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Abstract

This study asks whether lack of information about ability helps explain why high-performing

students from disadvantaged backgrounds tend to under-invest in their education. I examine

an individualized signal of aptitude for Advanced Placement known as “AP Potential” that

is provided in PSAT reports. By collecting high-frequency panel data on subjective beliefs

from students in Oakland, California, I show that the “AP Potential” signal has informational

value: students with the same scores and prior beliefs who receive the signal experience larger

information shocks. These shocks lead students to revise their beliefs about their ability, the

number of AP classes they plan to take, and the likelihood that they will attend a four-year

college, consistent with a Bayesian updating model. I then exploit the deterministic relationship

between test scores and the AP Potential signal in a Regression Discontinuity (RD) design and

find that receiving the signal caused surveyed students at the margin to enroll in approximately

one more AP class the following semester. This effect amounts to raising the number of high-

ability students in college-level courses and reducing mismatch in course enrollments. The results

suggest that providing a credible, individualized signal of ability is a cost-effective means of

increasing human capital investments among disadvantaged students.
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1 Introduction

The majority of high-performing students from disadvantaged backgrounds do not apply to selec-

tive colleges, even though doing so would benefit them academically and financially (Hoxby and

Avery, 2012). One leading hypothesis for this puzzling phenomenon is that these students lack

information. In the face of uncertainty about the costs and returns to human capital investments as

well as their individual tastes and abilities, individuals form expectations and make human capital

investment decisions using the information available. Researchers have begun testing the informa-

tion gap hypothesis through randomized control trials of “information interventions.” For example,

Oreoupoulos and Dunn (2012) find that disadvantaged students exposed to messages about the

benefits of post-secondary education report higher likelihoods of completing a college degree, and

Hoxby and Turner (2013) find that providing semi-customized information about college costs leads

high-achieving, low-income students to apply to and enroll in more selective colleges.

These studies show that uncertainty about costs and benefits makes up a piece of the puzzle.

Another possible, non-rival theory is that high-performing disadvantaged students are uncertain of

their individual level of ability. This hypothesis has been suggested in studies of mismatch between

student ability and college quality. Hoxby and Avery (2012) note that high-performing, low-income

students who do not apply to selective schools are likely to lack information and encouragement

that their counterparts who do apply to selective colleges receive since the latter tend to be exposed

to a critical mass of high-achieving students and teachers while in high school. Dillon and Smith

(2013) also posit that disadvantaged students’ college application decisions can be explained in part

by incomplete information about how their abilities compare with other college applicants. Using

a proxy for access to this information, they find that better informed students are less likely to

undermatch.

Motivated by these findings, this paper studies how receiving individualized information about

ability impacts human capital investment in high school, a pivotal time in which course-taking and

academic effort decisions are made that affect students’ college choice set. Using administrative and

survey data from Oakland public schools, I explore how receipt of new information about ability

transmitted by the Preliminary SAT (PSAT) affects students’ beliefs about their ability, expectations

of future academic outcomes, and decision to enroll in Advanced Placement (AP) courses, a key step

on the path to admission into selective four-year colleges (Geiser and Santelices, 2006). To the best

of my knowledge, this is the first study to identify the causal effect of providing a signal of ability.

I find that providing credible, individualized information about ability is a cost-effective means for

increasing human capital investments among high-performing, disadvantaged students.
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This study builds on a growing body of work on the effects of learning about own ability. Good-

man (2012) shows that a mandate that made the ACT compulsory for high school juniors led to

an increase in the enrollment of students from lower socioeconomic backgrounds in more selective

colleges and interprets this finding as being reflective of many high-ability students from disadvan-

taged backgrounds underestimating their ability. If disadvantaged students across the distribution

of ability lack information, it follows that many may also overestimate their ability. Jacob and

Wilder (2010) find that socioeconomically disadvantaged students start out with very high expec-

tations about the likelihood that they will attend college but lower them during high school as they

observe changes in their GPA. In a similar vein, Fryer and Holden (2012) observe that the academic

performance of lower-performing students suffered following an experiment that incentivized them

to take practice math tests. The authors argue that this result is most likely explained by students

learning that their own ability was lower than they believed.

While these studies suggest information about own ability can affect students’ educational de-

cisions and performance (in both positive and negative ways), they assume that students derived

new information about their ability from their GPA or the assessments they were induced to take.

However, a particular behavior may be consistent with multiple characterizations of both expecta-

tions and preferences, making it difficult to ascertain that a change in beliefs about ability in fact

occurred. Furthermore, in the absence of baseline data on expectations, one could easily confuse

positive information for negative information when a student’s performance is high yet happens

to be lower than what he had anticipated, and vice versa. Even when accounting for observable

information available to the student, as Fryer and Holden (2012) do, there could be unobservable

factors that would have led the student to make a valuation of his expected performance different

than the researcher.

In response to this identification issue, economists have begun eliciting self-reported subjective

beliefs using surveys in order to back out new information from changes in beliefs. Stinebrickner

and Stinebrickner (2012) link longitudinal surveys to administrative data from undergraduates at

Berea College to explore how students update expectations about future academic performance in

response to new information from grades. They conclude that dropout rates between the first and

second years of college would be significantly reduced if no learning about own ability occurred.

Zafar (2011) similarly shows that students update their expectations in response to new information

received from college grades using longitudinal survey data from undergraduates at Northwestern

University. He finds that this learning plays a role in the decision to switch majors.

A challenge to this approach is that the source of the new information cannot be pinned down.

Zafar (2011) and Stinebrickner and Stinebrickner (2012) both attribute information shocks solely
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to college GPA but cannot rule out other sources. To address the question of whether individuals

respond to a well-identified source of information, the researcher must elicit very high-frequency

survey data about expectations, observe the innovation in the individual’s information set, and link

expectations to outcomes. Due to these difficulties, no previous work has been able to determine

the causal effect of a particular information intervention on expectations and realized outcomes.

In this paper, I focus on a specific information signal known as “AP Potential,” which the College

Board began providing students via the PSAT in 2013, and whether it contains new information

about own ability that is effective in leading high-ability students in Oakland to enroll in AP courses.

I begin by surveying students about their expected performance on the PSAT, their beliefs about

their abilities, and their expectations about future academic outcomes before and after distributing

their PSAT results reports. This data allows me to identify the information shock received from

the PSAT as the difference between students’ prior and posterior beliefs about their performance.

I establish that although the PSAT is, on average, a negative information shock, the AP Potential

signal itself contains new information for high-ability students: students with the same PSAT score

and prior beliefs about own ability who receive the AP Potential signal experience a more positive

information shock. The information shock in turn leads students to revise their beliefs about their

ability and their expectations of a subset of future academic outcomes, particularly the number of

AP classes they plan to take, in a manner consistent with Bayesian updating.

Although the PSAT and AP Potential signal contain new information that leads students to

revise their beliefs about own ability and future course-taking plans, it is possible that stated beliefs

do not reflect future actions. For this reason, I focus next on estimating whether the AP Potential

signal has a causal effect on the number of AP classes in which students actually enroll by exploiting

the deterministic relationship between PSAT scores and the AP Potential signal in a Regression

Discontinuity (RD) design. Both graphical and more formal parametric and non-parametric methods

robustly demonstrate that receiving the AP Potential signal caused surveyed students at the margin

to enroll in approximately one more AP class the following academic year. Given the fact that

students to the left of the AP Potential cut-point had very low rates of AP participation, this effect

amounts to increasing the number of high-ability students taking college-level courses.

When I extend this analysis to students in other schools who did not take the survey, I find

that the AP Potential signal had no effect on their course enrollment decisions. This result is not

altogether surprising since students who participated in the survey were not just handed back their

PSAT results report, but were also given additional information to help them interpret each section

of the report. Following a brief explanation of the results report and the AP Potential message,

surveyed students received a handout that listed the AP courses offered at their high school, a
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table to predict their SAT scores using their PSAT scores, and the SAT score ranges of students

admitted to California’s four-year colleges. The most likely explanation for why a treatment effect

was only detected for surveyed students is that the additional information they received intensified

the signal’s underlying effect. This additional intervention would be straightforward and inexpensive

to replicate.

Increasing AP enrollment among minority and low-income students is a well-publicized and

well-funded goal of education policymakers. 1 In addition, the same mechanisms that induced

high-ability, disadvantaged students to enroll in AP could apply to other human capital investment

decisions that policymakers seek to influence. The results from this paper suggest that well-designed

information interventions may be one of the most cost-effective methods to achieve these goals.

Unfortunately, not enough time has elapsed since students were provided the AP Potential signal for

the first time to study additional outcomes like performance in AP exams and college enrollment.

Although participating in AP increases access to high-achieving peers and teachers, provides an

opportunity to earn college credit, and plays an important role in the admissions decisions of selective

colleges, future work will further explore how students were impacted.

The next section describes the details of the PSAT and AP Potential signal. Section 3 outlines a

Bayesian learning framework to illustrate how new information about own ability can affect students’

formation of expectations, and ultimately, educational decision-making. Section 4 describes the

administrative and survey data from the Oakland school district used in the study. In Section 5

I analyze the survey data to determine whether the PSAT and AP Potential signal contain new

information and whether students use this information to update their beliefs about own ability and

expectations of future outcomes in a manner consistent with the Bayesian framework outlined in

Section 3. Having established the informational value of the AP Potential signal, Section 6 focuses

on identifying its causal effect on the number of AP courses students enroll in using an RD design.

Section 7 discusses the results and outlines future work.

2 Background

There is a long history in education of using standardized testing as a means to communicate

information to students, traceable back to the work of Novick (1970) and Novick and Jackson

1Several states have pushed to expand AP programs, particularly for disadvantaged students (Lerner and Brand,
2008). These efforts have been supported by federal, state, and private funds. As one example, the U.S. Department
of Education allocated more than $273M between 2001 and 2011 to Advanced Placement Incentive Program Grants
to increase participation of low-income students in AP courses and tests (U.S. Department of Education, 2014).
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(1970).2. Novick (1970) wrote of the possibility that an assessment could provide a student with

“information about himself” to make better educational decisions. Novick and Jackson (1970)

furthered this work, writing that information provided by testing could “encourage potentially

qualified students, whose backgrounds have not given them expectations of college attendance.”

Although standardized testing is not the only way to measure and provide information about ability,

it is reliable and scalable.

Today, educational organizations and testing companies continue the claim that assessment

results can provide valuable information to students. One example is the PSAT, which provides

information about students’ aptitude for Advanced Placement (AP), a national program that offers

college-level courses and exams in high school. Students typically take AP courses, which are taught

by specially-trained teachers in the AP curriculum for their subject, during their junior and senior

years of high school. Students who take AP courses also take corresponding exams administered

by the College Board. AP exam scores range from 1 to 5, and a score of 3 or above is considered

passing and generally qualifies students to receive college credit. For example, the University of

California system grants credit for all subjects on which students score 3 or higher. Figure 1 shows

a timeline of events related to the PSAT, AP program, and college.

The College Board administers the PSAT, a shorter version of the SAT, to over three million

10th and 11th graders nationwide each year. The College Board developed the AP Potential signal

based on research by Camara and Millsap (1998), which showed that PSAT scores are strongly

correlated with performance on most AP exams. Further, the correlations between PSAT scores

and AP exam scores are much stronger than those between AP exam scores and high school GPA

or grades in prior relevant courses.3 Researchers selected the measure with the highest correlation

to performance on each AP exam from among seven PSAT scores: verbal (V ), mathematics (M),

writing (W ), V + M , V + W , M + W , and V + M + W .4 The selected PSAT scale was divided

into 5-point or 10-point score ranges, and for each score range, the percentage of test-takers earning

a score of 3 or better was calculated. A binary AP Potential signal for each AP subject was thus

defined using the cut-point score that corresponded to passing that AP exam with at least a 60%

probability. Table A.1 in the Appendix shows the scores and cutoffs used to define AP Potential for

each AP subject.

2Novick was a consultant for the Educational Testing Service and the American College Testing Program and went
on to pen the 1985 Standards for Educational and Psychological Testing

3All but four AP subject exams (in foreign languages and studio art) exhibited a correlation of 0.40 or higher with
one or more scores, and in the majority of the cases the correlations were above 0.50.

4The PSAT did not have a writing portion until 2006, so AP Potential cut-point scores were adjusted in 2007 to
include writing scores using research by Ewing et al. (2007).
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Figure 1: Typical Path to a Selective College

In addition to the AP Potential signal it provides, the College Board claims in its promotional

materials that the PSAT itself is an early source of new information about college readiness for

students, as it provides a good estimate of future SAT performance as well as a comparison to

students around the country. Though the PSAT was originally designed as an optional test for 11th

graders, many school districts now require students to take the PSAT, and to take it earlier (some

as early as 9th grade), precisely for the information it may provide to students at a critical point

in their high school careers.5 Based on this belief, the Oakland Unified School District (OUSD)

began offering the PSAT to 10th graders at no cost in 2006. The expectation was that 100% of 10th

graders would participate, but actual participation rates were much lower.6 In 2011, upon receipt

of a $3M, four-year Investing in Innovation (i3) grant from the U.S. Department of Education, the

district partnered with the College Board and made 100% participation in the PSAT a priority.

Since then, 10th grade participation in the PSAT rose from 39% to 74% 2013, a 90% increase.

The AP Potential program was first rolled out in 2000, when the College Board began providing

schools with a roster of students that met the criteria outlined above. In 2004, an online tool was

introduced that allowed schools to select the default probability of passing (for example, 50% instead

of 60%) in order to help schools decide which AP courses to offer and which students to recruit into

AP classes. Information was always provided on a course-by-course basis (that is, a list of students

was provided for each AP subject). Students were not informed of their AP Potential status. In 2012,

the College Board added AP Potential results, still at the course level, to My College QuickStart, a

website where students can review their PSAT scores and other College Board services. In Oakland,

the AP Potential online tool for schools and the My College QuickStart website for students are

5Another incentive to take the PSAT is that scores are used as an initial screening tool for the National Merit
Scholarship Program. However, only students who take the test in 11th grade are eligible to compete.

6Ninth and 11th graders can also take the test, though they are not required to and are not eligible to take it free
of cost unless their schools apply for a waiver from the $14 fee.

7



both unpopular. Usage rates of My College QuickStart among Oakland students range between 10

and 15%,and it is unclear if all students who log in navigate to the AP Potential part of the website.

Use of the AP Potential online tool for schools is similarly low. Each year, only one or two out of

14 high schools in Oakland access the AP Potential online tool (College Board, 2014).

Figure 2: 2013 PSAT Results Report, Next Steps Section

Possibly in response to these low rates of take-up, in 2013 the College Board added a message

about AP Potential to the PSAT paper results that every student receives. Figure A.1 in the

Appendix shows a sample results report from 2012. Between 2012 and 2013, the “Next Steps”

section at the bottom of the report was redesigned. As Figure 2 shows, beginning in 2013 students

were either given a congratulatory message stating they had potential to succeed in one or more

AP courses or received a general message about speaking to their counselor to learn more about

AP based on whether they met at least one of the AP Potential criteria listed in Table A.1 in

the Appendix. This change achieved three things: first, it converted the information into a more

salient signal–either students had AP Potential or they didn’t; second, it made students, not school

administrators, the main recipients of the information; and third, it removed barriers to accessing

the information.

An underlying motivation for creating these types of designations using standardized testing is

the well-established fact that GPA is a noisy predictor of success in college for minority students

(e.g. Thomas and Stanley, 1969; Dalton, 1974; and Zwick and Sklar, 2005). As the fitted scatter

plots in Figure A.2 in the Appendix show, this is very much true for students in Oakland. Whereas

GPA is noisy, PSAT scores are a strong predictor SAT performance, an important academic measure

for high school students. Furthermore, the strength of the relationship between grades and SAT

performance is weaker for minority students. Therefore, the information value of signals like AP

Potential is potentially higher for groups of interest to policymakers. As the following quote from
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a counselor at Oakland High School suggests, students themselves become aware of the conflicting

information they receive from the PSAT versus grades: “It’s frustrating, because some of these kids

are getting As and Bs in their classes but then get really low PSAT scores [...] and they come to

me, upset and confused.”

3 Theoretical Framework

Individuals make educational choices like whether to enroll in AP or which colleges to apply to

based on their beliefs about the returns and costs of these decisions. To illustrate, consider a simple

one-factor model of selection into AP. Students who participate in the college track by enrolling in

programs like AP obtain the following return:

rAP (αi) = δ0 + δ1αi − c,

where δ0 > 0 and δ1 > 0, such that δ0 is the main return to participating in AP, which applies

irrespective of the individual’s ability, and δ1, such that the program yields a higher return to

more able students, ensuring that high-ability individuals are positively selected, which we know

empirically to be the case. Because students must exert more effort if they participate in AP, there

is a cost c associated with the program, which for simplicity we can assume is fixed. The details of

this expression matter only to illustrate that students must at a minimum be well-informed about

their ability and the returns and costs to the educational decision they are considering. Thus, under

complete information, it is optimal to participate in AP if the following condition is met:

αi ≥
c− δ0
δ1

(1)

In more general terms, a student’s ability must cross some threshold that is increasing in the

costs and decrease in the returns to a particular human capital investment. That individuals are

uncertainty about the costs and benefits of educational investments is supported by past research

(e.g. Jensen (2010), Dynarski and Scott-Clayton (2006), Oreopoulos and Dunn (2012), and Hoxby

and Turner (2013)). However, it is also possible that a student’s true ability is unknown to her,

particularly if she does not have access to high-ability peers, teachers, and family members as

sources of information. Information constraints about ability among disadvantaged students have

been discussed in past work by Jacob and Wilder (2010), Hoxby and Avery (2012), and Dillon and

Smith (2013).

Therefore, consider the case in which individuals are distinguished by unobserved ability. In

this case, the AP enrollment decision will depend on her best estimate of αi using the information
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available to her. The individual forms an expectation, or self-assessment, of her ability over the

course of her lifetime given a wide variety of factors, such as her grades in school and how encouraging

her parents and teachers are. This self-assessment reflects her true ability with an added error term:

si = αi + εsi ,

where εsi ∼ N(0, σ2s), and hence has precision ρs = 1
σ2
s
. Precision here intuitively corresponds to how

confident the student is about her self-assessment.

One possible framework for understanding how information that reduces students’ uncertainty

can affect educational choices is a rational Bayesian learning model in which individuals update

beliefs based on new information and its relative precision. Individuals are assumed to use all

available information in forming expectations; therefore, revisions of expectations are determined

solely by new information. I further assume that, at time t + 1, the individual has access to all

information that was available at time t. Consider the case in which a new signal of ability such as

the PSAT becomes available at time t+ 1, where:

PSATi = αi + εPSATi ,

εPSATi ∼ N(0, σ2PSAT ) and hence the signal has precision ρPSAT = 1
σ2
PSAT

. The precision of both the

prior and the PSAT are assumed to be finite, such that they can never perfectly measure ability.

With a new signal available, the individual will revise her beliefs based on the information content

of the signal to the individual, Ii,t+1, which can be expressed as follows:

Ii,t+1 = PSATi − E(PSATi|Ωi,t), (2)

where Ωi,t denotes the information set available to the individual at time t and E(Ii,t+1|Ωi,t) = 0.

Because the signal was not able to be predicted given the information available at time t, the

difference between the realized signal and the expected value of the signal at time t can be thought

of as a shock.7 When the new signal becomes available, the student uses the information content to

update her expected ability thusly:

E(αi|Ωi,t+1) = γssi + γIIi,t+1, (3)

7In reality, individuals select into receiving the PSAT signal at time t+ 1. Therefore, we will observe PSAT scores
only for individuals with E(PSATi|E(αi|Ω1) > ᾱ) in the absence of a mandate, where ᾱ is a threshold increasing in
the costs of the test, and decreasing in its value. However, revisions in individuals’ expected ability and decision to
enroll in AP are based on the information shock (that is, the deviation from the prior expectation) rather than the
absolute level of performance on the PSAT.
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where γs = ρs

ρs+ρPSAT ∈ [0, 1] is the weight assigned to the individual’s prior self-assessment, and

similarly, γI = ρPSAT

ρs+ρPSAT ∈ [0, 1] is the weight assigned to the information shock. This last expression

is a result of Bayes’ rule. Intuitively, the weight assigned to each signal depends on its relative

precision.

When only the student’s self-assessment is available to her, she will decide to enroll in AP if the

following condition is met:

E(αi|Ωi,t) = si ≥
c− δ0
δ1

(4)

The decision to enroll at time t+ 1, however, utilizes the new information as follows:

E(αi|Ωi,t+1) = γssi + γIIi,t+1 ≥
c− δ0
δ1

, (5)

This simple Bayesian framework has several implications. If γI > 0, when the PSAT becomes

available students update their expected ability according to the information content of the test. It

is likely that ρPSAT > ρs for disadvantaged students given the noisy and incomplete nature of their

prior sources of information about ability and the fact that the PSAT is designed as a nationally

standardized measure of college aptitude. The magnitude of the revision students make depends on

the relative precision of the information shock and the size of the information shock. More precise

information shocks and more extreme information shocks both produce larger changes in beliefs.

Because individuals revise their expected ability in response to the new information, they may

also revise their AP enrollment decision if the change in their expected ability is large enough to

alter the result of equation 4 versus equation 5. If the student receives a large enough positive

shock, she revises her expected ability and the likelihood of participating in AP increases. Although

policymakers cannot control the size of the information shock provided by a given intervention, they

can control the precision by providing a credible, meaningful, and salient signal. Finally, note that

the chances of enrolling in AP under uncertainty may be lower or higher than the optimal decision

based on full information, although having access to the PSAT signal should reduce error.

4 Data

4.1 Administrative Data

The data for this paper were provided by the Oakland Unified School District, a public school

district in northern California with an enrollment of approximately 47,000 students during the

2013-14 school year. The Oakland Unified School District resembles other medium-sized urban
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school districts around the country like St. Louis, Baltimore, Cleveland, Atlanta, and Washington

D.C., with a high share of minority, socioeconomically disadvantaged students and poor academic

results. Academically, Oakland students score in the 28th percentile in math and 25th percentile in

reading compared to the rest of the nation (Global Report Card, 2011).

The data span all high school students enrolled in non-charter schools between the 2008 (2008-

2009) and 2014 (2014-2015) academic years, although the analysis focuses on students who were in

10th grade in 2013. 8 Students are tracked longitudinally across years. The data consist of adminis-

trative data on student demographics, course enrollment and grades, and graduation; standardized

test results from the California Department of Education and the College Board; and postsecondary

enrollment from the National Student Clearinghouse, a non-profit organization that provides degree

and enrollment verification for more than 3,300 colleges.

Table 1 lists descriptive statistics for the overall sample of high school students, as well as by

ethnicity. Among students in grades 9-12, 38.0% are black, 32.2% are Latino, 20.1% are Asian, and

5.84% are white.9 Less than half of parents completed high school or better, and about two-thirds

of students are eligible for free or reduced-price lunch. A large share of Latino students (39.9%) and

Asian students (23.9%) are English language learners and are born outside of the U.S. Academically,

Table 1 shows low performance levels overall, as well as large achievement gaps between ethnic

groups, along almost every outcome. For example, district-wide, only 19.4% of students in grades

9-12 score proficient or advanced on the California Standards Test in English, with white students

almost five times more likely to score in these passing ranges than black students.

As might be expected given the small share of white students in the district, there is evidence

of substantial academic tracking by ethnicity. Almost two-thirds of white students enroll in an

AP course in grade 12, compared to one-sixth of black students. Even among students who do

participate in AP, gaps in achievement persist. Only 16.6% of black students who take at least one

AP test pass and become eligible to receive college credit, compared to 79.9% of white students. A

comparison of the share of students who meet the AP Potential criteria and the share of students

who participate in AP courses suggests that more black, Latino, and Asian students enroll in AP

courses than have AP Potential. However, not shown in Table 1 is the relationship between AP

Potential status and AP course enrollment. More than a third of black students with AP Potential

never take an AP course, yet 75% of black students who take AP courses do not meet any of the

AP Potential criteria, suggesting that there are in fact highly qualified minority students who are

8All years refer to academic years henceforth.
9The city of Oakland’s population was 28.0% black, 25.9% white, 25.4% Latino, and 16.8% Asian as of the 2010

census.
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passed by for AP, but also that less qualified minority students are being recruited instead. Although

there are other factors like student interest and motivation that should determine enrollment in AP

courses, in the presence of space constraints these comparisons imply that schools and students are

not effectively utilizing information about ability as a primary factor.

Table 1: Summary Statistics of Oakland HS Students

(1) (2) (3) (4) (5)
All Students Black Latino Asian White

Black 0.380
Latino 0.322
Asian 0.201
White 0.058
Female 0.507 0.526 0.495 0.499 0.497
Parent Ed: HS Grad or Better 0.484 0.580 0.307 0.498 0.789
Eligible for F/R Lunch 0.680 0.663 0.758 0.764 0.236
English Learner 0.193 0.011 0.399 0.239 0.054
Foreign Born 0.237 0.070 0.407 0.318 0.078
GPA 2.432 2.069 2.257 3.055 3.230

(1.015) (0.904) (0.968) (0.880) (0.845)
Prof/Adv in English 0.194 0.115 0.148 0.319 0.545
Prof/Adv in Math 0.129 0.086 0.113 0.215 0.217
Took PSAT Grade 10 0.633 0.554 0.638 0.725 0.818
Took PSAT Grade 11 0.251 0.175 0.260 0.347 0.330
PSAT Test-Takers with AP Potential 0.237 0.109 0.0656 0.334 0.763
Took AP Class Grade 11 0.233 0.137 0.182 0.408 0.551
Took AP Class Grade 12 0.291 0.167 0.214 0.532 0.645
AP Test-Takers that Passed 0.424 0.166 0.450 0.389 0.799
Graduated Grade 12 0.676 0.612 0.616 0.817 0.870
HS Grads Enrolled in 4-yr College 0.295 0.245 0.201 0.423 0.584

N 44222 16809 14245 8907 2581

4.2 Survey Data

To better understand how receiving information affects students’ beliefs, I gather survey data from

10th grade students who took the PSAT in October 2013 at Oakland Technical High School, Oak-

land’s largest secondary school. Oakland Tech, as the school is known locally, is located in a

middle-class neighborhood in Oakland, but 70% of the school’s students live outside of the neigh-
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borhood. Its student population is about 2100 students, which is 37% black, 22% white, 19% Asian,

and 18% Latino. It is widely considered to be the best traditional public high school in Oakland

but exhibits large achievement gaps between ethnic groups: 93% of white students graduate, com-

pared to 78% of black students. The school is known for having very distinct academic tracks, with

students separated into “academies” with differing course offerings and levels of rigor. One teacher

at the school described the school thusly: “[Oakland Tech] is two schools within one school. It’s the

most segregated school in Oakland.”

The survey instrument (see Figure A.3 in the Appendix) was designed with the theoretical frame-

work outlined in Section 3 in mind and the school was selected based on its size and the willingness

of school administrators to participate in the study.10 The survey is divided into three parts. The

first part focuses on students’ self-assessments, beginning with their expected performance on the

PSAT. This question is used to measure the information shock received. I also ask students to report

their confidence in their responses in order to test whether students update in a manner consistent

with the rational learning model described in Section 3. Part 2 of the survey asks students to state

their expected academic outcomes to measure whether students revise their expectations when they

receive new information. Part 3 asks about planned time expenditures. This question was intended

to measure expected academic effort and to provide data on students’ tastes for academic versus

non-academic activities. However, many students left this section either partially or completely

blank, so I ignore this question in the analysis that follows.

Unlike Zafar (2011), who elicits beliefs in terms of probabilities, I provide students with cate-

gorical ranges. Rather than ask students for their expected percentile ranking on the PSAT, I ask

them to select one of five categories, ranging from “Highest 10%” to “Lowest 10%,” and rather than

ask students to state the probability that they will attend a four-year college, I ask them to select

one of four options, ranging from “Not at all likely” to “Very likely.” In the case of AP course

enrollment, I ask for the explicit number of courses the student plans to take. Oakland educators

who provided feedback on the survey instrument agreed that percentiles and probabilities were not

adequate concepts to include in the survey. Note that students were asked to rate their performance

and own ability relative to other students at the same high school. Wording the survey this way

reduces measurement error and simplifies the questions for students.

I surveyed students in their English classes over the span of four weeks, between mid-January

2014 and mid-February 2014. Eliciting subjective evaluations of self-ability just before and after

students receive their PSAT scores allows me to measure the value of the information shock received

10Much of the survey wording was adapted from the Higher Education Research Institute’s annual Freshman Survey,
which is administered to thousands of college freshmen nationwide.
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Table 2: Comparing Survey Participants to the 10th Grade Population

(1) (2) (3)

All 10th Graders Took PSAT Took Both Surveys

Female 0.508 0.520 0.564
Black 0.374 0.357 0.294
Latino 0.211 0.211 0.199
Asian 0.167 0.175 0.217
White 0.223 0.231 0.255
Eligible for F/R Lunch 0.488 0.485 0.469
AP Potential 0.415 0.496
Total PSAT score 128.5 135.0

(32.85) (31.73)

N 569 527 337

by each student that is attributable solely to the PSAT. After students filled out the baseline survey,

I passed out their PSAT score reports and an informational handout that I created. The handout

contained a conversion table to help students predict their SAT scores using their PSAT scores,

a table listing the SAT score ranges of admitted students for all the four-year public colleges in

California, and a list of the AP courses offered at the school (see Figure A.4 in the Appendix).

Next, I briefly explained the report and handout to students, following the same script. I first

showed students where they could find their scores, how to interpret the percentiles, and how to use

the handout. I then asked students to check whether they had received the AP Potential message,

pointing out the list of AP courses in the handout. Finally, I told students they could log into

My College QuickStart for more information. Students also had a chance to ask questions.11 This

process took under ten minutes. Students then completed the endline survey. Out of 528 10th

graders who took the PSAT (92.6% of the sophomore class), 440 students took at least one of the

surveys and 337 students took both. This sample size is comparable or greater to those in similar

studies, such as Zafar (2011) and Stinebrickner and Stinebrickner (2012).

Summary statistics in Table 2 show that students who took the PSAT were more likely to be

female, Asian, and white, but not significantly so. Survey participants were, somewhat positively

selected from the population of PSAT test-takers.12 Students who took both surveys were more

likely to be female and Asian, and less likely to be black. They had total PSAT scores that were

11The most common question students asked was whether they had “passed” the PSAT, suggesting they were looking
for a simpler way than the percentiles provided in the report to interpret their performance.

12There were 3 students who took both surveys but did not take the PSAT. They are excluded from Column 3.
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on average 6.5 points higher (about 0.2 standard deviations relative to other Oakland students).

As a result, they were also more likely to receive the AP Potential signal. Nevertheless, more than

two-thirds of students surveyed were either under-represented minorities or low-income, as defined

by eligibility for free or reduced-price lunch.

Table 3 shows summary statistics of student responses in the baseline and endline surveys. To

help interpret the means shown, minimum and maximum values and corresponding labels are also

provided. The final column shows the mean difference between the endline and baseline surveys

and whether it is statistically significant. Of note is the first row, which shows how students

adjust their beliefs about their relative PSAT performance. The next set of rows show how self-

assessed ability (overall academic ability as well as math, reading, and writing ability) change

between the two surveys. All four measures of perceived own ability are adjusted down. In turn,

students become more confident in their self-assessments, particularly in their self-assessed PSAT

performance, following receipt of their PSAT report. The last rows show expected outcomes. On

average, students said they planned to take 1.35 AP courses the following year and adjust this

number slightly downward in the endline survey. Students also decrease the likelihood that they

will graduate from high school and increase the likelihood that they will attend a community college.

As the next section will show, students revise their beliefs differently depending on whether they

received a positive or negative information shock.

5 Survey Analysis

5.1 PSAT Scores, AP Potential, and Information Shocks

The survey data collected allows me to back out the information content of the PSAT and AP

Potential signal without making assumptions about prior beliefs or the information sets available to

the individuals between time t and t+ 1. The only assumption I make in the analysis that follows

is that individuals use all available information in forming expectations, and therefore, revisions of

expectations are determined solely by new information. As a result, the change in an individual’s

expectation between time t and time t+ 1 is a function of shocks between time t and t+ 1. In the

baseline survey, the student is asked to state his expectation of his perceived relative performance

on the PSAT given the information available to him at time t, E(PSATi,t+1|Ωi,t). I also ask the

student to state his revised expectation given the new information available at time t+ 1 following

receipt of the PSAT report and informational handout. The change in expectation can be expressed

as follows:
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Table 3: Summary Statistics of Baseline and Endline Surveys

Min Max Baseline Endline ∆

My PSAT score 0 4 2.145 1.962 -0.147***
Lowest 10% Highest 10% (0.743) (0.938)

My academic ability 0 4 2.560 2.373 -0.196***
Lowest 10% Highest 10% (0.730) (0.825)

My math ability 0 4 2.313 2.207 -0.104***
Lowest 10% Highest 10% (0.904) (0.947)

My reading ability 0 4 2.549 2.314 -0.236***
Lowest 10% Highest 10% (0.795) (0.928)

My writing ability 0 4 2.354 2.209 -0.153***
Lowest 10% Highest 10% (0.783) (0.915)

Confidence in PSAT self-assessment 0 4 2.254 2.682 0.502***
Not Sure At All Practically Certain (0.930) (0.985)

Confidence in academic self-assessment 0 4 2.467 2.666 0.244***
Not Sure At All Practically Certain (0.881) (0.911)

Confidence in math self-assessment 0 4 2.482 2.678 0.226***
Not Sure At All Practically Certain (0.935) (0.936)

Confidence in reading self-assessment 0 4 2.548 2.695 0.213***
Not Sure At All Practically Certain (0.863) (0.924)

Confidence in writing self-assessment 0 4 2.486 2.637 0.204***
Not Sure At All Practically Certain (0.862) (0.935)

Number of AP classes I plan to take 0 7 1.351 1.240 -0.069*
(1.141) (1.102)

Likelihood I’ll pass grad exam 1st time 0 3 2.616 2.595 0.000
Not At All Likely Very Likely (0.560) (0.632)

Likelihood I’ll take the SAT 0 3 2.652 2.708 0.039
Not At All Likely Very Likely (0.565) (0.541)

Likelihood I’ll graduate HS 0 3 2.832 2.788 -0.043**
Not At All Likely Very Likely (0.407) (0.464)

Likelihood I’ll attend community college 0 3 1.367 1.461 0.068**
Not At All Likely Very Likely (0.899) (0.966)

Likelihood I’ll attend four-year college 0 3 2.480 2.429 -0.024
Not At All Likely Very Likely (0.670) (0.722

N 396 381

*significant at 10%; ** significant at 5%; *** significant at 1%.

Ii,t+1 = E(PSATi|Ωi,t+1)− E(PSATi|Ωi, t), (6)

Given that the students’ performance on the PSAT is realized at time t+1, an alternative would

have been to define the information value of the PSAT as Ii,t+1 = PSATi −E(PSATi,t+1|Ωi, t)) as

in Equation 2 in Section 3. I define the information shock as in equation 6 instead because students

are asked about their relative performance and do not have full information about everyone else’s
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scores. In the presence of full information, the two options should be identical. However, this

is not the case. Even after receiving their results students still provide their “best guess” of their

relative performance. Figure 3 illustrates the distribution of the information shock across the sample.

While approximately half of students do not experience any information shock (a value of 0), the

remaining do. Among students who experience an information shock, more experience the PSAT

as a negative shock than a positive one. The information shock metric varies from -2 (an extreme

negative surprise) to 2 (an extreme positive surprise).

Table 4 presents the mean values of both I, the information shock, and what I term “ini-

tial overconfidence,” the difference between students’ initial beliefs and their actual performance,

E(PSATi|Ωi,t)−PSATi,t+1. Column 3 shows the values of I by ethnicity and gender. The PSAT is a

negative information shock on average, but an especially negative shock for black students, followed

by Latino and Asian students. For white students, the PSAT constitutes a positive information

shock. A comparison of the information shock by gender shows that males experience a stronger

negative information shock than females. Column (5) presents the measure of initial overconfidence.

Black students are the most overconfident about their performance relative to the rest of the school,

as are males. Asian and white students, on the other hand, are initially underconfident in their be-

liefs about their performance. While students may have somewhat different reference groups due to

tracking within the school, black and Latino students participate in similar tracks, as do males and

females. These findings are consistent with other studies that have found that men tend to be more

overconfident about their ability than women (Niederle and Vesterlund, 2007 and Stinebrickner and

Stinebrickner, 2012) and that Asian students report lower self-efficacy beliefs (Martin and Dembo,

1997).

While the high frequency of the baseline and endline surveys allows for the shock to be solely

attributable to the PSAT, it is sensible to verify that students revised their beliefs consistently with

the information they received. In addition, it is possible that students with different characteristics

updated their beliefs in different ways. Table 5 shows the results of regressions of the informa-

tion shock on students’ AP Potential status, PSAT score, and then adds dummies for gender and

ethnicity:13

Ii,t+1 = β0 + β1APPotentiali + β2PSATScorei + β3Femalei +
∑

j
βjEthnicityij + µi

The results show that higher PSAT scores and the AP Potential signal resulted in more positive

information shocks. Further, students with the same PSAT score who receive the AP Potential

signal experience a larger information shock, which suggests that the AP Potential signal contains

13The excluded ethnic group is white students.
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Figure 3: Distribution of Information Shock

Table 4: Information Shock and Overconfidence

(1) (2) (3) (4) (5)
E(PSATi|Ωi,t) E(PSATi|Ωi,t+1) Information Shock PSATi,t+1 Initial Overconfidence N

All Students 2.146 2.028 -0.147*** 2.221 -0.076 326
(0.744) (0.949) (0.786) (1.136) (1.048)

Male 2.338 2.104 -0.235*** 2.255 0.124* 145
(0.784) (0.991) (0.808) (1.147) (1.066)

Female 2.044 1.967 -0.077* 2.293 -0.242*** 181
(0.706) (0.912) (0.764) (1.114) (1.005)

Black 2.05 1.674 -0.424*** 1.63 0.421*** 92
(0.649) (0.813) (0.815) (0.947) (1.004)

Asian 2.208 2.099 -0.127* 2.506 -0.299** 71
(0.767) (0.848) (0.716) (1.047) (0.875)

Latino 1.798 1.5 -0.273*** 1.714 0.083 66
(0.636) (0.846) (0.755) (1.093) (1.143)

White 2.489 2.694 0.212*** 3.13 -0.641*** 85
(0.749) (0.802) (0.742) (0.745) (0.859)

*significant at 10%; ** significant at 5%; *** significant at 1%.

information in addition to that provided by the PSAT score. The fact that the AP Potential signal

contains informational value motivates the next section, which estimates the causal effect of the

signal on student’s decision-making. Finally, note that although there are differences in the average

information shocks experienced by different genders and ethnic groups, once PSAT results and AP

Potential status are controlled for, there are no significant differences, with the exception of black

students, who experience more negative shocks than white students. In results not shown, I ask
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Table 5: Factors Affecting Information Shock

DV: Information Shock (1) (2)

AP Potential 0.337** 0.353**
(0.143) (0.146)

PSAT Score 0.009*** 0.010***
(0.003) (0.003)

Female 0.080
(0.080)

Black -0.228*
(0.133)

Latino -0.097
(0.143)

Asian -0.193
(0.122)

R2 0.194 0.224
N 326 324

*significant at 10%; ** significant at 5%; *** significant at 1%.

whether some students respond to the AP Potential signal more than others by interacting the AP

Potential dummy variable by gender and ethnicity. I find no significant differences except for Asian

students, who respond to the AP Potential signal less than whites.

5.2 Revisions of Self-Assessed Ability and Expected Outcomes

This section begins by studying how the information shock provided by the PSAT and AP Potential

signals led students to revise their beliefs about their own ability. As outlined in the framework in

Section 3, individuals’ expected ability is a significant input into human capital investment decisions.

Students were asked in the survey to place themselves in one of five categories, ranging from highest

10% to lowest 10%, relative to the rest of the school for their overall academic ability A and more

specifically, their ability in the areas tested by the PSAT: mathematics M , reading R, and writing

W . Table 6 presents the results of the following regression, which examines the relationship between

the information shock and students’ revised self-assessed abilities.

∆Abilityi = E(Abilityi|Ωi,t+1)− E(Abilityi|Ωi,t)

= α0 + α1Ii,t+1 + α2PSATScorei + α3Femalei +
∑

j
αjEthnicityij + υi
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Columns 1, 4, 7, and 10 report estimates from this model, which contains no interaction terms.

Students consistently revise their beliefs about own ability in response to the information shock.

The higher (the more positive) the value of the shock, the more they increase their beliefs about

their ability across all measures. The model controls for the student’s PSAT score, which also tends

to positively affect the revision of beliefs, and for gender and ethnicity, which are not statistically

significant factors. To answer whether students revise their beliefs differently by ethnicity in response

to the information shock, I repeat the same model and interact the information shock with a dummy

for the student’s ethnicity. None of the interaction terms are significant across the four measures

of ability and signs and magnitudes are inconsistent, suggesting students of different ethnic groups

respond similarly to the information shock. Next I examine differences by gender, interacting the

information shock with a female dummy variable. While the estimated coefficient on this interaction

is consistently negative, the only instance in which I find a statistically significant difference is in

the revision of mathematical ability. In contrast to males, female students hardly adjust their self-

assessed ability in mathematics in response to the shock. This result is consistent with past research

in psychology that suggests women’s perceptions of math ability are more fixed than men’s (Dweck,

2007).

Although the results in Table 6 show that self-assessed ability is responsive to the information

shock, it is possible that students respond differently to positive versus negative shocks. Table

7 shows the results of a regression that divides the information shock into three types: positive,

negative, and zero. Dummy variables for positive and negative shocks are included, and the zero

shock dummy is omitted to facilitate interpretation of the coefficients. The results show that the

effect of negative shocks on revised self-assessed ability tend to be larger and statistically more

significant than the positive shocks. For example, while students who received a positive shock

increased their beliefs about their academic ability by 0.187 points on a five-point scale, students

who received a negative shock revised their beliefs down by 0.286 points. I repeat the same regression

adding interaction terms between the information shock and ethnic groups and gender as before

(results not shown), and again find no differential response. Note that because more students

received a negative shock than a positive one and a negative shock tends to asymmetrically affect

students’ perception of their own ability, it is possible that in this context, providing information may

do more harm than good. While a rational framework suggests that information leads individuals

to make more optimal decisions, it does not take into account psychic costs of experiencing negative

information shocks or social optimality.
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Table 6: Revision of Self-Assessments

∆A ∆M ∆R ∆W

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Information Shock 0.211*** 0.124 0.219*** 0.199*** 0.274*** 0.290*** 0.307*** 0.260** 0.327*** 0.205*** 0.213** 0.217**
(0.054) (0.102) (0.068) (0.052) (0.090) (0.072) (0.076) (0.126) (0.098) (0.067) (0.092) (0.089)

PSAT Score 0.003* 0.003* 0.002 0.003* 0.003** 0.002 0.006*** 0.006*** 0.004*** 0.008*** 0.008*** 0.006***
(0.002) (0.002) (0.001) (0.002) (0.002) (0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.001)

Black 0.091 0.094 0.006 0.003 0.178 0.231* 0.143 0.117
(0.123) (0.126) (0.120) (0.120) (0.130) (0.137) (0.116) (0.120)

Latino 0.098 0.069 0.215* 0.217* 0.026 0.033 0.288** 0.366***
(0.124) (0.129) (0.128) (0.130) (0.127) (0.134) (0.121) (0.118)

Asian 0.096 0.077 -0.061 -0.029 -0.211 -0.240* -0.145 -0.163
(0.094) (0.099) (0.112) (0.111) (0.134) (0.140) (0.112) (0.113)

Female 0.049 0.027 -0.061 -0.090 -0.078 -0.073 -0.035 -0.025
(0.071) (0.065) (0.078) (0.076) (0.088) (0.090) (0.075) (0.076)

Black X Shock 0.154 -0.141 0.175 -0.079
(0.144) (0.120) (0.168) (0.124)

Latino X Shock 0.074 -0.158 0.083 0.261
(0.149) (0.156) (0.162) (0.176)

Asian X Shock 0.115 0.007 -0.168 -0.184
(0.160) (0.135) (0.223) (0.164)

Female X Shock -0.025 -0.156* -0.042 -0.006
(0.099) (0.094) (0.124) (0.113)

R2 0.109 0.112 0.096 0.097 0.101 0.088 0.186 0.197 0.160 0.197 0.220 0.155
N 312 312 324 312 312 324 312 312 324 313 313 325

*significant at 10%; ** significant at 5%; *** significant at 1%.
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Table 7: Revision of Self-Assessments, Positive vs. Negative Shocks

(1) (2) (3) (4)
∆A ∆M ∆R ∆W

Positive Shock 0.187** 0.177* 0.305** 0.189
(0.084) (0.098) (0.146) (0.123)

Negative Shock -0.286*** -0.293*** -0.374*** -0.257***
(0.091) (0.097) (0.100) (0.094)

PSAT Score 0.003* 0.003* 0.006*** 0.008***
(0.002) (0.002) (0.002) (0.002)

Black 0.095 0.011 0.181 0.144
(0.121) (0.119) (0.128) (0.115)

Latino 0.106 0.223* 0.038 0.296**
(0.123) (0.127) (0.126) (0.121)

Asian 0.093 -0.063 -0.216 -0.149
(0.092) (0.111) (0.134) (0.112)

Female 0.048 -0.064 -0.077 -0.035
(0.070) (0.078) (0.088) (0.076)

R2 0.110 0.103 0.183 0.195
N 312 312 312 313

*significant at 10%; ** significant at 5%; *** significant at 1%.

Manski (2004) writes that there is a “critical need for basic research on expectations formation.”

The present study provides a unique setting to learn how information shocks about own ability

affect students’ expectations about future, unrealized academic outcomes. In addition to asking

students to state their beliefs about their ability, the survey asked about their expectations about

the likelihood of the following binary outcomes, not realizable until time t + n, where n > 1: the

likelihood of passing the graduation exit exam in the first attempt, the likelihood of taking the SAT,

the likelihood of graduating from high school, and the likelihood of attending community college or

a four-year college. In addition, I asked students to state the expected number of AP classes they

would enroll in the following year. Although students’ beliefs about their ability were consistently

revised, I find that the information shock did not lead students to revise their expectations about

these future outcomes in the same way. The top panel of Table 8 shows how these expectations are

revised after the receipt of information using the following regression model:
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∆Outcomei,t+n = E(Outcomei,t+n|Ωi,t+1)− E(Outcomei,t+n|Ωi,t)

= α0 + α1Ii,t+1 + α2PSATScorei + α3Femalei +
∑

j
αjEthnicityij + υi

Although the signs on the information shock coefficient are consistent with the model outlined

in Section 3 (that is, students upwardly revise the expectation of positive academic outcomes if

they receive positive information, and vice versa), the information shock only appears to cause a

statistically significant change in the number of AP courses students believe they will take and the

likelihood that they will attend a four-year college.14 Panel B of Table 8 presents the results of the

same regressions using the positive and negative shock dummies defined earlier instead of the single

information shock measure. The signs of the estimates on the positive and negative shocks continue

to be consistent with the predictions from the model. Focusing just on statistically significant

results, Panel B shows that the revisions of expectations about AP course-taking and four-year

college enrollment were driven by students who received a positive information shock. I include in

each regression demographic controls to account for differences in how different groups revise their

answers; however, all information shock coefficients are robust to the inclusion or exclusion of these

demographic controls. In addition, I again interact the information shock with ethnicity and gender

dummy variables (results not shown) but find no statistically significant differences in how different

groups use the information shock to revise expectations about future outcomes.

Comparing these results to those on beliefs about academic ability shows that information shocks

may affect expectations differently depending on how valuable the information received is to the

outcome being predicted. The next section explores this concept more formally, but it is worth noting

here that the outcomes most affected tended to be those most emphasized during the presentation of

PSAT reports. Students were told about the AP Potential message, were given a list of AP courses

offered at the high school, and were provided a PSAT/SAT conversion table to estimate their future

SAT performance and a table with the range of SAT scores required for admission into California’s

public four-year colleges. It seems intuitive, then, that plans for AP enrollment and expectations

about attending four-year colleges were more responsive to the information shock received. Though

it may seem surprising that students with a large positive shock on the PSAT did not increase their

likelihood of taking the SAT, students had already stated a very high likelihood of taking the SAT

14While not statistically significant, it is also interesting to note the one negative coefficient in Panel A: a positive
information shock led some students to decrease their expected likelihood of attending a community college. The
summary statistics in Section 4 show that most students do not think their likelihood of going to a community
college is very high, especially compared to the other outcomes. This is inconsistent with past data in which 49% of
college-going graduates from Oakland Tech attended a two-year college.
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Table 8: Revision of Expected Outcomes

(1) (2) (3) (4) (5) (6)
∆AP ∆GradTest ∆TakeSAT ∆GradHS ∆CommColl ∆4Y rColl

Panel A

Information Shock 0.118** 0.068 0.026 0.026 -0.042 0.094**
(0.059) (0.042) (0.047) (0.026) (0.071) (0.047)

PSAT Score 0.004** 0.000 -0.001 0.001 0.002 0.001
(0.002) (0.001) (0.001) (0.001) (0.001) (0.001)

Demographic Controls Y Y Y Y Y Y
R2 0.050 0.042 0.031 0.020 0.014 0.038

Panel B

Positive Shock 0.268** -0.094 -0.038 0.032 -0.047 0.135*
(0.129) (0.074) (0.067) (0.038) (0.115) (0.080)

Negative Shock -0.024 -0.222*** -0.105 -0.033 0.044 -0.116
(0.125) (0.079) (0.086) (0.056) (0.110) (0.078)

PSAT Score 0.004** 0.000 -0.001 0.001 0.002 0.001
(0.002) (0.001) (0.001) (0.001) (0.001) (0.001)

Demographic Controls Y Y Y Y Y Y
R2 0.056 0.064 0.037 0.021 0.014 0.044

N 259 304 312 307 304 313

*significant at 10%; ** significant at 5%; *** significant at 1%.

before receiving the scores (90% of students with a positive shock said they were “very likely” to

take the SAT in the baseline survey). In the case of students who revised their belief about passing

the graduation test after receiving a negative shock, it is interesting to note that students took

the graduation exam, which is an eighth grade level assessment, a week before taking the PSAT in

October and had not yet received their results.

5.3 Are revisions consistent with Bayesian updating?

In order to informally test whether students’ revised expectations in a manner consistent with

Bayesian learning, I asked students how certain they were regarding their beliefs about their relative

performance on the PSAT and relative academic ability. I provided categorical options about their

level of confidence, ranging from “not sure at all” to “practically certain.” As Table 3 in Section 4

shows, students increased their level of confidence regarding each of their beliefs about performance

and ability following receipt of information, although there was still a level of uncertainty since

students did not have full information about the performance of their peers. Individuals who are
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Table 9: Absolute Change in Beliefs as a Function of Certainty in Prior Beliefs

(1) (2) (3) (4) (5)
|I| |∆A| |∆M | |∆R| |∆W |

Initial certainty -0.051 -0.022 -0.021 -0.007 -0.099**
(0.036) (0.038) (0.035) (0.052) (0.043)

PSAT Score -0.002 -0.003* -0.001 -0.005*** -0.004***
(0.001) (0.001) (0.001) (0.002) (0.001)

R2 0.035 0.067 0.006 0.063 0.063
N 298 294 295 295 295

*significant at 10%; ** significant at 5%; *** significant at 1%.

more confident in their self-assessment are expected to update less in response to new information.

I perform an informal test of Bayesian updating by regressing the absolute value of the change

in perceived performance and ability on the student’s stated certainty about that response in the

initial survey, together with their PSAT score and demographic characteristics. This regression is

captured in the following model, and the results appear in Table 9. The coefficients on the “initial

certainty” variables are consistently negative, suggesting that individuals who were more confident

in the initial survey made smaller absolute revisions in their beliefs. However, only the coefficient

on confidence in the initial belief about writing ability is statistically significant. The results are

not affected by controlling for demographic characteristics or PSAT scores.

|∆Xi | = γ0 + γ1Certaintyi,t,X + γ2PSATScorei + ζi

A more formal way of checking for Bayesian learning is to approximate equation 4 in Section 3,

repeated here:

E(αi|Ωi,t+1) = γssi + γIIi,t+1,

where as before, γ represents the relative precision of each signal. Here γs = ρs

ρs+ρPSAT ∈ [0, 1] is

the weight assigned to the individual’s prior self-assessment, and similarly, γI = ρPSAT

ρs+ρPSAT ∈ [0, 1]

is the weight assigned to the information shock received from the PSAT. According to equation 4,

the posterior belief will be a function of the prior and the new information acquired between period

t and t + 1. In the context of this study, the prior belief refers to the subjective belief elicited

in the baseline survey, while the posterior refers to the belief elicited in the endline survey. The

coefficients γx show the nature of the updating process. One would expect γs to be equal to one
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and γI to be equal to zero if the student depends solely on her prior information and does not learn

any new information from the PSAT that is relevant to her academic self-assessments and future

outcomes. On the other hand, if the new information is very valuable, γs would be close to zero and

γI would be large. Equation 4 is estimated for both self-assessments and expected outcomes using

the following regression model:

E(Outcomei,t+n|Ωi,t+1) = γsE(Outcomei,t+n|Ωi,t) + γIIi,t+1 + ηi

The estimates in Table 10 fall between the two extremes, although as expected, the prior belief

plays a very significant role in all cases. However, γ̂s is smaller than one, suggesting that the

posterior beliefs do not solely depend on the prior belief. The results shows that γ̂I is small in

magnitude but statistically significant in students’ self-assessment of their academic, math, reading,

and writing ability, the expected number of AP classes they plan to take, and the likelihood of

attending a four-year college, in line with the previous results regarding revisions of beliefs and

expectations. These results are broadly consistent with Bayesian learning and with findings in other

studies, such as Zafar (2011).

Of interest is the value of new information relative to the prior, which can be denoted as V =
ρPSAT

ρs = 1/γs − 1, the ratio of the precision of the new information, which in this context may

be thought of as the perceived relevance of the information, to the precision of the prior. While

the PSAT may be a very precise measure of academic ability, if students do not perceive it to be

a relevant in the various contexts they are asked to consider, they will not use it to update their

beliefs. As earlier results showed, students revise their beliefs about their ability but do not revise

their expectations of all future outcomes. Higher values of V would imply greater relative value of

the new information for the belief or outcome in question. Table 10 presents the estimates of V

below the regression estimates. In most cases, V is very small in magnitude, suggesting that the new

information provided by the PSAT and AP Potential signal is not very valuable for most beliefs and

academic outcomes relative to the students’ priors. However, the notable exception is once again

the number of AP classes students expect to enroll in.

6 Identification of the Causal Impact of the AP Potential Signal

The previous section provides strong evidence that the PSAT and AP Potential signal contain

valuable information for the decision to enroll in AP classes. However, even if students revise beliefs

about their ability and number of AP courses they plan to enroll in, it is possible that they are just

temporarily uplifted or de-motivated by their PSAT results, leaving outcomes unchanged. On the
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Table 10: Bayesian Updating in Response to New Information

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
At+1 Mt+1 Rt+1 Wt+1 APt+1 GradTestt+1 TakeSATt+1 GradHSt+1 CommCollt+1 4Y rCollt+1

Prior Belief 0.925*** 0.938*** 0.910*** 0.933*** 0.848*** 0.986*** 0.991*** 0.981*** 0.953*** 0.976***
(0.012) (0.014) (0.015) (0.016) (0.050) (0.008) (0.008) (0.005) (0.025) (0.009)

Information 0.242*** 0.230*** 0.370*** 0.306*** 0.178*** 0.058* -0.019 0.033 -0.036 0.099**
Shock (0.049) (0.046) (0.060) (0.057) (0.049) (0.035) (0.041) (0.022) (0.064) (0.042)

R2 0.944 0.926 0.914 0.918 0.813 0.963 0.961 0.986 0.820 0.958
N 324 324 324 325 270 315 323 318 315 324

V 0.081 0.067 0.099 0.072 0.179 0.014 0.010 0.019 0.050 0.025

*significant at 10%; ** significant at 5%; *** significant at 1%.
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other hand, if the effects on expectations translate into actions, providing a meaningful information

signal to students about their ability could be a cost-effective intervention. This section focuses

on rigorously identifying the causal effect of the AP Potential signal on AP course enrollment the

following year. This outcome is investigated for a few reasons. First, it is precisely the decision that

the signal tries to influence. Second, the evidence from the previous section shows that expectations

about AP course enrollment were the most affected by the new information received. Finally, course

enrollment is the first major outcome observed for students given the timing of the AP Potential

signal.

A natural place to start is to ask whether students actually did what they said they would do.

Although survey expectations and actual enrollment the following year are strongly correlated, with

a correlation coefficient of 0.546, students were overoptimistic in their stated plans. On average,

students said they would take 1.2 AP classes, but the mean number of enrolled AP courses was

0.41. Although 87% of students who said they would take zero AP classes actually went on to

enroll in none, only half of students who said they would take AP classes actually enrolled in at

least one course. Students who upwardly revised their expectations in response to the information

shock did enroll in more AP classes compared to those who didn’t. These comparisons show that

survey responses are indeed meaningful, yet cannot be assumed to fully reflect true beliefs or future

outcomes. They also highlight the importance of linking outcomes to expectations in understanding

decision-making.

A primary obstacle to identification of interventions like AP Potential is the non-random assign-

ment of treatments. Fortunately, the deterministic nature of the assignment of the AP Potential

signal allows the use of a sharp Regression Discontinuity (RD) design to estimate its effect. In

the sharp RD design, the treatment Treati is a deterministic function of one of the covariates, the

assignment variable r: Treati = 1Ri ≥ c. All units with a covariate value of at least c are assigned

the treatment, and all units with a covariate value less than c are not assigned any treatment. As

explained earlier, AP Potential is first calculated for each AP course using one of seven PSAT scores.

Students can meet the criteria for AP Potential in as many as 27 AP courses, each of which uses

a different score and cut-point (see Table A.1 in the Appendix). However, succeeding in meeting

just one of the 27 conditions would result in the student receiving the AP Potential message on his

or her score report. Therefore, we can think of the maximum value of the set of seven scores as

the “binding” test for that student. I construct a new variable with each student’s binding score,

thereby reducing the dimensionality of the problem from seven test scores to one binding score. I

also center the binding score around the appropriate cut-point value that applies. Figure 4 con-

firms that the relationship between the binding score and the probability of receiving the signal is
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Figure 4: Deterministic Relationship Between AP Potential and R

completely deterministic using data from all 10th grade students in Oakland in 2013.

The sharp RD design exploits the discontinuity in the conditional expectation of the outcome

given the covariate to uncover an average causal effect of the treatment:

limx→cE[Yi|Ri = r]− limx←cE[Yi|Ri = r],

which can be interpreted as the average causal effect of the treatment at the discontinuity point:

τ = E[Yi(1) − Yi(0)|Ri = c] (Imbens and Lemieux 2007). By design, there are no individuals with

Ri = c for whom we observe Yi(0). Thus, the fact that we observe units with covariate values

arbitrarily close to c is exploited, provided that a smoothness assumption about the distribution

of the covariate holds. Figure 5 presents the distribution of the binding score variable for a bin

size of 3, which is small enough to show how the data behaves, but not so small that it introduces

unnecessary noise. As can be seen, there are no discontinuities in the distribution of the this score

around the cut-point.15

15A bin sizes of 3 was selected as an optimal bin size for analysis using both visual inspection and more formal
methods. Table A.2 in the Appendix shows the results of an F-test that compares the explanatory power of the
assignment variable on the outcome for bin sizes h and h/2. This test is based on the idea that if a bin width is too
wide, using narrower bins would provide a better fit to the data. A second F-test was also performed which compared
the explanatory power of the assignment variable on the outcome for bin sizes h and bin sizes h interacted with the
assignment variable. This test suggests that a bin width is too wide if there is still a systematic relationship between
the outcome and rating within each bin. If such a relationship exists, then the average value of the outcome within
the bin is not representative of the outcome value at the boundaries of the bin (Jacob et al., 2012). The second test
yielded the same results as the first. For the complete sample of 2013 students, the optimal bin size appears to be 3,
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Figure 5: Distribution of Re-Centered Binding Test Score, R

Because treatment is perfectly correlated with observable characteristics (the PSAT scores), the

continuity of unobserved characteristics is sufficient to allow identification of the average treatment

effect for marginal students. Nevertheless, it is worth discussing the standard concerns in RD designs.

First, the assignment variable cannot be caused by or influenced by the treatment. Because the AP

Potential depends fully on PSAT scores, the assignment variable in this case is necessarily measured

prior to the treatment. Furthermore, intentional manipulation is implausible. Although students

can purposely miss many or all of the PSAT questions, they are not aware of the AP Potential

program, making it impossible for them to change the binding score near the cut-point. A second

concern is that the cut-point must be determined independently of the rating variable (that is, it

must be exogenous). As detailed in Section 3, researchers at the College Board determined the

cut-point based on multiple steps of statistical analysis using the national population of PSAT test-

takers. In addition, there must be no other relevant ways in which individuals on one side of the

cut-point are treated differently from those on the other side, other than the treatment. When

students are handed back their PSAT results, the score reports are folded in half, showing only the

student’s name. The score reports of students I surveyed were locked in the school principal’s office

until I picked them up prior to distributing them to students. Further, teachers were not aware

of the AP Potential signal since 2013 was the first year it appeared on reports. Figure A.5 in the

whereas for the subgroup of the sample of surveyed students, the tests did not restrict the bin size, although visual
inspection also supports a bin size of 3. I employ the same bin sizes for all graphical displays, even those not graphing
the outcome variable, in order to facilitate comparisons.
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Appendix graphs various non-outcome variables, including free or reduced-price lunch eligibility,

math and English scores in the California Standards Test (CST) from the previous year, and high

school GPA from the previous year against R as a check of the orthogonality of unobservables. No

discontinuities are visible, which is consistent with the deterministic nature of the assignment rule.

Thus, comparing the outcome of individuals within a very small interval around the cut-point

should be very similar to a randomized experiment at the cut-point (a tie-breaking experiment).

That is, because they have essentially the same value of the assignment variable, individuals just

below the cut-point score should on average be very similar to individuals just above the cut-point

and thus have similar average outcomes in the absence of the treatment as well as similar average

outcomes when receiving treatment. Note that this is especially likely in the present case, in which

the assignment variable is a score on a standardized assessment, which necessarily will contain some

measurement error. With those to the right of the cut-point receiving treatment and those to the

left not, a comparison of the average outcomes of both groups should provide a good estimate of the

treatment effect. Of course, in the case of varying treatment effects, the estimate will only apply to

the subset of individuals close to the cut-point.

Figure 6 graphs the number of AP courses students enrolled in the academic year after receiving

the AP Potential signal. The top graph shows the relationship between this outcome and the

assignment variable R (the binding PSAT score centered around the relevant cut-point) just for the

students who participated in the survey using a bin size of 3. A distinct jump is visible between the

bin just to the left of the cut-point and the cut-point itself, which offers strong evidence that receiving

the AP Potential signal led to students on the margin to enroll in more AP classes, consistent with

the findings on the value of the information shock and the revision in expectations from the previous

section. Since no survey data is required for this analysis, I can expand the sample to include all

students who took the PSAT in 2013. The bottom graph depicts the same visualization for this

larger sample of students across the district. Interestingly, despite the discontinuity observed for

the sample of surveyed students, no distinct jumps are discernable in the bottom graph, regardless

of the bin size used.

Table 11 presents the mean values for the bins surrounding the cut-point for both surveyed

students and the entire population of 2013 test-takers. The cell mean at the cut-point is about four

times larger than the cell mean just left of the cut-point (a difference of 0.675 using a bin size of

3) for surveyed students.16 When comparing the entire student population, the difference in means

16Comparing students within one point of the cut-point to those exactly at the cut-point yields a difference of 1.286.
However, because the cell sizes become very small with a bin size of 1, this difference in means could be capturing
random error in the data.
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Figure 6: Discontinuity in Number of AP Classes Taken a Year Later, Bin Size of 3
Surveyed Students Only

All Students

between these two cells is -0.039 using a bin size of 3). Note that the means in Table 11 are higher

for all students than for surveyed students with similar values of R, likely because the students

surveyed at Oakland Tech are higher performing than students at other high schools in Oakland,

and thus those who participate in AP at the school are more positively selected than elsewhere in

the district. In what follows, I use parametric and non-parametric methods to confirm the patterns

shown in this section.

6.1 Parametric Estimation

Increasing the interval around the cut-point that is used to compare the outcome of interest is likely

to produce a bias in the estimated effect if the assignment variable is related to the outcome variable

conditional on treatment status, which tends to be the case. Among students with AP Potential,

those with higher PSAT scores are more likely to enroll in AP courses. However, if an assumption is
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Table 11: Average Number of AP Courses Taken Around Cut-point

Surveyed Students Only All Students

Bin* AP Courses Taken N Bin* AP Courses Taken N

-9 .241 29 -9 0.796 113
-6 0.167 18 -6 1.043 93
-3 0.263 19 -3 1.093 75
0 0.938 16 0 1.054 56
3 0.842 19 3 1.280 50
6 0.571 14 6 1.451 51
9 0.800 15 9 1.175 40

*Bins are identified by the left-most value of R.

made about the functional form of the relationship between the average outcome and the assignment

variable, it is possible to use more observations and extrapolate from above and below the cut-point

(van der Klauww, 2008). This is known as a parametric approach, and is contrasted with the non-

parametric strategy explored in the next section, which uses observations from a narrowly defined

bandwidth around the cut-point. The tradeoff between these two strategies is one between bias

and precision. Since the parametric approach uses all available data in the estimation of treatment

effects, it can potentially offer greater precision than the nonparametric, local approach. However,

it may be difficult to ensure that the functional form of the relationship between the conditional

mean of the outcome and the assignment variable is correctly specified over the entire range of

data, and thus the potential for bias is increased. Although non-parametric estimation substantially

reduces the chances of bias by using a much smaller portion of the data, in may have more limited

statistical power due to the smaller sample size it uses. This is a concern given the small sample

size of surveyed students, which the graphical analysis suggests were differentially impacted by the

AP Potential signal.

The challenge to parametric estimation is identifying the correct functional form of the rela-

tionship between the assignment variable and the outcome in the absence of treatment. A variety

of functional forms can be tested to determine which fits the data best, so that bias is minimized.

I define six variations of the following model Yi = α + β0Treati + f(Ri) + εi based on different

functional forms of f(R):

Model 1 (Linear): Yi = α+ β0Treati + β1Ri + εi

Model 2 (Linear Interaction): Yi = α+ β0Treati + β1Ri + β2RiTreati + εi

Model 3 (Quadratic): Yi = α+ β0Treati + β1Ri + β2R
2
i + εi
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Model 4 (Quadratic Interaction): Yi = α+β0Treati+β1Ri+β2RiTreati+β3R
2
i +β4R

2
i Treati+εi

Model 5 (Cubic): Yi = α+ β0Treati + β1Ri + β2R
2
i + β3R

3
i + εi

Model 6 (Cubic Interaction): Yi = α + β0Treati + β1Ri + β2RiTreati + β3R
2
i + β4R

2
i Treati +

β5R
3
i + β6R

3
i Treati + εi

The first, third, and fifth models constrain the slope of the relationship between outcome and the

assignment variable to be identical on both sides of the cut-point, while the other three (2, 4, and

6) specify a different polynomial function on either side of the cut-point. Including an interaction

between the rating variable and the treatment can account for the fact that the treatment may

impact not only the intercept, but also the slope of the regression line. At the same time, increasing

the complexity of the model also reduces the power of the analysis so the simplest model that can

maximize fit is preferred. Visual inspection of Figure 6 suggests that the slope of the relationship may

be different on both sides of the cut-point. I also follow the procedure outlined in Lee and Lemieux

(2010), which tests whether or not there is unexplained variability in the relationship between the

outcome and assignment variable that the specified model does not capture, to test the fit of all six

models against the data. I also implement the Akaike Information Criterion (AIC) test to determine

the relative goodness of fit of each model. The AIC test captures the bias-precision trade-off of using

a more complex model by measuring increases in both the estimated residual variance as well as in

the number of parameters. Table A.3 in the Appendix shows the results of both tests. None of the

functional specifications are rejected by the Lee and Lemieux (2010) F-test, which implies that a

simple functional form adequately describes the relationship between the outcome and assignment

variable. The AIC values support using a simpler specification, so my preferred model is Model 2

(linear interaction). However, for completeness and as a check for sensitivity, I will present results

for all the models.

Panel A of Table 12 shows the treatment effect estimates for the six models with and without

covariates (gender, ethnicity, free/reduced-priced lunch eligibility, special education and English

learner status, and previous year GPA) for both surveyed students and the overall population.

Including additional covariates may eliminate some bias that is the result of using observations far

from the cut-point and can improve precision. On the other hand, any violations of the assumption

that the covariates included are exogenous and have a linear impact on mean outcomes could increase

bias. For surveyed students, the estimates are robust to the inclusion of covariates and only change

slightly. Furthermore, the estimates are fairly consistent across the six models, always yielding a

positive, statistically significant effect on AP course enrollment even with higher order polynomials

that allow for nonlinearity. The parametric results of Model 2 suggest that receiving the AP Potential
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Table 12: Parametric Estimates of Impact of AP Potential on AP Course Enrollment

Panel A: Parametric Estimates on All Values of R

Surveyed Students Only All 2013 Students
Without Covariates With Covariates Without Covariates With Covariates

(1) (2) (3) (4)

Model 1 0.329** 0.347*** 0.120 0.080
(0.128) (0.122) (0.099) (0.092)

Model 2 0.397*** 0.421*** 0.111 0.098
(0.114) (0.112) (0.098) (0.091)

Model 3 0.400*** 0.430*** 0.104 0.113
(0.123) (0.120) (0.309) (0.294)

Model 4 0.340** 0.370** -0.198 -0.090
(0.166) (0.163) (0.133) (0.124)

Model 5 0.338** 0.371*** -0.101 -0.040
(0.144) (0.138) (0.118) (0.110)

Model 6 0.588*** 0.619*** -0.083 -0.095
(0.225) (0.216) (0.181) (0.168)

N 426 422 2009 1935

Panel B: Parametric Estimates Dropping Outermost 10% of Observations

Model 1 0.429*** 0.422*** -0.102 0.077
(0.156) (0.156) (0.114) (0.107)

Model 2 0.433*** 0.445*** -0.028 0.049
(0.144) (0.142) (0.135) (0.125)

Model 3 0.446*** 0.476*** -0.022 -0.002
(0.144) (0.143) (0.151) (0.140)

Model 4 0.619*** 0.657*** -0.123 -0.081
(0.223) (0.217) (0.202) (0.187)

Model 5 0.602*** 0.673*** -0.091 -0.067
(0.219) (0.211) (0.162) (0.151)

Model 6 0.797** 0.787** -0.170 -0.192
(0.317) (0.309) (0.281) (0.259)

N 357 333 1642 1578

*significant at 10%; ** significant at 5%; *** significant at 1%.
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signal in a context in which it was explained caused surveyed students to enroll in more AP courses,

increasing the mean number of courses taken for students on the margin by roughly 0.4 (the mean

value on the left-hand size using a bin size of 3 is 0.263). Columns 3 and 4 show the results for the

population of PSAT test-takers in Oakland. All the estimates are small in magnitude, statistically

indistinguishable from zero, and do not maintain the same sign across specifications. These results

are consistent with the graphical evidence in Figure 6: the AP Potential signal did not have an

impact on student unless additional information and context was provided. In the case of the

students surveyed, who received additional information, the AP Potential signal led to an increase

in AP enrollment.

The main concern with global estimators is that they are more sensitive to observations far away

from the cut-point, which can have a substantial influence on the estimation of the relationship

between the outcome and the assignment variable. To assess how sensitive the functional forms

(particularly Model 2, the preferred model) are to the exclusion of these data points, I re-estimate

the same models dropping the outermost 10% of data points with the highest and lowest values of R.

If the true conditional relationship between the binding score and AP course enrollment has some

nonlinearity that has not been captured, the impact estimates will be sensitive to these exclusions.

Panel B of Table 12 presents these results of this robustness check. The estimates of the effect on

surveyed students are slightly larger on this subset of data, and the standard errors increase due

to the smaller sample size. Estimates are statistically significant across specifications and remain

insensitive to the inclusion of covariates. The point estimates from Model 2 on surveyed students

increases from 0.397 to 0.433. The standard deviation of the outcome is 0.728 for these students,

meaning a difference of 0.036 is quite small. The analysis that includes all students again yields no

statistically significant results, regardless of the specification used.

6.2 Non-Parametric Estimation: Local Linear Regression

If the functional form used in the parametric regressions is incorrectly specified, treatment effects

will be estimated with bias. Non-parametric estimation methods like local linear regression reduce

the chances that bias will be introduced by using a much smaller portion of the data where the

relationship between the assignment variable and the outcome is more likely to be linear (or another

order polynomial, in the case of local quadratic regressions and other higher order fits). Local linear

regression is equivalent to estimating the following regression model on a subset of the data in the

neighborhood of the cut-point using a weighting function:

Yi = α+ β0Treati + β1Ri + β2RiTreati + εi
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Thus, the considerations with the local linear regression approach are the choice of bandwidth and

the choice of kernel weight. Just as the tradeoff between the global parametric approach and the local

linear regression approach is one between precision and bias, the selection of a bandwidth presents

the same tradeoff, which is of particular concern given the small sample size of the surveyed group.

For the choice of bandwidth, I begin by implementing the Imbens and Kalyanaraman (2009) “plug-

in” procedure, which yields an optimal bandwidth of 4. Intuitively, the formula, h = 1.84SRN
−1/5,

where SR is the sample variance of the assignment variable, provides a closed form solution for the

bandwidth that minimizes a function of bias and precision.17

Although the parametric estimates shown in the previous section do not seem sensitive to re-

moving observations far away from the cut-points, using kernels with compact support such as the

uniform, triangle, and Epanechnikov kernels, rules out any sensitivity to such observations, which

is an attractive feature given the nature of RD designs (Jacob et al., 2012). I begin by employing a

triangle kernel, which decreases the weight placed on observations as the distance to the cut-point

increases, unlike the uniform kernel effectively employed in the previous section. In any case, if

using different weights impacts the estimates, it likely suggests that the results are highly sensitive

to the choice of bandwidth. For this reason, I present results for different bandwidths and different

kernels in the Appendix. Results are robust to variations.

Table 13 presents the estimated treatment effects from the local linear regression using a variety

of bandwidths. I present results separately for surveyed students only and the population of 2013

test-takers. The result of the local linear regression on surveyed students using the bandwidth of 4

yields a point estimate of the impact of the AP Potential signal on AP course enrollment of 1.050,

which is statistically significant at the 1% level. This is a large estimated impact, as the mean number

of AP courses students enroll in just left of the cutoff is approximately 0.3 for this sample of students.

As the non-parametric model is re-estimated using larger bandwidths, we see (reading down column

1) that the point estimate decreases, staying in the 0.829 to 1.050 range, and the standard error falls

as more data are incorporated. Smaller bandwidths yield larger point estimates, as high as 1.581 for

a bandwidth of 2 (though, naturally, with a much wider 95% confidence interval of [0.370,2.122]).

Estimates on all 2013 students (of which almost a quarter are the surveyed students) are much

smaller and generally not statistically significant, except for larger bandwidths. The results of these

non-parametric estimates offer strong support for the graphical and parametric evidence presented

earlier, and actually estimate a larger treatment effect of receiving the AP Potential signal than

17A different approach to selecting the bandwidth is the Cross-Validiation Procedure suggested by Imbens and
Lemieux (2008). However, Imbens and Kalyanaraman (2009) show that although the two procedures can yield different
bandwidths, they do not result in different estimates. I report results for several bandwidth choices for completeness
and as a check of robustness.
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Table 13: Non-Parametric Estimates of Impact of AP Potential on AP Course Enrollment

Bandwidth Surveyed Students Only All 2013 Students

2 1.581*** 0.208
(0.510) (0.219)

3 1.246*** 0.160
(0.447) (0.173)

4 1.050** 0.182
(0.437) (0.150)

5 0.914*** 0.228*
(0.414) (0.136)

6 0.846** 0.184*
(0.390) (0.110)

7 0.813** 0.178*
(0.360) (0.103)

8 0.832** 0.169*
(0.333) (0.098)

9 0.829*** 0.159*
(0.312) (0.093)

*significant at 10%; ** significant at 5%; *** significant at 1%.

these other approaches.

Figure A.6 in the Appendix graphs the relationship between the bandwidth size and the non-

parametric RD estimates on surveyed students using both a triangle kernel (top panel) and rectan-

gular kernel (bottom panel). The estimates are not very sensitive to the choice of kernel, though

do tend to be slightly smaller in magnitude with the rectangular kernel. For instance, a bandwidth

of 3 yields a point estimate of 1.246 using the triangle kernel and a point estimate of 0.993 using

a rectangular kernel, with both estimates statistically significant at the 5% level. Comparing es-

timates and their confidence intervals across larger bandwidths shows decreasing point estimates

and standard errors. Because smaller bandwidths tend to produce lower bias, it is encouraging that

point estimates at smaller bandwidths are larger. Given the small sample size, however, there is a

loss in precision in employing the non-parametric methods, particularly at the smallest bandwidths.

Nevertheless, the estimated impact of receiving the AP Potential signal is statistically greater than

zero across estimation methods, specifications, bandwidth sizes, and kernel weights for students who

were surveyed.
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7 Discussion and Conclusion

By the time they graduate, more than half of white and Asian students in Oakland participate in

AP, compared to 27% of Latino students and 18% of black students. These gaps are widened further

in the rates of enrollment in selective colleges. Initiatives to reduce ethnic gaps have received a great

deal of attention and investment amid claims that high-achieving minority and low-income students

are being overlooked. As Hoxby and Avery (2012) and Dillon and Smith (2012) show, however, this

is largely due to high-performing students from disadvantaged backgrounds opting not to apply. In

Oakland, this pattern begins before graduation with the decision to participate in AP, a key step on

the path to admission into selective four-year colleges. Among students who meet the AP Potential

criteria, 35% of black students and 27% of Latino students never enroll in AP, compared to fewer

than 10% of comparable white and Asian students.

The results from this paper suggest that providing customized information about ability to qual-

ified candidates who may not otherwise consider enrolling in AP or applying to selective colleges

could be a cost-effective, high-leverage intervention. The types of students affected by the AP Po-

tential signal are precisely those targeted by policymakers. Although their scores barely meet the

signal’s cut-point, they are still relatively high-performing, scoring above the 75th percentile among

Oakland students. In addition, two-thirds of the surveyed students just above the cut-point belong

to under-represented minority groups or low-income families (over half were under-represented mi-

norities). Despite small sample sizes (and thus wider confidence intervals), RD estimates not shown

performed separately for students from disadvantaged groups support the notion that these students

responded to the information signal similarly to their more advantaged counterparts.

The effects of receiving information about ability identified in this paper also shed light on

the question of academic mismatch. Dillon and Smith (2012) find substantial amounts of both

undermatch (high ability students at unselective colleges) and overmatch (low ability students at

selective colleges). All else equal, having access to additional information about ability should

reduce matching error in enrollment decisions. However, one concern with the AP Potential signal

is that because it summarizes the results of 27 subject-specific conditions, it could actually induce

mismatch, particularly for students at the margin. For example, a student who barely meets the

AP Spanish Literature threshold based on his PSAT reading and writing scores may not be a good

candidate for AP Calculus. On the other hand, if students use all of the information contained in

the PSAT reports (which primarily consist of students’ performance on the three sections of the

test), the danger of mismatch may be lower.18

18Subject-specific AP Potential information is available on the My College QuickStart website. However, as noted
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The most common subjects to trigger the AP Potential signal are Spanish Literature (61.2%),

Calculus BC (24.9%), and Psychology (13.5%). However, neither Spanish Literature nor Psychology

were offered at Oakland Tech in 2014 (or at most Oakland schools, for that matter). The fact that

some of these courses are not offered further raises the concern for mismatch. Most of the surveyed

students at the margin of AP Potential enroll in U.S. History and Environmental Science, the most

popular AP courses for juniors at the school. Nevertheless, students with Calculus BC as their

binding subject are three times more likely to enroll in AP Calculus than students whose binding

subject was Spanish Literature, suggesting that students also employ other sources of information

about their ability in selecting courses.

To further understand subject-specific mismatch, I define a match indicator for each student-

subject pairing that equals 1 if the student’s AP course enrollment matches her AP Potential in that

subject. The match rate between AP course enrollment and subject-specific AP Potential is 55%

across the district. However, a significant portion of the mismatch is due to limited course offerings

relative to the number of AP subjects in which students can have AP Potential. Juniors have access

to about a dozen AP courses at large schools like Oakland Tech. For offered courses, the match

rate increases to about 73%. Surveyed students had an AP course enrollment match rate of 83%,

suggesting that access to information in fact reduces matching error. Comparing match rates at

Oakland Tech over the last six years in Figure 7, I find a sizeable increase following the information

intervention provided in 2013.

Among students surveyed, 3.5% of student-course enrollment pairings were overmatched and

13.5% were undermatched. Some level of undermatch is to be expected because high-ability students

cannot take all the AP classes offered in a given year. Of possible concern is the fact that overmatched

enrollments, though smaller in number, are much more likely to come from minority students.

However, it is unclear whether undermatch and overmatch should be treated equally. Dillon and

Smith (2012) find suggestive evidence that students with information about their ability believe

the benefits of attending a more selective college more than compensate for the possible costs of

overmatch. Given the focus on increasing AP enrollment in low-performing districts like Oakland,

it appears this opinion is also shared by policymakers. There is some evidence in support of this

belief. Examining overmatching due to affirmative action, Bowen and Bok (1998) find no impact on

degree completion for overmatched students.

The subject-specific match rates mask the fact that many more students who do not meet any

AP Potential criteria enroll in AP compared to those who meet the criteria but do not enroll.

Figure A.7 in the Appendix groups PSAT test-takers depending on whether they met any of the

earlier, usage rates are low among Oakland students.
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Figure 7: AP Subject-Level Match Rates at Oakland Technical High School

AP Potential criteria and whether they enrolled in any AP course. Given the high proportion of

students in AP who do not meet the AP Potential criteria (an especially large share among black

and Latino students), overmatching may be a larger concern than undermatching in low-performing

schools. However, if the benefits of overmatching due to increased access to higher quality peers

and teachers or other factors like better curricula outweigh the possible costs, these patterns may

not be of as much concern. Further research on the effects of overmatching in both high school and

college is needed.

One result of overmatching in AP can be low AP exam pass rates. Lichten (2010) notes that

as more students enroll in AP, there are high failure rates in AP exams. Oakland has high failure

rates in AP exams, despite the fact that students tend to do well in the courses (see Figure A.8 in

the Appendix, which illustrates the distribution of course grades versus exam pass rates). Students

pass about 90% of AP classes, but only 38% of AP exams. However, passing rates are much higher,

at 75%, for students with AP Potential and are similarly high for students just above the cut-point,

suggesting that students at the margin are well prepared to earn AP college credit. Whether there

are other causal effects from participating in AP is a major gap in the education literature that has

been pointed out by economists like Klopfenstein and Thomas (2009).

There is also a need for research on the effects of negative information shocks on human capital

investments, especially given the large share of students overmatching. The survey analysis showed

that students responded differently to negative shocks compared to positive shocks. In particular,
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these students’ absolute revisions of self-assessed academic ability were much larger than those of

students who experienced a positive shock. Because AP Potential is framed as a positive signal,

future work should study the effects of negative information signals of ability. One such example is

California’s Early Assessment Program, which informs students in their junior year of high school

whether they will need remediation in college. The test was designed with the intention of decreasing

the high rate (approximately 60%) of first-time freshmen admitted to California State Universities

requiring remediation.

This paper also contributes to the literature that seeks to understand how information shocks

affect expectations formation and decision making.19 I establish that the PSAT, the first national

college aptitude test offered in high school, and the AP Potential signal both contain valuable

information that leads individuals to revise beliefs about ability and future academic plans in a

manner consistent with Bayesian learning. Intuitively, the informational value of this particular

information shock was greatest for revisions of expected AP course enrollment. Following students

into the next academic year, I find that the effect on expectations is borne out in enrollment decisions.

Students on the margin of receiving the AP Potential signal enroll in approximately one more AP

course their junior year, effectively increasing participation in the AP program. As additional time

elapses, I plan on studying outcomes extending beyond course enrollment.

Only the students who received an explanation of their PSAT results, the AP Potential signal,

and ways to use the information responded to the signal, however. The AP Potential message is not

especially conspicuous on PSAT reports, so students who were surveyed likely received an intensified

treatment. Participating in the survey did not provide a differential treatment to students at the

margin of AP Potential. Although surveyed students were positively selected from the Oakland

population, participation in the survey did not jump at the AP Potential cut-point (see Figure A.9

in the Appendix, which plots the probability of participating in the survey against binding scores).

Further, when score reports were distributed and discussed, the content of the reports was sealed

until opened by the student. Also note that including demographic and academic covariates did not

have a notable effect on the RD estimates for either the subsample of surveyed students or the total

population.

Thus, the most likely explanation for why a treatment effect was only detected for surveyed stu-

dents is that the additional information they received intensified the signal’s underlying effect. This

result has an immediate implication for the College Board and schools. In order for the AP Poten-

tial signal to have the intended effect of influencing AP course enrollment, educators and counselors

19For examples of related studies outside of education, see Hurd and McGarry (2002), Lochner (2007), and Smith
et al. (2001).
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should be encouraged to discuss the information provided in the reports as they are distributed to

students. Finally, policymakers should consider crafting similar interventions that provide valuable,

individualized information about ability tailored to different human capital investment decisions.

Information interventions could be a very cost-effective means of influencing high-ability students

from under-represented groups to apply to selective colleges or enroll in competitive majors.
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A Appendix

Table A.1: AP Potential Cut-point Rules

AP Offered AP Potential Students with
Subject in OUSD Rule AP Potential

Art History R+W ≥ 106 0.100
Biology Y M +R ≥ 114 0.082
Calculus AB Y M ≥ 60 0.103
Calculus BC Y M ≥ 56 0.060
Chemistry Y R+M ≥ 115 0.078
Chinese Y n/a
Comparative Gov’t & Politics R+M +W ≥ 166 0.084
Computer Science Y R+M ≥ 114 0.082
English Language Y R+W ≥ 97 0.153
English Literature Y R+W ≥ 106 0.100
Environmental Science Y R+M ≥ 110 0.101
European History R+M +W ≥ 151 0.132
French Y n/a
Human Geography R+M +W ≥ 153 0.123
Macroeconomics Y R+M ≥ 116 0.071
Microeconomics R+M ≥ 111 0.095
Music Theory W + M ≥ 108 0.089
Physics B Y R + M ≥ 116 0.071
Physics C: Electricity & Magnetism R+M ≥ 122 0.066
Physics C: Mechanics R+M ≥ 117 0.047
Psychology R+M +W ≥ 145 0.164
Spanish Language Y n/a
Spanish Literature Y R+W ≥ 88 0.223
Statistics Y R+M ≥ 112 0.090
U.S. Gov’t & Politics Y R+M +W ≥ 166 0.084
U.S. History Y R+M +W ≥ 157 0.112
World History Y R+M ≥ 104 0.129
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Figure A.1: 2012 PSAT Results Report
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Figure A.2: SAT Scores, PSAT Scores, and High School GPA
SAT Scores vs. GPA

SAT Scores vs. PSAT Scores
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Figure A.3: Survey Instrument
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Figure A.4: Survey Informational Handout
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Table A.2: Specification Test for Selecting Optimal Bin Width

Bin Size Number of Bins K F-Value Critical Value FK,N−K−1
9 17 0.979 1.629
8 18 0.921 1.629
7 22 0.973 1.569
6 24 0.461 1.545
5 28 0.231 1.505
4 33 0.764 1.466
3 43 0.475 1.412
2 63 0.973 1.348

N = 440

Table A.3: Tests of Model Fit

Surveyed Students Only Entire 2013 Sample
AIC F-Value AIC F-Value

Model 1 825.90 1.307 26501.61 3.54***
Model 2 825.85 1.217 26503.21 3.52***
Model 3 826.67 1.251 26503.32 3.59
Model 4 829.66 1.226 26441.28 1.39
Model 5 825.30 1.249 26476.89 2.74***
Model 6 825.79 1.481 26442.70 1.36

*significant at 10%; ** significant at 5%; *** significant at 1%.
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Figure A.5: Relationship Between Non-Outcome Variables and R
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Figure A.6: Relationship Between Bandwidth and Non-Parametric Estimates on Surveyed Students
Local Linear Estimates Using a Triangle Kernel

Local Linear Estimates Using a Rectangle Kernel
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Figure A.7: AP Potential and AP Enrollment

Figure A.8: AP Exam Passing by AP Course Grade
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Figure A.9: Relationship between the Probability of Participating in Survey and R
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