facebook

1I0S at Facebook

Thank Chris/Neal
Introduce myself - quick bit about Protect and Care

We prevent bad stuff from happening on Facebook:
- Spam, revenge porn, child exploitative images, etc

And make sure people feel cared for when bad stuff does happen:
- Reporting flows, etc

| work on iOS within Protect and Care, so | find myself spelunking through various Facebook iOS codebases; the
main Facebook app, Messenger, and a handful of others. So today I’m going to talk a little bit about what iOS
engineering at Facebook looks like.

“How on Earth the Facebook iOS Application
is so large?”

— http://quellish.tumblr.com/post/126712999812/how-on-earth-the-facebook-ios-application-is-so

But let’s start by addressing the elephant in the room. Like, literally, the elephant.

Many of you probably saw this blog post when it did the rounds a couple of weeks ago. It even featured in the
“and finally...” slot in the iOS Dev Weekly newsletter, which is a rare honour indeed.

The blog post was a response to a question on Reddit, asking why the Facebook app binary was so large. So this
person did a class-dump on the binary to find out more.

| was pretty excited when | saw this. I’'ve wanted to know the answer since | joined Facebook last year, so | read
with great interest!

http://quellish.tumblr.com/

“There are more than 18,000 classses in the
application [...] Thereis a LOT of crap in
there. Even a “FBFeedAwesomeizer” - which
alone is a collection of 74 classes and
protocols. This is why the application binary
itself is over 114Mb.”

— http://quellish.tumblr.com/post/126712999812/how-on-earth-the-facebook-ios-application-is-so

So | scrolled (and scrolled, and scrolled) to the bottom for the conclusion.

And here it is. [Read slide.]

But it left me wanting more.

http://quellish.tumblr.com/post/126712999812/how-on-earth-the-facebook-ios-application-is-so

—{TAUToLoGY Cwg)

son:m{r\mumm_ajms? LISTEN UFY THE FRST

" RULE OF TAUTOLOGY (LU8

FROM YOUR FACEBOOKGROLE) 15 THE. FIRST RULE. OF
THIS GROUP ITWILL HAVE.

1,000,000 PECALE N IT,”

TR

| mean, “the app is large because it has lots of classes” is something of a tautology. And honestly quite a relief,
considering the alternative...

https://xkcd.com/703/

FBMassiveViewController.h

So | suppose the real question is,*why* are there 18,000 classes?
So in the next 18,000 slides I’'m going to go through those classes for you. Are you sitting comfortably?

Well one theory | had was that someone might have goaded Zuck into it...

“18 classes isn’t cool. You know what’s cool?”

But clearly this isn’t the case; Justin Timberlake left Facebook long before we started writing Objective-C.
So if it’s not down to Justin Timberlake, then why?

Well, it helps to consider Facebook’s culture. The first clue is in the fact that Facebook has managed to scale to
1.5 billion people on...

TRAINING WHEELS WITHOUT THE Bixe

PHP! Seriously! Clearly this is a company with a pragmatic approach.

There are plenty of people, most of whom wear a suit and charge more for an hour’s work than you do for a
week, who would tell you that you couldn’t possibly scale to that size without an enterprise framework,
something like J2EE or .NET. And yet Facebook scaled to that size on the back of the clowniest programming

language known to man.

Although to be fair, Facebook don’t use vanilla PHP any longer. We invented our own language that looks like PHP
but has nullables, type hinting, generics and better collection classes. And we called it...

Hack. And that also gives you a bit of a clue regarding Facebook’s culture. Only a certain type of company would
invent a PHP-like language and call it Hack.

And lest you think this name was just a fun in-joke among a couple of developers - does anyone know the
address of Facebook’s headquarters in California?

1 Hacker Way, Menlo Park, CA

1 Hacker Way. I’'m pretty sure it wasn’t called that when Sun Microsystems owned the campus. And that campus...

There’s an open square in the middle of the campus, and there’s a single word written there, visible from low
orbit.

Hack.

OK, the hacker way isn’t just some idea that Facebook has been running with for a few weeks - it’s deeply
ingrained in the way we develop software.

DONE IS
BETTER

THAN
PERFECT

The hacker spirit is exemplified in posters that pop up all around the office like this one

MOVE
FAST ANI
BREAK
THINGS

And this one: the famous Facebook slogan.

18,000+ classes

e Duplication?
e Old code?
e Awesome stuff?

So why 18,000 classes?
We’re an engineer-led company, and at our core is the belief that hacking on things yields fast, awesome results.

We don’t have software architects, at least not that I’ve found yet.
We don’t have a committee who decides what can and can’t go into the app.

Duplication: almost certainly.

- Two engineers writing essentially the same thing for two different teams - I'll show you an example of this later
- Intentional: A/B testing

Old code? Of course. Chat heads is an example.

Awesome stuff? Yes! e.g. Lots of really nice Ul work, pushing the boundaries of what’s possible in iOS.

There’s also a fair amount of code that re-implements stuff that Apple gives us for free, and that most apps don’t
have to re-implement themselves.

So, whyv would we re-implement stuff Apple has alreadyv provided?

“X can’t handle our scale”

Next, let’s talk about scale.

“X can’t handle our scale” is a phrase you hear a lot at Facebook. It explains something of the culture, and also
some of the binary size. It often leads to us having to reinvent a lot of stuff.

But you might be wondering: how does this assertion even make sense in the context of a mobile app? Mobile is
the very opposite of “programming at scale”. Surely the scale is all on the server side.

Well, yes and no.
We’re not talking about scaling load here.

We’re talking about:

- The scale of our employee base: when hundreds of engineers are all working on the same codebase, some stuff

doesn’t work so well any more
— The scale of the app’s complexity: like the increasing complexity of the Ul widgets that appear in vour news

Source control at Facebook
iOS codebase

e w/c 24 August 2015
e 400+ unique contributors
e 2800+ total commits

587 401
33 s B

Cocoapods Homebrew Linux kernel Facebook iOS

Here are the stats for the week starting 24 August this year.
In that week:

429 unique contributors
2823 total commits

Doesn’t include commits to bump version numbers, add translated strings etc - actual number is over 4,000.

So it’s big. It’s an order of magnitude bigger than the same figure for the Linux kernel in the same week, and
bigger again than popular repos like Homebrew and Cocoapods.

It is frankly the biggest, busiest codebase I've ever seen. And LOTS of things can’t handle this kind of scale.

Managed Object Context |

A collection of managed cbyects

|
Per Store Coordi Managed Object Model |

p—iiy
A colilaction of sicres A colecton of ortity doscriptions

|

Porsistent Object Store

A collection of obyoct data

Swre
File

Core Data can’t handle our scale.

A couple of performance issues, but mostly this is around having a framework that vends mutable objects and
relying on hundreds of developers per week to do the right thing with that mutable state.

So instead we use a framework developed at Facebook called Mem Models, which vends *immutable* objects and
has some clever voodoo to handle the case when those objects genuinely do change (e.g. someone likes a new

page).

So going back to the 18,000 classes, there’s a bunch of classes in there implementing mem models, which those
of you using Core Data don’t need to worry about.

https://code.facebook.com/videos/859635244094281/f8-2015-facebook-on-ios-inside-the-big-blue-app-/

UiTookbar UBarBunonktem
{rerrd veaw)

LIGE views Core Animation layers

UIKit can’t handle our scale.

Specifically, since so much of the layout in UIKit happens on the main thread, it’s a bad fit for news feed, where
we need to lay out increasingly complex feed units really quickly as people scroll.

https://code.facebook.com/videos/859635244094281/f8-2015-facebook-on-ios-inside-the-big-blue-app-/

n o ComponentKit

So we wrote (and open-sourced!) ComponentKit, which takes a functional, declarative approach to building Ul.
All layout is done on a background thread, making 60fps achievable even with complex Uls on older devices.

And because this is Facebook, we have at least two other Ul frameworks offering alternative takes on background
thread compositing.

AsyncDisplayKit

AgyrcDagiey¥2 3 an 06 rarmewors et waeps owen the mont cormpies Loer rterfaces smoo® and
A0ONENE. T was ONQNaly DU 10 Mk FR0000N S O POSSDN. 3N QOGS TG N NaNg wen o0's
Shysica-baned arwmetors — D 13 ot m powerkd wits LGt Dyrarmics and comvertorsl spe desgra.

Quick start

ASDN i svalobie on CocoaPos. Add the lowng 10 your Podte

AsyncDisplayKit was written for Facebook’s Paper app

*ne ¢) - WO GIND O T

React Native

A FRAMPWOSK FOR DULDING NATIVE APPS USING REACT

Pl NV @2l yOu 10 D] wirkd-Clins SODICATON ErDereres O MVe DTOrmd Jng & (OfSWent
OO @Dl Dated 0N Jrvi SOt 00 Boacl THha TOCus OF Meatt Nave 5 0N Ooveioger #MCundy Sirins
O RTOE pOu CME DOl — et 0N, Wl Srrwhers FaCelOo widrh Beact Nalve N MM Dr 00N
SOE and il QOB Imeilinng I Beact Netive

Get started with React Native

Native iOS Components

WIR Beact Natve, yOu G0Y s T SAN0d DAI0AW COMDOAENES Sl 36 UTTA0EM 000 UINGAQMOnCOnty (et
ON IS TS Oivird yOur 800 & COMMMIN 100k 800 Nt Wil TN 1Sl OF TN ST GOSN, A0 bhads e

React Native focuses on developer efficiency across all the platforms you care about — learn once, write
anywhere.

For the same reason, we don’t make much use of Auto Layout; it has unpredictable layout scheduling and does its
work on the main thread, so it’s not a good fit for news feed and other parts of the app where 60fps is important.

Xcode can’t handle our scale!

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

‘MY CODE'S COMPILING.”

7/ EY! GET BACK)

TOUI\RKI i
— \ .

18,000 classes takes a really long time to load and compile!

Now you might think the solution here would be to simply remove some of those 18,000 classes. In which case |
would humbly remind you that we are hackers. So instead...

http://xkcd.com/303/

Nuclide

We wrote out own IDE. Seriously. It’s called Nuclide, it’s based on Github’s open-source Atom text editor.

https://code.facebook.com/posts/397706937084869

“Our key factor in deciding how to build
Nuclide was that the result needed to be
hackable.’

— Michael Bolin, lead engineer on Nuclide

https://code.facebook.com/posts/397706937084869

And here’s an interesting quote from Michael Bolin, the lead engineer on Nuclide. Once again, it’s all about
hackability.

OK, so:

— Core Data can’t handle our scale
- UIKit can’t handle our scale

- Autolayout can’t handle our scale
— Xcode can’t handle our scale
What else can’t handle our scale?

https://code.facebook.com/posts/397706937084869

Git can’t handle our scale!

https://code.facebook.com/posts/218678814984400/scaling-mercurial-at-facebook/

o

mercurlal

Mercurial works better for us. It’s more hackable, so we’re more easily able to dig in and make changes that suit
us.

https://code.facebook.com/posts/218678814984400/scaling-mercurial-at-facebook/

.
t
’_ I
status diff, no charges &, one change

2 Watchman on 8 Watcheran o

update to parent

t commit one
change

Using watchman, a local file system monitor that we wrote and open-sourced, we improved performance of
operations that need to determine which files in a directory tree have changed.

Things like:

- hg status

- hg diff

- hg update (like git checkout)
- hg commit

https://facebook.github.io/watchman/

remotefilelog

Time

& Git
% Bosic Hg

-

lorge rebase lorge pull clone

And using remotefilelog, a Mercurial extension that we’ve also open-sourced, we reduced network 1/0O by only

pulling down metadata for the majority of commits when pulling or cloning, then fetching the file data on
demand.

So that’s it; a brief glimpse into just some of the reasons that we might have ended up with 18,000 classes in our
iI0S app.

https://bitbucket.org/facebook/remotefilelog

Open source at Facebook

So, we have a lot of unique challenges at Facebook, and we open-source a lot of our solutions. | just want to
highlight a couple of other open-source projects of ours that you might not be aware of.

Infer

A tool to detect bugs in Android and iOS apps before they ship. It reports memory leak problems in Objective-C
and C code. We run Infer as part of our continuous integration suite.

http://fbinfer.com/

Pop

An extensible animation engine for iOS and OS X. Written to power the animations in Facebook’s Paper app.

https://code.facebook.com/projects/642915749111632/pop/

brew install chisel

Chisel: a collection of LLDB commands for debugging iOS applications.

Loads of handy stuff like pviews (prints the current view hierarchy), pvc (prints the current view controller
hierarchy), flicker (quickly show and hide a view to visualise where it is) and many more.

So low-level it doesn’t have an icon, so | designed one.

https://github.com/facebook/chisel

Good eh?

https://github.com/facebook/chisel

brew install chisel

https://github.com/facebook/chisel

code.facebook.com/ios

- Blog articles
- Videos (including “inside the big blue app”, which talks in more depth about mem models and component kit)
- Open source stuff

https://code.facebook.com/ios/

Welcome to Clowntown

So some of you may now have the impression that Facebook is staffed by superhumans, people who aren’t afraid
to rewrite iOS from the ground up to squeeze that last bit of performance out of the system.

People who never make mistakes.

Let me disabuse you of that notion.

At Facebook, we talk of a mystical land called Clowntown. Many are called but few are chosen. Clowntown is the
place you visit...

// Hack to support launch, will fix next week

... from 2013

...when you write comments like this - and someone finds them two years later

@implementation RCTMethodArgument

- (instancetype)initWithType: (NSString *)type
nullability: (RCTNullability)nullability
unused: (BOOL)unused

if ((self = [super init])) {
type = [type copyl;
ability = nullability;
}
ret) ¢
}

Unused parameter ‘unused’

or when your unused parameter called unused is unused.

But some of us aspire to greater things. Some of us want to be the Mayor of Clowntown. And for that, a mere

comment won’t do.

eesee T 1:00 PM 3 100% .

4 Legacy Contact

v

Legacy Contact

Earlier this year | worked on the iOS implementation of a feature called legacy contact. It’s where Facebook lets
you nominate a friend or relative to manage your account after your death. Initially | just rushed out a quick hack

to get the basic functionality in place.

Then this summer | had an intern come to work with me for 3 months, so | tasked her with re-writing my hack
using lots of nice new stuff like ComponentKit and make it properly production ready.

As part of her work, she needed to test her code. And to test her code, she needed create a dead test user.

memorializeUser(687406370, 499891768)

/S

person doing the person being
memorialising memorialised

There is a Ul for memorialising users, but | assured her that the pros simply ran a bit of code in the PHP
debugger. There’s a function that takes two parameters: one the ID of the person being memorialised, the other
the ID of the person doing the memorialising. | gave her a demo to show her how easy it was.

And that’s when | entered Clowntown.

| first realised something was wrong when | went back to farting around on Facebook and got prompted to login.

fOCEbOOk .— I e
Facebook helps you connect and share with the Create an account
people in your life. It's free and always will be.
Birthday
O ¢ | Mew o vear o [

Dy tienmy [rate o mesast e mywe b s e et

o e e o Ot Pedey rwisbirg s Comtue Jus

Croate o Page S o Geted iy, bansd o busicess

Then when | tried to log in, | was told | couldn’t log in to my account because it had been memorialised.

Simon Whitaker Q

e (® 4
X ==
S \ N
= ‘; ’, l"" 9'
s L fiasi | CTID N i 1788,
B;q‘ ~ N1LL X |
- b =l e : ! < ~
-\ L l‘l“' -
. &/ — - ||”“ = T,
@ A J
" -
g [
\p 2 =]
o o
. . - o "7 .'_ f - (X} |
9 AKE
Timeline About Friends =« Photos More ~

My co-workers started laughing, because they’d discovered that my account now showed “Remembering Simon
Whitaker”.

And then | thought; Oh god. My wife’s going to get the email.

| had set my wife as my legacy contact.

eee C EE 4G 17:28 L R2%ED

< Inbox (106) NN

HiI 1ash,
As requested, we recently

memorialised Simon
Whitaker's account. We're
very sorry for your loss.

Before he passed away,
Simon chose you as his
legacy contact. Being
someone's legacy contact
is a special way to care
for another person's
account after they're
gone.

memorializeUser(687406370, 499891768)

/S

person doing the person being
memorialising memorialised

So in case you haven’t guessed what | got wrong yet, | managed to get the arguments the wrong way round.
Instead of me memorialising my test user, my test user memorialised me.

memorializeUser(687406370, 499891768)

person doing the person being
memorialising memorialised

N .nsry;ssz!A;

, ""

/“"'

‘?/ Z‘/ TEST USER
MEMORIALIZE *YOU*

"BRAINNZZZZ2!"

Simon Whitaker

Zombie Mayor of Clowntown

Simon Whitaker

www.facebook.com/simonwhitaker
@sTmn

Questions?

