = V S ′,

where U and V are unitary (i.e., UU ′ = I and V V ′ = I) and S is diagonal with its diagonal

elements nonnegative and decreasing. The matrix S has as many rows as M(θ) and as many

columns as the length of θ. Now partition the matrix U as [U1 U2], where U2 has as many

columns as S has zero diagonal elements. Then, we have that any vector θ of the form

θ = θ0 + u2α

delivers the same autocovariogram as θ0 for any (small) scalar α and any vector u2 taken

from the columns of U2.

4 Autoregressive Representation of Anticipated Shocks

The law of motion of the exogenous process xt can be written recursively as a first-order

linear stochastic difference equation of the form

x̃t+1 = Mx̃t + ηνx,t+1,
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where x̃t =
[

ln(xt/x) ε4
x,t ε4

x,t−1 ε4
x,t−2 ε4

x,t−3 ε8
x,t ε8

x,t−1 ε8
x,t−2 ε8

x,t−3 ε8
x,t−4 ε8

x,t−5 ε8
x,t−6 ε8

x,t−7

]
,

M =




ρ 0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0




; η =




σ0
x 0 0

0 σ4
x 0

0 0 0

0 0 0

0 0 0

0 0 σ8
x

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0




; and νx,t =




ν0
x,t

ν4
x,t

ν8
x,t


 .

The vector of innovations νx,t is normal i.i.d. with mean zero and variance-covariance ma-

trix equal to the identity matrix. An alternative, but equivalent, specification, which was

suggested to us by an anonymous referee, is given by

ln(xt/x) = ρx ln(xt−1/x) + ν0
x,t + ε1

t−1

ε1
t = ε2

t−1

ε2
t = ε3

t−1

ε3
t = ε4

t−1

ε4
t = ε5

t−1 + ν4
x,t

ε5
t = ε6

t−1

ε6
t = ε7

t−1

ε7
t = ε8

t−1

ε8
t = ν8

x,t.

An advantage of this recursive representation is that it involves only as many state variables

as the longest anticipation horizon, which in our case is eight. A further advantage is that,

if one were to consider in addition to shocks anticipated 4 and 8 quarters, shocks anticipated

1,2,3, 5, 6, and 7 quarters, then the number of state variables would not change. One would

simply add innovations ν1
x,t, ν2

x,t,ν
3
x,t,ν

5
x,t,ν

6
x,t, and ν7

x,t, respectively.
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Table 1: Share of Unconditional Variance Explained by Technology, Demand, and Wage-
Markup Shocks

Posterior Shares Prior Shares
Y C I h Y C I h

Technology Shocks
Mean 58 17 86 25 63 46 84 60
Median 58 17 86 25 68 44 93 67
5th percentile 52 11 83 19 14 5 38 8
95th percentile 64 24 90 30 97 93 100 97
Demand Shocks
Mean 25 65 2 7 36 53 16 29
Median 25 65 2 7 30 55 7 20
5th percentile 21 56 1 6 2 6 0 1
95th percentile 29 73 3 9 86 95 61 85
Wage-Markup Shocks
Mean 18 18 12 68 1 1 0 10
Median 17 18 12 68 0 0 0 4
5th percentile 14 13 9 62 0 0 0 0
95th percentile 22 24 15 75 5 4 1 44

Note. Y , C, I, and h, refer, respectively, to the growth rates of output, consumption,
investment, and hours. Estimates are based on 500,000 draws from the posterior
distribution. Technology shocks are εi

t for i = 0, 4, 8 and j = z, x, zI , a. Demand
shocks are εi

j, for i = 0, 4, 8 and j = g, ζ. Wage-markup shocks are εi
µ, for i = 0, 4, 8.

5 Estimated Sources of Uncertainty

Table 1 addresses a standard question in business-cycle analysis. Namely, what is the contri-

bution of the different sources of uncertainty considered in this study to explaining business-

cycle fluctuations. We group the sources of uncertainty into three categories: technology

shocks, aggregate demand shocks, and wage-markup shocks. Technology shocks consist

of stationary neutral productivity shocks, zt, permanent neutral productivity shocks, Xt,

stationary investment-specific productivity shocks, zI
t , and permanent investment-specific

productivity shocks, At. Aggregate demand shocks consist of government spending shocks,

gt, and preference shocks, ζt. Table 1 presents the share of the overall predicted variance of

the variables of interest attributed to each of the three categories of shocks. It shows that the

majority of the variances of output and investment is accounted for by technology shocks.

Consumption is explained mostly by aggregate demand shocks, and hours are driven to a

large extent by wage-markup shocks. These findings are in line with variance decompositions

reported in related studies. For instance, Justiniano, Primiceri, and Tambalotti (2008, table
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Figure 1: The Cross Correlogram of Hours
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4) report that technology shocks account for 71 percent of variations in output and 92 per-

cent of variations in investment. At the same time, these authors find that the majority of

fluctuations in consumption and hours are accounted for by, respectively, aggregate demand

shocks (57 percent), and markup shocks (70 percent).

Among the anticipated sources of uncertainty, the most relevant is ε4
µ, the four-quarter

anticipated innovation in wage markups (see table 3 in Schmitt-Grohé and Uribe, 2011).

This disturbance may reflect the macroeconomic effects of anticipated news regarding pro-

tracted wage negotiations of major labor unions. The reason why this shock is favored by

our data sample is that it helps account for the observed regularity that output and the

main components of aggregate demand (consumption and investment spending) all lead em-

ployment. Figure 1 displays the correlations of output, consumption, and investment with

current and future values of hours. All of these cross correlations are positive, indicating that

employment lags the other macroeconomic indicators. The figure also shows the predictions

of our estimated DSGE model for these cross correlations.5 In addition, the figure displays

the predicted cross correlations when the variance of the shock ε4
µ is set to zero. Clearly, the

5The DSGE model is parameterized at the posterior median of the parameter estimate.
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Figure 2: Impulse Responses To An Increase In The Wage Markup
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anticipated wage-markup shock contributes to making output, consumption, and investment

leading indicators of employment.

Figure 2 provides a flavor for why this is the case and for why the unanticipated com-

ponent of wage markups does not play this role. The figure displays the impulse responses

of output, consumption, investment, and hours to a four-quarter anticipated increase in the

wage markup. In response to this anticipated negative cost-push shock, firms immediately

cut investment spending and capital utilization, and, likewise, households cut consumption

spending. Hours, however, are relatively little changed after the announcement and prior to

the materialization of the shock. This is because the estimated wealth effect of labor supply

(captured by the parameter γ), is virtually nil. Hours fall significantly but only 4 quarters

after the announcement. As a result, the reactions of output, consumption, and investment,

all precede that of employment.

We note in addition that, as is clear from figure 1, the four-quarter anticipated wage

markup shock helps explain the observed positive autocorrelation in employment growth.

When we shut the four-quarter-anticipated wage markup shock, the model predicts virtually

11



Figure 3: The Population Spectrum
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no autocorrelation in employment growth.

6 Anticipated Shocks in the Frequency Domain

In Schmitt-Grohé and Uribe (2011), we analyze the role of anticipated shocks using the time

domain. Here, we conduct a brief exploration of the significance of anticipated shocks from

the perspective of the frequency domain. Figure 3 displays the population spectrums of

the anticipated component (solid lines) and the unanticipated components (broken lines) of

output growth, hours growth, consumption growth, and investment growth. The popula-

tion spectrums were computed at the posterior mean of the vector of estimated parameters.

Business-cycle frequencies, defined as 8 to 32 quarters, are marked by two dotted vertical

lines. The fact that the spectra associated with the anticipated and the unanticipated com-

ponents have different shapes suggests that the these two components play distinct roles in
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explaining business cycles. For instance, for hours worked the spectrum of the anticipated

component is downward sloping whereas the spectrum of the unanticipated component is

upward sloping. This means that anticipated shocks are estimated to be relatively more

important at the lower range of business-cycle frequencies. In the case of output and invest-

ment even though the spectra of both the anticipated and the unanticipated components

are downward sloping, the one associated with the anticipated component has more density

around the lower end of the business cycle spectrum, indicating again that anticipated shocks

are relatively more important in explaining lower frequency business-cycle movements. Fi-

nally, the consumption spectrum shows that movements in consumption at business-cycle

frequencies are accounted for by anticipated and unanticipated shocks in equal parts.

7 A Parsimonious Shock Specification

In this subsection we address two potential issues regarding the shock structure and ob-

servability assumptions maintained thus far. In regard to the shock structure of the model

analyzed in previous sections, a potential concern is that it contains a number of nonstruc-

tural and ad-hoc sources of uncertainty. Among these are the preference shock, ζt, the wage

markup shock, µt, and the shock shifting the law of motion of the capital stock, zI
t . Al-

though these shocks are customarily included in estimated medium-scale DSGE models, it

is of interest to ascertain whether the importance of anticipated shocks is robust to omitting

them. For this reason, in this section we estimate a special case of our model in which we

set

σi
k = 0,

for k = zI , ζ, µ and i = 0, 4, 8.

A second potential concern with our baseline estimation is the inclusion of total fac-

tor productivity as an observable variable. In particular, the construction of an empirical

measure of TFP requires the use of data on the capital stock, which, as is well known, is

difficult to measure accurately. Consequently, in this section we omit TFP from the set of

observables.

We estimate the resulting parsimonious version of the model using Bayesian methods.

For the parameters that are estimated, we impose identical priors as those used in the base-

line estimation. In line with the findings of the extensive literature devoted to fitting DSGE

models to quarterly postwar data, the exclusion of the nonstructural shocks results in a

weakening of the model’s ability to fit the data. The central question for our purposes,

however, concerns the predictions of the estimated model regarding the importance of antic-
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ipated disturbances. The estimated parsimonious model predicts that about two thirds of

the variances of output, consumption, investment, and hours is accounted for by anticipated

shocks. The exact shares are 0.68, 0.68, 0.69, and 0.69, respectively. It follows that our

central result, namely that anticipated shocks are important drivers of business cycles, is

robust to doing away with the set of nonstructural or ad-hoc shocks that are customarily

used to fit medium-scale macroeconomic models to the data. The facts that the model al-

lows for fewer sources of uncertainty and that the set of observables excludes TFP naturally

results in a significant increase in the importance of TFP shocks. Indeed, more than 90

percent of the volatility of output growth is now explained by stationary and nonstationary

neutral productivity shocks. Of the two types of TFP shocks, nonstationary neutral TFP

shocks are the single most important source of fluctuations explaining about 70 percent of

the volatility of output growth. Further, the single most important component of nonsta-

tionary TFP shocks are eight-quarter anticipated innovations, which alone explain almost 50

percent of movements in output, consumption, investment, and hours. This result is in line

with the findings of Beaudry and Portier (2006) obtained in the context of an empirical VAR

model. In the next section we explore further the connection between the predictions of our

estimated parsimonious DSGE model and those stemming from empirical VAR models.

8 Relating Model-Based To VAR-Based Estimates of

Anticipated Shocks

Beaudry and Portier (2006) estimate the importance of anticipated permanent TFP shocks

using an empirical vector error correction model (VECM). Their identification strategy is

designed to uncover anticipated permanent changes in total factor productivity. Specifically,

these authors impose two conditions for an innovation in TFP growth to be an anticipated

shock: first, the shock must affect TFP in the long run (we refer to this restriction as the long-

run identification scheme). And second, the shock cannot affect TFP contemporaneously (we

refer to this restriction as the short-run identification scheme). The shocks that satisfy both

BP identification schemes in our model are the anticipated components of the nonstationary

neutral productivity shock, that is, ε4
x,t and ε8

x,t. We note, however, that our DSGE model

does not have a VAR representation of the type considered in BP. One reason for the lack of

a BP-style VAR representation is that the number of innovations we consider is larger than

the number of observables included in the VARs considered by BP. It follows that the shocks

identified by the BP methodology cannot be interpreted as ε4
x,t, or ε8

x,t, or a combination

thereof. We therefore interpret the BP empirical results as a particular filtering of the data
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Figure 4: Beaudry-Portier-Style Impulse Response Functions Model Generated Data
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Note. Solid lines correspond to mean point estimates and broken lines to point estimates ± two
standard-deviation bands. Impulse responses are computed from a bivariate VAR in the growth
rates of TFP and the value of the firm. Artificial data are generated from the parsimonious
specification of the model. The VAR is estimated 1000 times. Each time, an artificial time series of
length 1212 is created, but only the last 212 observations are used in the estimation of the VAR.

that can be compared to a similar filtering performed on artificial data generated by our

theoretical model.

Figure 4 displays impulse responses of adjusted TFP—i.e., ztX
1−αk
t —and the value of

the firm applying the Beaudry-Portier long- and short-run identification schemes to a VAR

in the growth rates of TFP and the value of the firm estimated on artificial data generated

using the parsimonious specification of the model. We use this version of the model because

it assigns a relatively large role to anticipated permanent TFP shocks. We generate artificial

data of length 1212 quarters and discard the first 1000 elements. The remaining time series

are of equal length as those used in the empirical work of BP. We repeat the estimation of

the VAR 1000 times and report the mean and standard deviation of the BP-style impulse

responses. The figure shows that in response to a BP-style innovation, TFP and the value of

the firm display a significant increase. In this sense, the predictions of our estimated model

are consistent with the empirical results of BP. We reiterate our hesitation to interpret the

15



shocks identified in this exercise as being anticipated TFP shocks because, as explained

above, our theoretical model does not imply a bi-variate VAR representation.
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