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Abstract

A seller posts a price for a single object. The seller’s and buyer’s values may be

interdependent. We characterize the set of payoff vectors across all information struc-

tures. Simple feasibility and individual-rationality constraints identify the payoff set.

The buyer can obtain the entire surplus; often, other mechanisms cannot enlarge the

payoff set. We also study payoffs when the buyer is more informed than the seller,

and when the buyer is fully informed. All three payoff sets coincide (only) in notable

special cases—in particular, when there is complete breakdown in a “lemons market”

with an uninformed seller and fully-informed buyer.
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1. Introduction

Motivation. Asymmetric information affects market outcomes, both in terms of effi-
ciency and distribution. For example, adverse selection can generate dramatic market
failure (Akerlof, 1970) or skew wages in labor markets (Greenwald, 1986), while con-
sumers can secure information rents from a monopolist (Mussa and Rosen, 1978). Much
existing work takes the market participants’ information as given and studies properties
of a particular market structure or mechanism, or tackles these properties across various
mechanisms.

This paper instead asks: what is the scope for different market outcomes as the partici-
pants’ information varies? We are motivated by the fact that in the digital age, the nature
of information that sellers (e.g., Amazon) have about consumers is ever-changing. Con-
sumers and regulators do have some control over this information, of course. In some
cases, it is plausible that a seller’s information is a subset of the consumer’s. But in other
cases, the seller may well know more about the consumer’s value for a product, or at
least have some information the consumer herself does not. This is especially relevant for
products the consumer is not already familiar with. Indeed, numerous firms make tai-
lored recommendations to consumers about the products they carry. With social media
and other sources of information diffusion, the possible correlation in information across
two sides of a market seems truly limitless.

Our paper fixes a simple, canonical market mechanism and studies the possible market
outcomes across a variety of information structures, including all of them. We model two
parties, Buyer and Seller, who can trade a single object. Buyer’s value for the object is a
random v ∈ [v, v] ⊂ R. Seller’s cost of providing the object, or equivalently, her value
from not trading, is c(v) ≤ v. Thus, values may be interdependent, but trade is always
efficient.1 The environment, i.e., the function c(·) and the distribution of v, is commonly
known. Seller posts a price p ∈ R, and Buyer decides whether to buy.

This stylized setting subsumes a variety of possibilities, depending on the shape of the
cost function c(·) and the parties’ information about the value v. With an informed Buyer
and an uninformed Seller, there is adverse selection when c(·) is increasing, while there is
favorable or advantageous selection when c(·) is decreasing.2 If, on the other hand, Seller

1 We describe here our baseline model presented in Section 2. Section 4 discusses extensions, including
cases when Buyer’s value does not pin down Seller’s cost and when trade is not always efficient.

2 Jovanovic (1982) uses the term ‘favorable selection’. Einav and Finkelstein (2011) use ‘advantageous’,
and discuss both adverse and advantageous selection in the context of insurance markets, with references
to empirical evidence on both.
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is better informed than Buyer, signaling becomes relevant; the price can serve as a credible
signal if the two parties’ information is suitably correlated (e.g., Bagwell and Riordan,
1991). A constant c(·) captures an environment in which there is no uncertainty about
Seller’s cost; this is the canonical monopoly pricing problem when Seller is uninformed
about v, and third-degree price discrimination when Seller has some partial information
while Buyer is better informed.

Summary of results. For any given environment (i.e., Seller’s cost function and the distri-
bution of Buyer’s values), we seek to identify the possible market outcomes. Specifically,
we are interested in the ex-ante expected payoffs that obtain, given sequentially rational
behavior, in an equilibrium under some information structure.3 We provide three results,
each of which covers a different class of information structures. Our main theorems are
Theorems 1/1∗, which impose no restrictions on information, and Theorem 2, which ap-
plies when Buyer is better informed than Seller in the sense of Blackwell (1953); in fact,
Theorem 2 applies more broadly, as elaborated later. Theorem 3 concerns a fully-informed
Buyer who knows his value v. We view each of these three cases as intellectually salient
and economically relevant. Plainly, these payoff sets must be ordered by set inclusion:
Theorem 1’s is the largest; Theorem 2’s is intermediate; and Theorem 3’s the smallest.
Figure 1 below summarizes.

In the figure’s axes, πb and πs represent respectively Buyer’s and Seller’s ex-ante ex-
pected utilities or payoffs (for readability, we often drop the “expected” qualifier). The
no-trade payoffs are normalized to zero. The three triangles, AFG, ADE, and ABC, de-
pict Theorems 1–3 respectively. That payoffs must lie within AFG is straightforward:
Buyer can guarantee himself a payoff of zero by not purchasing; Seller can guarantee her-
self not only a payoff of zero (by posting any price p > v, which will not be accepted) but
also v − E[c(v)] (by pricing at or just below v, which will be accepted); and the sum of
payoffs cannot exceed the trading surplus E[v− c(v)]. We refer to the first two constraints
as individual rationality and the third as feasibility.

Theorem 1 says that every feasible and individually rational payoff pair can be imple-
mented, i.e., obtains in an equilibrium under some information structure. It is immediate
that point A obtains when both parties learn v (full information) or neither party has any
information (no information). More interestingly, at the point G trade occurs with prob-
ability one and Buyer obtains the entire surplus, despite Seller posting the price. While

3 As detailed in Section 2, an information structure specifies a joint distribution of private signals for
each party conditional on the value v. This induces an extensive-form game of incomplete information.
Our primary solution concept is weak Perfect Bayesian equilibrium; we also address refinements for our
constructive arguments.
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Figure 1: Outcome under different restrictions on information structures

perhaps surprising, this outcome obtains with sparse information structures. For simplic-
ity, suppose E[c(v)|v > v] ≤ max{v,E[c(v)]}. Then Buyer can be uninformed while Seller
learns whether v = v or v > v. In equilibrium, Seller prices at p = max{v,E[c(v)]} regard-
less of her signal and Buyer purchases. If Seller were to deviate to a higher price, Buyer
would reject because he believes v = v. Subsection 3.1 explains how a single information
structure in fact implements every point in the triangle AFG. Theorem 1∗ there discusses
how a richer information structure using imperfectly-correlated signals ensures imple-
mentation in Kreps and Wilson’s (1982) sequential equilibrium in discretized versions of
the model.

Turning to Figure 1’s triangle ADE, Theorem 2 establishes that the payoff pair in
any equilibrium when Buyer is better informed than Seller arises in an equilibrium of
an(other) information structure in which Seller is uninformed.4 In other words, there is
no loss of generality in studying an uninformed Seller so long as Buyer is better informed.
When c(·) is increasing, such information generates a game with adverse selection; when
c(·) is decreasing there is favorable selection. Seller’s payoff along the line segment DE is
the lowest payoff she can get in any information structure in which she is uninformed.5

4 We stipulate that a better-informed Buyer does not update his value from Seller’s price, even off the
equilibrium path, in line with the “no signaling what you don’t know” requirement (Fudenberg and Tirole,
1991) that is standard in versions of Perfect Bayesian Equilibrium and implied by sequential equilibrium.

5 It is because Seller cannot commit to the price as a function of her signal that she can be harmed (i.e.,
receive a payoff lower than that on the DE segment) with more information. However, Theorem 2 assures
that Seller is not harmed so long as Buyer is better informed.
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Theorem 2 further establishes that any point within the ADE triangle can be implemented
with some such information structure by suitably varying Buyer’s information. In fact,
we show that higher slices of the triangle (i.e., those corresponding to larger Seller’s pay-
off) can always be implemented by reducing Buyer’s information in the sense of Blackwell
(1953). We also explain in Subsection 3.2 why the triangle ADE actually characterizes all
payoffs that can obtain when Buyer does not update from Seller’s price, even if Buyer is
not better informed than Seller.

Finally, the ABC triangle in Figure 1 depicts Theorem 3, which characterizes all payoff
pairs when Buyer is fully informed, i.e., learns v. We use the term “Akerlof” to describe a
fully-informed Buyer and an uninformed Seller, as these information structures are stan-
dard in the adverse-selection literature; the corresponding payoff pair is marked as such
in the figure. Depending on the environment’s primitives, the Akerlof point can be any-
where on the segment BC, including at the extreme points. Any feasible payoff pair that
satisfies Buyer’s individual rationality and gives Seller at least her Akerlof payoff can be
implemented with a fully-informed Buyer by suitably varying Seller’s information.

An implication of Theorems 1–3 is that it is without loss, in terms of ex-ante equilib-
rium payoffs, to focus on information structures in which Buyer is fully informed if and
only if Seller’s Akerlof payoff coincides with her individual rationality constraint. This
coincidence occurs if and only if the Akerlof market can have full trade (Seller prices at
p = v and gets payoff v − E[c(v)] ≥ 0) or no trade (the price is p ≥ v and both parties’
payoffs are 0). As detailed in Remark 5 of Subsection 3.3, in all other cases the point B
in Figure 1 is distinct from the point D (and hence also F ), which means that Buyer can
obtain a higher payoff with less-than-full information, while keeping Seller uninformed.
Furthermore, under a reasonable condition, if Seller’s individual rationality constraint is
zero (i.e., v ≤ E[c(v)]), then point D is also distinct from F ; see Remark 3 in Subsection 3.2.
When D and F are distinct, maximizing Buyer’s payoff, i.e., achieving point G, requires
Seller to have some information Buyer does not and an equilibrium with price-dependent
beliefs: after conditioning on his signal, Buyer must update about v from the price either
on or off the equilibrium path.

While our results do not speak directly to the economics of privacy, recently reviewed
by Acquisti, Taylor, and Wagman (2016), they do offer a notable twist. Consumer wel-
fare can be higher when a monopolist has information about a consumer’s valuation that
the consumer does not; indeed, maximizing consumer welfare in our single-unit setting
frequently necessitates that. This is an implication of our Theorems 1/1∗ and Theorem 2.
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Related literature. Our perspective and results are most closely related to Bergemann,
Brooks, and Morris (2015), Roesler and Szentes (2017), and Makris and Renou (2023, Sec-
tion 4). These papers—only the relevant section of the third paper—study the monopoly
pricing problem in which there is uncertainty only about Buyer’s valuation. This is the
special case of our interdependent-values model with a constant function c(v) ≤ v.6

We study interdependent values because of its importance in many economic environ-
ments; substantively and methodologically, we explore whether and how insights from
the monopoly-pricing problem hold more generally.

Bergemann, Brooks, and Morris (2015) assume Buyer is fully informed, and hence can
only vary Seller’s information.7 Our Theorem 3, corresponding to triangle ABC in Fig-
ure 1, is a generalization of their main result to our environment; the key step in our
methodology is to construct the “isoprofit distributions”, which reduces to their “ex-
tremal markets” in monopoly pricing. An economic lesson from our analysis is that un-
like in monopoly pricing, there are salient interdependent-value environments in which
a fully-informed Buyer can achieve all implementable payoffs, even when the Akerlof
market has inefficiency; see Remark 5.

Roesler and Szentes (2017) assume Seller is uninformed and only vary Buyer’s infor-
mation. For the monopoly-pricing environment, they derive one part of our Theorem 2,
viz., they identify the triangle ADE in Figure 1 as the implementable set when Seller is
uninformed. Even for this result, our methodology is quite different from theirs because
we do not assume a linear c(·) function; our methodology delivers new insights, includ-
ing that noted in Remark 2. When we specialize to a linear c(·), we can obtain a sharper
characterization of the point E, which extends Roesler and Szentes’ characterization of
Buyer-optimal information to an interdependent-values environment; see Proposition 2.

Our Theorems 1–3 establish that the “alignment” principle highlighted by Bergemann
et al. (2024)—Buyer surplus/payoff is maximized when total surplus (the sum of Buyer
and Seller payoffs) is maximized—extends with a single seller beyond the settings of

6 The online appendix of Roesler and Szentes (2017) relaxes the assumption that there are always gains
from trade, but maintains no uncertainty about Seller’s cost. Related to Roesler and Szentes (2017) are
also Du (2018) and Libgober and Mu (2021), who consider worst-case profit guarantees for Seller in static
and dynamic environments, respectively. Terstiege and Wasser (2020) qualify Roesler and Szentes (2017)
by allowing Seller to supply Buyer with additional information, although Seller cannot have any private
information of her own.

7 Less directly related to our work, there are also recent papers extending the approach of Bergemann
et al. (2015) to monopolistic markets with multiple products (e.g., Ichihashi, 2020; Haghpanah and Siegel,
2023; Terstiege and Vigier, 2024), oligopolistic markets with differentiated products (e.g., Elliott, Galeotti,
Koh, and Li, 2022, 2023; Bergemann, Brooks, and Morris, 2024), and profit-maximizing information design
by intermediaries (e.g., Yang, 2022).
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Bergemann et al. (2015) and Roesler and Szentes (2017), both in terms of the information
structures considered and to interdependent values. However, we qualify this point in
Subsection 4.2 when trade may be inefficient, as was also illustrated by example in Roesler
and Szentes (2017, online appendix).

While our main interest is in interdependent values, our results provide new insights
even for monopoly pricing. Theorem 2 implies that the Roesler and Szentes (2017) bounds
are without loss so long as Buyer is better informed than Seller; or, more generally, in
equilibria in which Buyer’s belief is price independent after conditioning on his own sig-
nal. On the other hand, Theorem 1 establishes that any feasible and individually ratio-
nal payoff pair can be implemented absent these restrictions: in particular, Buyer may
even get all the surplus. This latter point has a parallel with Makris and Renou (2023).
As an application of their general results on “revelation principles” for information de-
sign in multi-stage games, Makris and Renou’s (2023) Proposition 1 deduces an analog of
our Theorem 1 for the (independent values) monopoly pricing problem. We share with
Makris and Renou an emphasis on sequential rationality;8 we go further by establishing
in Theorem 1∗ off-the-equilibrium-path belief consistency in the sense of sequential equi-
librium (Kreps and Wilson, 1982). We also show in Theorem 1/1∗ that a single information
structure implements all payoffs in the relevant triangle.

Other authors have studied different aspects of more specific changes of information in
adverse-selection settings, maintaining that one side of the market is better informed than
the other. Levin (2001) identifies conditions under which the volume of trade decreases
when one party is kept uninformed and the other’s information become more effective in
the sense of Lehmann (1988); see also Kessler (2001). Assuming a linear payoff structure,
Bar-Isaac, Jewitt, and Leaver (2021) consider how certain changes in Gaussian informa-
tion affect the volume of trade, surplus, and a certain quantification of adverse selection.

Dang (2008), Pavan and Tirole (2023), and Thereze (2023) study endogenous costly in-
formation acquisition with interdependent values, using different assumptions about the
nature and timing of information acquisition and the underlying economic environment.
By contrast, we do not have strategic or costly information acquisition; rather, the infor-
mational environment is exogenously (and costlessly) varied.

In a model with interdependent values where they hold fixed a partially-informed
buyer’s information, Deb, Pai, and Roesler (2024) characterize the outcome—including

8 Makris and Renou use an apparatus of “sequential Bayes correlated equilibrium”, which we do not.
They draw a contrast with Bergemann and Morris’s (2016) Bayes correlated equilibrium. In our approach,
note that Seller’s individual rationality constraint described earlier hinges, when E[c(v)] < v, on Buyer’s
behavior being sequentially rational even off the equilibrium path.
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what information the seller should have—that maximizes the buyer’s payoff. They high-
light that the solution typically involves the seller being partially informed. Garcia, Teper,
and Tsur (2018) solve for socially optimal information provision in an insurance setting
with adverse selection; owing to a cross-subsidization motive, full information disclosure
is typically not optimal. Pollrich and Strausz (2024) study a third-party certifier in an
adverse-selection environment. Their environment corresponds to our Buyer being fully
informed and facing a competitive market of sellers. Among other things, they discuss
implementable payoff vectors for Buyer (conditional on type) and their certifier.

The rest of our paper proceeds as follows. We introduce our model, equilibrium con-
cept(s), and certain classes of information structures in Section 2. Section 3 presents the
main results: implementable payoffs when the information structure is arbitrary or varies
within canonical classes. Section 4 contains discussion and extensions. All formal proofs
are in the Appendices.

2. Model

2.1. Primitives

There are two players, Seller and Buyer; given the assumptions that follow, Buyer can
be viewed as representing a market of buyers. Seller may sell an indivisible good to
Buyer. Buyer’s value for the good is v ∈ V ⊂ R, where V is a compact (finite or infinite)
set with v ≡ minV < maxV ≡ v. The value v is drawn from a probability measure
µ with support V . Seller’s cost of production is given by a function c(v). We assume
c : V → R is continuous, v − c(v) ≥ 0 for all v, and E[v − c(v)] > 0. Hence, the trading
surplus is nonnegative for all v and positive for a positive measure of v. (Throughout,
expectations are with respect to the prior measure µ unless indicated otherwise; ‘positive’
means ‘strictly positive’ and similarly elsewhere.) Note that the function c(v) need not be
monotonic. Section 4 extends the model to Seller’s cost being stochastic even conditional
on v, and considers the possibility of negative trading surplus. We call Γ ≡ (c, µ) an
environment. We refer to an environment with a constant c(·) function as that of monopoly
pricing.

An information structure consists of signal spaces for each party and a joint signal
distribution. (We abuse terminology and refer to ‘distribution’ even though ‘measure’
would sometimes be more precise.) Formally, there is a probability space (Ω,F , P ), com-
plete and separable metric spaces Ts and Tb (equipped with their Borel sigma algebras),
and an integrable function X : Ω → Ts × Tb × V . We hereafter suppress the probabil-
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ity space and define, with an abuse of notation, P (D) = P (X−1(D)) for any measurable
D ⊂ Ts × Tb × V .9 Each realization of random variable X is a triplet (tb, ts, v), where
tb ∈ Tb is Buyer’s signal and ts ∈ Ts is Seller’s signal. For i ∈ {s, b, v}, let Pi denote the
corresponding marginal distribution of P on dimension Ti, with the convention Tv ≡ V .
We require Pv = µ; this is an iterated expectation or “Bayes plausibility” requirement.
Denote an information structure by τ .

The environment Γ and information structure τ define the following game:

1. The random variables (tb, ts, v) are realized. Signal tb is privately observed by Buyer
and signal ts privately observed by Seller. Neither party observes v.

2. Seller posts a price p ∈ R.

3. Buyer accepts or rejects the price. If Buyer accepts, his von-Neumann Morgenstern
payoff is v − p and Seller’s is p − c(v). If Buyer rejects, both parties’ payoffs are
normalized to 0.

Note that because the signal spaces Tb and Ts are abstract and the two parties’ signals
can be arbitrarily correlated conditional on v, there is no loss of generality in assuming
that each party privately observes their own signal. For example, public information can
be captured by perfectly correlating (components of) tb and ts.

We highlight that our notion of an information structure involves parties receiving in-
formation only at the outset. A more permissive notion would also allow Buyer to receive
information after Seller posts her price, as in the literature on multi-stage information de-
sign (Makris and Renou, 2023; Doval and Ely, 2020). Permitting that would not change
some of our results, in particular Theorems 1/1∗ and Theorem 3, but would expand the
implementable set characterized in Theorem 2. Methodologically, our interest in only
ex-ante information means that existing “revelation principles” do not directly apply.

2.2. Strategies and Equilibria

In the game defined by (Γ, τ), denote Seller’s strategy by σ and Buyer’s by α. Fol-
lowing Milgrom and Weber (1985), we define σ as a distributional strategy: σ is a joint
distribution on R × Ts whose marginal distribution on Ts must be the Seller’s signal dis-
tribution. So σ(·|ts) is Seller’s price distribution given her signal ts.10 Buyer’s strategy

9 We write ⊂ for “weak subset”.
10 Here σ(·|ts) is the regular conditional distribution, which exists and is unique almost everywhere be-

cause Ts is a standard Borel space (Durrett, 1995, pp. 229–230). Similarly for subsequent such notation; we
drop “almost everywhere” qualifiers unless essential.
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α : R× Tb → [0, 1] maps each price-signal pair (p, tb) into a trading probability. A strategy
profile (σ, α) induces expected utilities for Buyer and Seller (πb, πs) in the natural way:

πb =

∫
(v − p)α(tb, p)σ(dp|ts)P (dts, dtb, dv),

πs =

∫
(p− c(v))α(tb, p)σ(dp|ts)P (dts, dtb, dv).

Our baseline equilibrium concept is weak Perfect Bayesian equilibrium. Since Seller’s
action is not preceded by Buyer’s we can dispense with specifying beliefs for Seller. For
Buyer, it suffices to focus on his belief about the value v given his signal and the price; we
denote this distribution by ν(v|p, tb).

Definition 1. A strategy profile (σ, α) and beliefs ν(v|p, tb) is a weak perfect Bayesian equi-
librium (wPBE) of game (Γ, τ) if:

1. Buyer plays optimally at every information set given his belief:

α(p, tb) =

1 if Eν(v|p,tb)[v] > p

0 if Eν(v|p,tb)[v] < p;

2. Seller plays optimally:

σ ∈ argmax
σ̂

∫
(p− c(v))α(p, tb)σ̂(dp|ts)P (dts, dtb, dv);

3. Beliefs satisfy Bayes rule on path: for every measurable D ⊂ R× Ts × Tb × V ,∫
D

ν(dv|p, tb)σ(dp|ts)P (dts, dtb, V ) =

∫
D

σ(dp|ts)P (dts, dtb, dv).

We have formulated Seller’s optimality requirement ex ante, but Buyer’s at each infor-
mation set. The latter is needed to capture sequential rationality. The former is for (nota-
tional) convenience; this choice is inconsequential because Seller moves before Buyer.

Hereafter, “equilibrium” without qualification refers to a wPBE. As is well understood,
wPBE permits significant latitude in beliefs off the equilibrium path. We will subse-
quently discuss refinements.
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2.3. Implementable Payoffs and Canonical Information Structures

We now define the set of implementable equilibrium outcomes—that is, the payoffs
that obtain in some equilibrium under some information structure—and some canonical
classes of information structures.

For a game (Γ, τ), let the equilibrium payoff set be

Π(Γ, τ) ≡ {(πb, πs) : ∃ wPBE of (Γ, τ) with payoffs (πb, πs)} .

Denote the class of all information structures by T and define

Π(Γ) ≡
⋃
τ∈T

Π(Γ, τ).

That is, for environment Γ, Π(Γ) is the set of all equilibrium payoff pairs that obtain under
some information structure.

Uninformed Seller. An information structure has uninformed Seller if Ts is a singleton:
Seller’s own signal contains no information about Buyer’s value v, and hence neither
about Seller’s cost c(v).11 When discussing such information structures, we write the
associated distribution as just P (tb, v) and Seller’s strategy as just σ(p), omitting the argu-
ment ts in both cases. The class of all uninformed-Seller information structures is denoted
Tus.

Fully-informed Buyer. An information structure has fully-informed Buyer if Buyer’s sig-
nal fully reveals his value v. Formally, this holds if Tb = V and the conditional distribution
on V , P (·|tb), satisfies P ({tb}|tb) = 1. We denote the class of fully-informed-Buyer infor-
mation structures by Tfb. Note that a fully-informed Buyer need not know Seller’s signal;
but that is irrelevant to Buyer, because his optimal action after any price only depends on
his known value.

More-informed Buyer. An information structure has more-informed Buyer if Buyer has
more information than Seller. Formally, this holds when v and ts are independent condi-
tional on tb, i.e., for any measurable Ds ⊂ Ts and Dv ⊂ V , P (Ds×Dv|tb) = P (Ds|tb)P (Dv|tb).

11 Among all reasonable notions of uninformed Seller (e.g., one might only require Seller to have no
information about E[v], while permitting information about c(v)), we take the most restrictive one. Our
results will imply that a more permissive notion would not change the relevant implementable sets—in
particular, that characterized in Theorem 2. This point also applies to our notion of more-informed Buyer
defined shortly.
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Another way to interpret this requirement is that random variable tb must be statistically
sufficient for ts with respect to v, i.e., tb is more informative than ts about v in the sense of
Blackwell (1953). We denote the class of more-informed-Buyer information structures by
Tmb. Naturally, information structures with uninformed Seller or fully-informed Buyer
are cases of more-informed Buyer: both Tus and Tfb are subclasses of Tmb.

No updating from price. For more-informed-Buyer information structures, it is desirable
to impose further requirements on Buyer’s equilibrium belief. Since Seller’s price can
only depend on her own signal, and this signal contains no additional information about v
given Buyer’s signal, the price is statistically uninformative about v given Buyer’s signal.
Consequently, Buyer’s posterior belief should be price independent once his signal has
been conditioned upon. Formally, regardless of the price p, the equilibrium belief ν(·|p, tb)
must satisfy ∫

D

ν(dv|p, tb)P (dtb, Ts, V ) =

∫
D

P (dtb, Ts, dv)

for any measurable D ⊂ Tb × V . We refer to this condition as price-independent beliefs.12

Note that although we have motivated the condition by Buyer being more informed than
Seller, the condition is meaningful even otherwise, capturing the notion of equilibria in
which there is no signaling by Seller, or, more precisely, that Buyer does not learn any-
thing about his value v from the price that he does not already learn from his own signal.
In a more-informed-Buyer information structure, price-independent beliefs would be im-
plied by the “no signaling what you don’t know” requirement (Fudenberg and Tirole,
1991) frequently imposed in versions of perfect Bayesian equilibrium, and the concept of
sequential equilibrium (Kreps and Wilson, 1982) in finite versions of our setting.13

Some more notation will be helpful. Define

Π∗(Γ, τ) ≡ {(πb, πs) : ∃ wPBE of (Γ, τ) with price-independent beliefs and payoffs(πb, πs)} ,

Π∗(Γ) ≡
⋃
τ∈T

Π∗(Γ, τ), and

Π∗
i (Γ) ≡

⋃
τ∈Ti

Π∗(Γ, τ) for i = us, fb,mb.

12 The condition is distinct from “passive beliefs”, which is typically used to restrict beliefs after off-the-
equilibrium-path events.

13 An example clarifying our terminology may be helpful. If both Seller and Buyer are fully informed of v,
then the natural equilibrium—the unique sequential equilibrium in a finite version of the game—has Seller
pricing at p = v and Buyer’s belief being degenerate on v regardless of Seller’s price. This equilibrium has
price-independent beliefs, even though Seller’s price and Buyer’s belief are perfectly correlated ex ante.
The point is that Buyer’s belief does not depend on price conditional on his signal.
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So Π∗ and Π∗ are analogous to the implementable payoff sets Π and Π defined earlier, but
restricted to equilibria with price-independent beliefs. Π∗

us, Π∗
fb and Π∗

mb are the imple-
mentable payoff sets when further restricted to uninformed-Seller, fully-informed-Buyer,
and more-informed-Buyer information structures. Plainly, for any environment Γ,

Π∗
us(Γ) ∪Π∗

fb(Γ) ⊂ Π∗
mb(Γ) ⊂ Π∗(Γ) ⊂ Π(Γ).

3. Main Results

Our goal is to characterize equilibrium payoff pairs across information structures in an
arbitrary environment Γ. In particular, we seek to characterize the five sets Π(Γ), Π∗(Γ),
Π∗

mb(Γ), Π
∗
us(Γ), and Π∗

fb(Γ). Let

S(Γ) ≡ E[v − c(v)]

be the (expected) surplus from trade in environment Γ. This quantity will play an impor-
tant role.

3.1. All Information Structures

Define Seller’s payoff guarantee as

πs(Γ) ≡ max {v − E [c(v)] , 0} .

To interpret this quantity, observe that it is optimal for Buyer to accept the price v no
matter his belief. Therefore, Seller can guarantee herself the (expected) profit v−E[c(v)] no
matter what the information structure is. More precisely, she can guarantee v − E[c(v)]−
ε for any ε > 0, since sequential rationality requires Buyer to accept any price v − ε.
Similarly, Seller can also guarantee zero profit offering a price p > v. Hence Seller’s
payoff in any equilibrium with any information structure must be at least πs(Γ).

On the other hand, Buyer can guarantee himself the payoff πb = 0 by rejecting all
prices. It follows that the implementable set Π(Γ) must satisfy three simple constraints:
(1) Seller’s “individual rationality” constraint πs ≥ πs(Γ); (2) Buyer’s “individual ratio-
nality” constraint πb ≥ 0; and (3) the feasibility constraint πb + πs ≤ S(Γ).

Our first result is that these individual rationality and feasibility constraints are also
sufficient for a payoff pair to be implementable.
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Theorem 1. Consider all information structures and equilibria.

Π(Γ) =


πb ≥ 0

(πb, πs) : πs ≥ πs(Γ)

πb + πs ≤ S(Γ)

 .

Proof. See Appendix A. Q.E.D.

Theorem 1 says that the set Π(Γ) corresponds to the triangle AFG in Figure 1. In
particular, Buyer can receive the entire surplus beyond Seller’s payoff guarantee. This
is perhaps surprising, as Seller has substantial bargaining power. Note that when v ≤
E[c(v)], a reasonable condition, Seller’s payoff guarantee is zero; in that case, Theorem 1
implies that Buyer can obtain the entire surplus.14

The proof of Theorem 1 is in fact straightforward. Suppose, for expositional simplicity,
v ≥ E[c(v)]. Fix the trivial information structure in which neither player receives any
information and consider the following family of strategy profiles. Seller randomizes
between two prices, some pl ∈ [v,E[v]] and ph = E[v], with probability σ(pl) ∈ [0, 1]. Buyer
accepts pl with probability one and accepts ph with probability α(ph), where α(ph) ∈ [0, 1]

is specified to make Seller indifferent between the two prices. That is, α(ph)(ph−E[c(v)]) =
pl − E[c(v)]. The expected payoffs from this strategy profile are

πb = σ(pl)(E[v]− pl) and πs = pl − E[c(v)].

As pl traverses the interval [v,E[v]], Seller’s payoff πs traverses [πs(Γ), S(Γ)]. Given
any pl, Buyer’s payoff πb traverses [0, S(Γ) − πs] as σ(pl) traverses [0, 1]. Therefore, the
proposed strategy profiles induce all the payoff pairs stated in Theorem 1.

We are left to specify beliefs ν for Buyer. After prices pl and ph Buyer holds the prior
belief µ. After any other (necessarily off-path) price Buyer’s belief is that v = v, and
so Buyer rejects all prices p ∈ [v,∞) \ {pl, ph}. It is straightforward to confirm that the
specified (σ, α, ν) constitute a wPBE.

To get more insight into the construction above, consider its implication for monopoly
pricing with c(·) = v. The equilibrium with pl = v (hence α(ph) = 0, i.e., the buyer rejects
the higher price) and σ(pl) = 1 corresponds to the monopolist deterministically pricing
at v and Buyer purchasing. Given that both sides of the market receive no information,

14 In monopoly pricing with c(·) = v, Seller’s payoff guarantee of zero is lower than the revenue guarantee
identified by Du (2018, Section 5), which is typically positive. Du’s notion is different from ours.
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why doesn’t the monopolist deviate to any price in (v,E[v])? The reason is that in this
equilibrium, the consumer will then not buy because he updates his belief to v = v. Such
updating is compatible with wPBE because the equilibrium concept places no restrictions
on off-path beliefs. This may seem like a game-theoretic misdirection: Buyer’s beliefs are
not consistent with “no signaling what you don’t know”. Put differently, since we have
a (weakly) more-informed Buyer information structure, we ought to impose the price-
independent beliefs condition described in Subsection 2.3; that would imply Buyer must
purchase at any price p < E[v].

But the message of Theorem 1 does not rely on the permissiveness of wPBE. To illus-
trate, continue with the above monopoly-pricing environment, and suppose v has posi-
tive prior probability. Consider Buyer remaining uninformed but Seller learning whether
v = v or v > v. Now Buyer’s off-path belief that v = v is consistent with “no signal-
ing what you don’t know”. More generally, using richer information structures, we can
prove that any payoff pair identified in Theorem 1 can be approximately implemented as
a sequential equilibrium (Kreps and Wilson, 1982) in a suitably discretized game.

Theorem 1∗. Fix any ε > 0. There is ∆ > 0 such that for any finite price grid with size ∆, there
is a finite information structure inducing a game with a set of sequential equilibrium payoffs that
is an ε-net of Π(Γ).15

Proof. See Appendix B. Q.E.D.

In fact, the proof of Theorem 1∗ establishes even more: the sequential equilibria in
the discretized games satisfy a natural version of the D1 refinement (Cho and Kreps,
1987). We relegate the logic to the Appendix, but mention here that we use imperfectly-
correlated signals for Buyer and Seller.16

Even when our environment is specialized to monopoly pricing, it is worth highlight-
ing two contrasts between Theorem 1/1∗ and results of Bergemann, Brooks, and Morris

15 An information structure is finite if the signal spaces Tb and Ts are finite. A finite price grid of size ∆
means that the set of prices is finite, with minimum price no higher than v and maximum price no lower
than v, and any two consecutive prices are no more than ∆ apart. Sequential equilibrium is defined in the
obvious way for the “induced” finite game where Nature directly draws (tb, ts), rather than first drawing
v, and players’ payoffs from trading are defined directly as (E[v|tb, ts]− p, p− E[c(v)|tb, ts]).

For Y ⊂ R2 and ε > 0, the set A ⊂ Y is an ε-net of Y if for each y ∈ Y there is a ∈ A such that ∥y−a∥ < ε,
where ∥·∥ is the Euclidean distance.

16 The idea behind D1 is to ask, for any off-path price, whether one type of Seller would deviate for
any Buyer mixed response that another type would. Our construction has multiple Buyer types that are
imperfectly correlated with Seller types. So different types of Seller have different beliefs about Buyer types.
This blunts the power of dominance considerations, to the point where D1 does not exclude any Seller type
from the support of Buyer’s off-path belief.
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(2015) and Roesler and Szentes (2017). First, we find that by not restricting the monopo-
list to be uninformed, the implementable payoff set typically expands rather dramatically:
trade can be efficient with the monopolist securing none of the surplus beyond her payoff
guarantee, πs, which may be zero. (Roesler and Szentes establish, implicitly, that the im-
plementable set with an uninformed monopolist is a superset of Bergemann, Brooks, and
Morris’s, where the consumer is fully informed.) We will see in Subsection 3.2 that what
is crucial to this expansion is price-dependent beliefs. In particular, the proof of Theorem 1∗

uses an information structure in which Buyer is not better informed than Seller — if he
were, then sequential equilibrium would imply price-independent beliefs. Second, The-
orem 1∗ establishes that for a given ε > 0, a single information structure (and price grid)
can be used to approximate the entire payoff set Π(Γ), analogously to the construction
described after Theorem 1 that used a single information structure.17 Bergemann, Brooks,
and Morris (2015) and Roesler and Szentes (2017), on the other hand, vary information
structures to span their payoff sets.

3.2. More-informed Buyer and Price-independent Beliefs

In some economic settings it is plausible that Buyer is more informed than Seller. How
does a restriction to such information structures, i.e., τ ∈ Tmb, affect the implementable
payoff set? It turns out that what is in fact crucial is price-independent beliefs. We have
explained earlier why it is desirable to impose this condition when Buyer is more in-
formed than Seller, but that the condition is well defined even otherwise. If Buyer is
not more informed than Seller, then price-independent beliefs ought to be viewed as an
equilibrium restriction. Readers should be bear in mind that, to reduce repetition, the
qualifier “with price-independent beliefs” applies for the rest of this subsection unless
stated explicitly otherwise.

It is useful to define

πus
s (Γ) ≡ inf {πs : ∃(πb, πs) ∈ Π∗

us(Γ)} (1)

as the infimum payoff that an uninformed Seller can obtain, no matter Buyer’s informa-
tion (among equilibria with price-independent beliefs, we stress). Plainly, πus

s (Γ) ≥ πs(Γ).
In monopoly pricing with V = [v, v] and c(·) = v, Roesler and Szentes’s (2017) charac-
terization of the consumer-optimal information structure identifies πus

s , establishing that

17 In fact, if one lets the price grid vary with ε, then a single information structure implements exactly,
rather than approximately, in sequential equilibrium all payoffs ε-away from the boundary of Π(Γ). See
Proposition B.1 in the Appendix for a formal statement.
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πus
s > πs. If there is no trade due to adverse selection when Seller is uninformed and

Buyer has some information, then πus
s = πs = 0. We do not have a general explicit for-

mula for πus
s ; Subsection 4.3 provides it for linear c(·). Nonetheless, we establish next that

(i) the only additional restriction on equilibrium payoffs imposed by price-independent
beliefs is a lower bound of πus

s for Seller, and (ii) uninformed-Seller information structures
implement all such payoffs.

Theorem 2. Consider equilibria with price-independent beliefs.

1. Π∗(Γ) = Π∗
mb(Γ) = Π∗

us(Γ).

2. Π∗
us(Γ) = {(πb, πs) ∈ Π(Γ) : πs ≥ πus

s (Γ)}.

3. For any (πb, πs) ∈ Π∗
us(Γ) with πs > πus

s (Γ), there is τ ∈ Tus with Π(Γ, τ) = {(πb, πs)}.

Proof. See Appendix C. Q.E.D.

Remark 1. We believe the substance of Theorem 2 would hold using discretizations and
sequential equilibria, analogous to Theorem 1∗. As previously noted, sequential equilib-
rium implies price-independent beliefs when Buyer is more informed than Seller.

To digest Theorem 2, note that Π∗(Γ) ⊃ Π∗
mb(Γ) ⊃ Π∗

us(Γ) is trivial. So part 1 of the
theorem amounts to establishing the reverse inclusions. The intuition for those—given
part 2’s characterization of Π∗

us—is fairly straightforward: with price-independent beliefs,
additional information cannot harm Seller, even though it could alter the set of equilibria.
So Seller’s lowest payoff obtains when she is uninformed.

The characterization in part 2 of payoffs with an uninformed Seller corresponds to the
triangle ADE in Figure 1. Part 3 of the theorem assures “unique implementation” of all
implementable payoffs satisfying πs > πus

s (Γ). That is, for any such payoff pair, there is an
uninformed-Seller information structure such that all equilibria (with price-independent
beliefs) induce exactly that payoff pair. Unique implementation is appealing for multiple
reasons, one of which is that it obviates concerns about which among multiple payoff-
distinct equilibria is more reasonable.

Let us describe how we obtain the characterization of Π∗
us(Γ) and unique implementa-

tion. There are two steps. The first ensures that there is some information structure, call
it τ ∗ ∈ Tus, that implements Seller’s payoff πus

s (Γ). That is, we ensure that the infimum in
(1) is in fact a minimum.18 While this argument is technical, knowing τ ∗ exists is useful

18 The difficulty is in establishing suitable continuity. Uninformed-Seller information structures can be
viewed as probability measures over Buyer’s beliefs, with convergence in the sense of the weak* topology.
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in what follows. The second, and economically insightful, step is to construct informa-
tion structures that implement every point in the triangle Π∗

us(Γ) by suitably garbling the
information structure τ ∗. The construction is illustrated in Figure 2. Consider the distri-
bution of Buyer’s posterior mean of his valuation v in information structure τ ∗. (Given
price-independent beliefs, Buyer’s posterior mean is a sufficient statistic for his decision.)
For simplicity, suppose this posterior-mean distribution has a density, as depicted by the
red curve in Figure 2. Fix any (πb, πs) ∈ Π∗

us(Γ).

First, there is some number z∗ such that πb + πs is the total surplus from trading only
when Buyer’s posterior mean is greater than z∗. Next, there is some price p∗ ≥ z∗ such
that Seller’s payoff is πs if all these trades were to occur at price p∗.19 Note that p∗ must be
no larger than the expected Buyer posterior mean conditional on that being above z∗, for
otherwise πb < 0. We claim that the information structure τ ∗ can be garbled so that p∗ is an
equilibrium price and trade occurs only when Buyer’s posterior mean is greater than z∗.
The garbling is illustrated in Figure 2 as the distribution depicted by the blue curve and

p*z*
E[v|tb]

density

Figure 2: Construction of garbling of τ ∗

line. There is one signal that Buyer receives when the original posterior mean is between
z∗ and p∗, and also receives with some probability when the original posterior mean is
above p∗. The probability is chosen to make the posterior mean from this signal exactly
p∗. Apart from this one new signal, Buyer receives the original signal in τ ∗. Plainly, this is
a garbling of τ ∗ and hence is feasible.

This topology ensures continuity, with respect to probability measures, of expectations of continuous or
at least Lipschitz (and bounded) functions. However, Seller’s expected payoff is not the expectation of a
Lipschitz function, as Seller’s profit is truncated at the price she charges.

19 That p∗ ≥ z∗ follows from πs ≥ πus
s (Γ), as πus

s (Γ) itself is weakly larger than Seller’s payoff from
posting price z∗ (and thus trading with the same set of Buyer posterior means) under information structure
τ∗.
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Figure 2 makes clear why the new information structure has an equilibrium with price
p∗ and Buyer breaking indifference in favor of trading: (i) Seller’s profit from posting
any price below z∗ is the same as under τ ∗ and hence no larger than πus

s (Γ); (ii) similarly,
Seller’s profit from posting any price above p∗ is no higher than some fraction of πus

s (Γ);
and (iii) any price between z∗ and p∗ is worse that price p∗. Moreover, since Seller’s profit
from offering any price other than p∗ is no more than πus

s (Γ), it follows that when πs >

πus
s (Γ), Buyer must break indifference as specified for Seller to have an optimal price, and

the equilibrium payoffs are unique.

Remark 2. The above logic establishes that given any τ ∈ Tus that implements some
(πb, πs), τ can be garbled to uniquely implement any (π′

b, π
′
s) ∈ Π(Γ) such that π′

s > πs.
That is, an uninformed Seller’s payoff can always be strictly raised, and Buyer’s payoff
reduced (strictly, so long as it was not already zero), by garbling Buyer’s information.

Remark 3. According to Theorems 1/1∗ and Theorem 2, uninformed-Seller information
structures cannot implement all implementable payoff pairs in an environment Γ if and
only if πus

s (Γ) > πs(Γ). This inequality fails if πus
s (Γ) = 0, since that implies πus

s (Γ) =

πs(Γ) = 0. An example is when there is no trade due to adverse selection when Seller is
uninformed and Buyer has some information. On the other hand, πus

s (Γ) > πs(Γ) if

v ≤ E[c(v)] and ∀v ∈ V, c(v) < v. (2)

To see why, notice that in any uninformed-Seller information structure, Seller can price
at slightly less than Buyer’s highest posterior mean valuation and guarantee trade with
only (a neighborhood of) that Buyer type. If c(v) < v for all v, this gives Seller a positive
expected payoff, and hence πus

s (Γ) > 0.20 But the first inequality in (2) is equivalent to
πs(Γ) = 0. Hence (2) implies πus

s (Γ) > πs(Γ). We observe that Condition (2) is compatible
with severe adverse selection resulting in very little trade when Seller is uninformed and
Buyer is (partially or fully) informed.

3.3. Fully-Informed Buyer

We now turn to the third canonical class of information structures: Buyer is fully in-
formed of his value v. As this is a special case of a more-informed Buyer, we maintain

20 More precisely: as V is compact, c(v) < v for all v implies there exists ε > 0 such that v − c(v) > ε.
Given any uninformed-Seller information structure, let mv be the highest posterior mean valuation in the
support of the posterior means induced by Buyer’s signals. So there is positive probability of Buyer signals
with posterior mean valuations at least mv − ε/2. By pricing at mv − ε/2, Seller’s expected cost conditional
on trade is bounded above by mv − ε, and hence Seller’s profit conditional on trade is at least ε/2 > 0. It
follows that πus

s > 0.
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price-independent beliefs throughout this subsection.

Faced with a fully informed Buyer and any sequentially rational Buyer strategy, an
uninformed Seller can guarantee the profit level

πfb
s (Γ) ≡ sup

p

∫ v

p

(p− c(v))µ(dv)

regardless of her information. Plainly, πfb
s (Γ) ≥ πus

s (Γ). In monopoly pricing with c(·) = v,
Roesler and Szentes (2017) have shown that πfb

s > πus
s ; if there is no trade due to adverse

selection when Buyer is fully informed and Seller is uninformed, then πfb
s = πus

s = 0. We
establish below that when Buyer is fully informed, πfb

s is the only additional constraint
on equilibrium payoffs.

Theorem 3. Consider fully-informed Buyer information structures and equilibria with price-
independent beliefs.

Π∗
fb(Γ) = {(πb, πs) ∈ Π(Γ) : πs ≥ πfb

s (Γ)}.

Proof. See Appendix D. Q.E.D.

The payoff set characterized in Theorem 3 corresponds to the triangle ABE in Figure 1.
Here is the idea behind the result. When Buyer is fully informed, an information structure
can be viewed as dividing v’s prior distribution, µ, into a set of µi that average to µ, with
Seller informed of which µi she faces. Theorem 3 is proven by establishing that we can
divide µ suitably so that against each µi, Seller is indifferent between pricing at all prices
in the support of µi, including the price corresponding to πfb

s in that environment. Such
a µi is analogous to an “extremal market” introduced by Bergemann et al. (2015) in the
context of monopoly pricing. To highlight the profit implication of such a distribution and
because that implication is relevant across multiple information structures in our paper,
we call such a µi an isoprofit distribution or IPD.

Definition 2. ν is an isoprofit distribution (IPD) if∫ v

p

(p− c(s))ν(ds) = constant ≥ 0, ∀p ∈ Supp(ν).

The Appendix provides a “greedy” algorithm to compute IPDs; the algorithm is de-
fined for finite V , and we take limits to handle the infinite case. We can sketch how
the algorithm works and construct a set of IPDs that average to the prior. Suppose
V = {v1, v2, . . . , vK}, with vi < vi+1 for i ∈ {1, . . . , K − 1} and c(v) < v for all v. Given
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any small-enough mass of vK , there is a unique mass of type vK−1 that makes Seller indif-
ferent between charging price vK and vK−1. (If the mass is too low, Seller prefers vK ; if it
is too high, she prefers vK−1.) Iterating down to keep Seller indifferent between all prices
pins down an IPD. Choose the maximum mass of type vK for which this works. Remove
that IPD—i.e., take the conditional distribution after removing the masses of each type
according to that IPD–and then repeat the procedure to construct the next IPD.

Crucially, whenever an IPD is removed, the price corresponding to πfb
s (Γ) remains

optimal in the remaining “market”; this follows from the IPD’s defining property of Seller
indifference and an accounting identity. Therefore, Seller’s profit in this segmentation of
IPDs remains πfb

s (Γ). Moreover, it is also optimal for Seller to always (i.e., for each µi) price
so that there is full trade or no trade. Hence, Buyer’s expected payoff can be either 0 or the
entire surplus less πfb

s (Γ). It follows that the fully-informed Buyer information structure
defined by this set of IPDs implements point B and C in Figure 1. The entire triangle ABC

can then be implemented by convexification: randomizing over this information structure
(and the two equilibria) and full information (where Seller obtains all the surplus).

Remark 4. In the same vein as part 3 of Theorem 2, one can also establish approximately
unique implementation for Theorem 3’s payoff set: for any (πb, πs) ∈ Π∗

fb(Γ) and any
ε > 0, there is τ ∈ Tfb with Π(Γ, τ) ⊂ Bε(πb, πs).

Remark 5. Theorems 1–3 imply that fully-informed-Buyer information structures imple-
ment all implementable payoff pairs if and only if πfb

s (Γ) = πs(Γ). In that case, triangles
AFG and ABC coincide in Figure 1. It follows that πfb

s (Γ) = πs(Γ) only when a fully-
informed Buyer and uninformed Seller can result in full trade (v ≥ E[c(v)] and Seller
prices at v) or no trade (v ≤ E[c(v)] and Seller prices at some p ≥ v). Interestingly, when
πfb
s (Γ) > πs(Γ), fully-informed-Buyer information structures cannot even implement all

payoff pairs implementable by uninformed-Seller information structures; i.e., triangles
ABC and ADE in Figure 1 are distinct if and only if triangles ABC and AFG are distinct.
Or to put it another way, when (and only when) πfb

s (Γ) > πs(Γ) there is an uninformed-
Seller information structure that implements some πs < πfb

s (Γ).21 Theorems 2–3 further
imply that this property also characterizes when Buyer can benefit from not being fully
informed. In the context of monopoly pricing, that can be viewed as characterizing when
the buyer can benefit from strategic learning (Roesler and Szentes, 2017) rather than mar-

21 Pick any p′ > v such that p′ − E[c(v)] < πfb
s (Γ). Following the construction described after Theorem 2,

we can mix all valuations v ≤ p′ with a fraction λ > 0 of valuations v > p′ so that the mixture has poste-
rior mean exactly p′. The remaining fraction 1 − λ of valuations above p′ are revealed to Buyer. With this
uninformed-Seller information structure, consider any equilibrium in which Buyer purchases when indif-
ferent. (Such an equilibrium with price-independent belief exists.) Seller’s profit is at most (1 − λ)πfb

s (Γ)
from any price p > p′, and p′ − E[c(v)] from price p = p′. Hence, Seller’s profit is strictly less than πfb

s (Γ).
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ket segmentation (Bergemann et al., 2015).

4. Discussion
This section discusses some extensions and refinements of our results.

4.1. Multidimensionality

Suppose Buyer and Seller’s cost and valuation pair (c, v) is a two-dimensional random
variable distributed according to joint distribution µ with a compact support in R2. The
extension of our maintained assumption of commonly known gains from trade is: for
all (c, v) ∈ Supp(µ), v ≥ c; and E[v − c] > 0. An information structure is now a joint
distribution P (tb, ts, c, v) whose marginal distribution on (c, v) is µ.

The substance of Theorems 1/1∗, Theorem 2 and Theorem 3 still hold.22 To see why, let
v be the lowest valuation in the support of µ. Seller’s individual rationality constraint is
now max{v − E[c], 0}, as she can guarantee this profit by setting either a sufficiently high
price or a price (arbitrarily close to) v, regardless of her signal. Abusing notation, we can
define a cost function c(v′) ≡ Eµ[c|v = v′] ≤ v′. This results in an environment satisfying
all the maintained assumptions of our baseline model, except that c(·) may not be continu-
ous. Such continuity plays no role in proving Theorem 1 nor Theorem 1∗. Both Theorem 2
and Theorem 3 use continuity of c(·) to guarantee that Eν [c(v)] is a continuous function
of ν ∈ ∆(V ) for certain convergence arguments. However, in the two-dimensional type
environment, Eν [c] is still a continuous function of ν ∈ ∆(C × V ). Theorem 3 uses upper
semi-continuity of Seller’s profit in price; boundedness of c and c ≤ v is sufficient for such
upper semi-continuity.

4.2. Negative Trading Surplus

Returning to our baseline model, we next discuss what happens when trade sometimes
generates negative surplus. That is, we drop the assumption that c(v) ≤ v; we do not
require E[v − c(v)] > 0 either. Define Sλ(Γ) for λ ∈ [1,∞) as

Sλ(Γ) ≡
∫ v

v

[v − c(v) + λ(v − v)]+ µ(dv),

22 A caveat is that in this multidimensional setting, we do not know whether our maintained assumption
that Seller only posts a price is without loss—i.e., we do not rule out that certain payoff pairs are not
implementable when Seller can use non-posted-price mechanisms (which she might use to improve her
payoff). By contrast, in our baseline one-dimensional setting, our results would not be affected if we had
allowed Seller to use arbitrary mechanisms. See Che and Zhong (2024) and Deb and Roesler (2024) for work
on information design in multidimensional screening problems.
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where [·]+ ≡ max {·, 0}. The function Sλ(Γ) is a weighted sum of Buyer and Seller payoff
assuming that trade occurs at price p = v whenever trade creates a positive weighted total
payoff, and there is no trade otherwise. It is readily verified that S1(Γ) = E [[v − c(v)]+]

and limλ→∞ Sλ(Γ)/λ = E[v] − v. Allowing negative trading surplus does not affect our
definition of wPBE. So the notation Π(Γ) and πs(Γ) still have the same meanings as before.
The next proposition shows that Π(Γ) is now characterized by three constraints: as before,
the two individual rationality constraints, πs ≥ πs(Γ) and πb ≥ 0; and different now, a
Pareto frontier defined by all Sλ(Γ).

Proposition 1. Consider all information structures and equilibria when trade can generate neg-
ative surplus.

Π(Γ) =


πb ≥ 0

(πb, πs) : πs ≥ πs(Γ)

λπb + πs ≤ Sλ(Γ), ∀λ ≥ 1

 .

Proof. See Appendix E. Q.E.D.

Figure 3 depicts Proposition 1. The blue triangle’s frontier corresponds to total surplus
under full trade.23 The union of the blue and red regions is the set Π(Γ). Each outer blue
line has a slope −λ, with λ ≥ 1, and represents a frontier λπb + πs = Sλ(Γ); the frontier of
the red region is defined by their envelope.

Let us explain some of the logic underlying Proposition 1/Figure 3. Begin by observ-
ing that all the payoffs in the figure’s blue triangle can be implemented analogously to
our discussion of Theorem 1. It is also straightforward that some payoffs outside this set
can be implemented. In particular, an information structure that publicly reveals only
whether trade is efficient (i.e., whether v ≥ c(v) or not) can implement efficient trade with
all the surplus accruing to Seller: the point (0, S1(Γ)) in Figure 3. Why does maximiz-
ing Buyer’s payoff now generally require some inefficiency (i.e., why is the red region’s
frontier not linear when S1(Γ) > E[v − c(v)])? Consider, for simplicity, v ≥ E[c(v)], so that
πs(Γ) = v−E[c(v)]. The bottom-right corner of Figure 3’s blue triangle is then achieved by
having trade with probability one at the price v, with corresponding Buyer payoff E[v]−v.
No higher Buyer payoff is implementable because Seller will never sell at a price below v,
and subject to that constraint, this outcome maximizes v − p for every v. In other words,

23 The figure is drawn assuming E[v − c(v)] > 0, which ensures the blue triangle in the figure is nonde-
generate. If instead E[v − c(v)] ≤ 0, then πs(Γ) = max{v − E[c(v)], 0} = 0, and the blue triangle would be
the singleton (0, 0).
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Figure 3: Outcome when trading surplus can be negative

the maximum implementable Buyer’s payoff goes hand in hand with implementing all
inefficient trade.

It remains to sketch why the frontier of Π(Γ) is characterized by the lines defined by
{λπb + πs = Sλ(Γ)}λ≥1. When type v trades at price p ≥ v, the (ex post) weighted total
payoff is p−c(v)+λ(v−p), which is weakly below v−c(v)+λ(v−v) because λ ≥ 1 and v ≤ p.
When trade does not happen, the weighted total payoff is 0. Therefore, the weighted total
payoff is bounded above by [v−c(v)+λ(v−v)]+, and hence each Sλ(Γ) is an upper bound
for the expected weighted total payoff. The proof of Proposition 1 establishes that each of
these upper bounds is tight: for each λ there exists an information structure implementing
expected weighted total payoff equal to Sλ(Γ). The information structure simply publicly
reveals whether the weighted total payoff at price v is negative (a “negative signal”) or
not (a “positive signal”). For all v such that v− c(v)+λ(v− v) < 0, it holds that v− c(v) <

(1−λ)(v−v) ≤ 0. Thus, the negative signal creates common knowledge that total surplus
is negative, and hence there is no trade. After a positive signal, on the other hand, Seller
can be induced to sell at price v just as in the discussion of Theorem 1. Therefore, the
equilibrium expected weighted total payoff is E

[
[v − c(v) + λ(v − v)]+

]
= Sλ(Γ).

We should note that in certain cases there may not be a tradeoff between maximizing
Buyer’s payoff and efficiency. Specifically, consider the profit level π̂s that is the maximum
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of 0 and Seller’s profit from efficient trade at price v:

π̂s ≡
[∫

1v≥c(v)(v − c(v))µ(dv)

]+
.

For profit levels above π̂s, the situation is analogous to our baseline model once we use
a public signal to reveal that trade is efficient, and so the implementable equilibrium
payoffs with πs ≥ π̂s constitute a triangle, as seen in Figure 3. Hence, if π̂s = 0, then there
is no tradeoff between efficiency and maximizing Buyer’s payoff. But when π̂s > 0, then
so long as some trades generate negative surplus, π̂s > πs and there is a tradeoff.

4.3. Affine Cost Function

Returning to our baseline model, recall that Seller’s minimum implementable payoff
πus
s (Γ) under price-independent beliefs (Theorem 2) is not amenable to a closed-form for-

mula in general. We now provide such a formula when the cost function c(v) is affine.
According to our discussion in Subsection 4.1, an affine c(v) subsumes richer environ-
ments in which conditional expectations are affine, such as under Gaussian primitives
(cf. Bar-Isaac, Jewitt, and Leaver, 2021).

Condition 1. c(v) = λv + γ, for some λ, γ ∈ R.

Let F (v) be the cumulative distribution function (CDF) corresponding to the prior mea-
sure µ. Let D(µ) be the set of all distributions whose CDF G satisfies∫

V

vdG(v) =

∫
V

vdF (v) and
∫ v

v

G(s)ds ≤
∫ v

v

F (s)ds, ∀v ∈ V.

That is, D(µ) contains all distributions that are mean-preserving contractions (MPC) of µ.
It is well known that D(µ) characterizes the set of distributions of Buyer posterior means
that can be generated by any (uninformed-Seller) information structure. We focus on a
special family of IPDs (see Definition 2) whose supports are intervals [v∗, v

∗]. Such IPDs
have an analytical expression under Condition 1:

G(v) =



0 if v ≤ v∗

1 if v ≥ v∗

1−
(

(1− λ)v − γ

(1− λ)v∗ − γ

) 1
λ−1

if v ∈ (v∗, v
∗) and λ ̸= 1

1− e
v−v∗

γ if v ∈ (v∗, v
∗) and λ = 1.

(3)
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G(v) is smooth everywhere except for a mass point at v∗. Our maintained assumption
that v ≥ c(v) implies (1 − λ)v ≥ γ. Therefore, Equation 3 defines an increasing function,
i.e., a well-defined CDF. Given any v∗, a higher v∗ corresponds to increasing G(v) in the
sense of first-order stochastic dominance; hence, there is a unique v∗ determined by the
condition EG[v] = EF [v]. So the family of IPDs is parametrized by a single parameter v∗;
accordingly, we denote such an IPD by CDF Gv∗ with density gv∗ on (v∗, v

∗). The domain
for v∗ is [v,E[v]). We separately define GE[v](v) = 1v≥E[v].

It can be verified that a higher v∗ lowers the corresponding v∗ (i.e., the corresponding
intervals [v∗, v

∗]’s are nested) and that Gv∗(v) is pointwise decreasing in v∗ within the
common support. As a result, for any two different v∗’s the corresponding Gv∗’s cross
once. Consequently, all IPDs are ordered according to the MPC order (increasing in v∗ ∈
[v,E[v]]). Not every Gv∗ is in D(µ), but Gv∗ ∈ D(µ) for all v∗ larger than some threshold.
The following proposition shows that this threshold pins down πus

s .

Proposition 2. Assume Condition 1 and let p∗ ≡ min
{
v∗
∣∣Gv∗ ∈ D(µ)

}
. It holds that πus

s (Γ) =

p∗ − Eµ[c(v)].

Proof. See Appendix F. Q.E.D.

Proposition 2 states that an uninformed Seller’s minimum payoff (with price-independent
beliefs) is characterized by a specific IPD of Buyer posterior means. By the Seller-indifference
property of IPDs and that v∗ is the minimum of Gv∗’s support, Seller’s profit when facing
IPD Gv∗ is v∗ − E[c(v)]. Proposition 2 thus implies that an uninformed Seller’s minimum
payoff is implemented by the most dispersed IPD that is a MPC of the prior distribution.

In proving Proposition 2, the key step is to show that given the prior µ, garbling
Buyer’s information so that the posterior-mean distribution becomes an IPD makes Seller
weakly worse off. As such, it is without loss to only consider IPDs to implement πus

s (Γ).
This makes the problem one dimensional and tractable. To elaborate on the key step, sup-
pose we find a distribution G(v) such that: (i) G ∈ D(µ); (ii) G is an IPD; and (iii) there is
a p ∈ Supp(G) such that

∫ v

p
G(s)ds =

∫ v

p
F (s)ds. Such a G is the most-dispersed IPD that

is a MPC of the prior µ. Consider the following two identities derived using integration
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by parts:24

λ

∫ v

p

F (s)ds =− (1− F (p−)) (p− c(p)) + λ(v − p) +

∫ v

p

(p− c(s))dF (s), (4)

λ

∫ v

p

G(s)ds =− (1−G(p−)) (p− c(p)) + λ(v − p) +

∫ v

p

(p− c(s))dG(s). (5)

First, by property (iii) above, the LHS of Equation 4 equals the LHS of Equation 5. Second,
the MPC condition implies

∫ v

v
(F (s) − G(s))ds ≤ 0 for all v and it reaches 0 when v = p,

it holds that F (p−) ≤ G(p−). Therefore, the integral term on RHS of Equation 4 must
be greater than that of Equation 5. Notice that the integral term on either RHS is Seller’s
profit when offering price p. This implies that the profit from offering p given Buyer
mean-valuation distribution G(v) is lower than Seller’s maximum profit given F (v). On
the other hand, by the IPD property, p is an optimal price given G(v). Therefore the
optimal profit under valuation distribution F must be no lower than that under G. It
follows that to minimize Seller’s profit, it is without loss to consider only IPDs within the
set D(µ), which is a one-dimensional subspace.

The monopoly-pricing environment with c(·) = v is covered by Condition 1 with λ = 0

and γ = v. The distribution G in (3) then reduces to that identified by Roesler and Szentes
(2017).

If the prior µ has binary support, then any cost function c(v) is affine. This case permits
an explicit solution for πus

s (Γ).

Corollary 1. Assume µ has binary support: V = {v1, v2} with v1 < v2. Let λ = c(v2)−c(v1)
v2−v1

, and
let p be the unique solution to

(p− c(p))
1

λ−1 (p− E[c(v)]) = (v2 − c(v2))
λ

λ−1 . (6)

It holds that πus
s (Γ) = max {p, v1} − E[c(v)].

Proof. See Appendix G. Q.E.D.

24F (p−) is defined as the left limit of F at p, and similarly G(p−). The integration by parts formula is for
Lebesgue-Stieltjes integral.
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Appendices

A. Proof of Theorem 1
Proof. We first show that {(πb, πs) : πb ≥ 0, πs ≥ πs(Γ), πb + πs ≤ S(Γ)} ⊂ Π(Γ). Consider
a trivial information structure τ0 in which both player’s signal spaces are singletons. Note
that τ0 has more-informed Buyer, but since we are interested in Π rather than Π∗, we
do not require Buyer’s belief to be price independent. For any (πb, πs) ∈ Π(Γ), define
strategies and beliefs as follows. Let pl = πs + E[c(v)] ∈ [v,E[v]] and ph = E[v] > E[c(v)].

• Buyer’s strategy:

α(ph) =
pl − E[c(v)]
ph − E[c(v)]

, α(pl) = 1, and α(p) = 1p≤v ∀p /∈ {pl, ph},

where 1p≤v denotes the indicator function for the set {p : p ≤ v}.

• Seller’s strategy:

σ(pl) =
πb

E[v]− pl
and σ(ph) = 1− πb

E[v]− pl
.

Note that E[v]− pl = S(Γ)− πs ≥ πb guarantees that σ(pl), σ(ph) ∈ [0, 1].

• Beliefs:

ν(v|pl) = ν(v|ph) = µ(v) and ν(v|p) = δv(v) ∀p /∈ {pl, ph}.

It is straightforward that the payoff from this strategy profile is (πb, πs). So we need only
verify that (σ, α, ν) constitutes a wPBE. First, Buyer’s strategy is optimal given beliefs
because E[v]− ph = 0, E[v]− pl ≥ 0, and for any other price, Buyer’s belief is a point mass
on v. Second, Seller’s strategy is optimal: α(ph) is defined such that α(ph)(ph − E[c(v)]) =
pl − E[c(v)]. So Seller is indifferent between offering pl and ph. Any other price above v is
rejected and so is no better than pl and ph. Seller’s payoff is pl − E[c(v)] = πs ≥ πs(Γ), so
any price below v is also no better. Third, since Seller’s strategy is type independent and
ν = µ on path, Bayes rule is satisfied on path.

It remains to prove that Π(Γ) ⊂ {(πb, πs) : πb ≥ 0, πs ≥ πs(Γ), πb + πs ≤ S(Γ)}. Pick any
signal structure and any wPBE with belief ν. Since Supp(ν) ⊂ V , sequential rationality
implies that Buyer buys with probability one after any price p < v and with probability
zero when p > v. Therefore, Seller must obtain payoff πs ≥ πs(Γ) ≡ max{v − E[c(v)], 0}.
It is straightforward that Buyer’s payoff πb ≥ 0 and πb + πs ≤ S(Γ). Q.E.D.
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B. Proof of Theorem 1∗

We first prove Proposition B.1 below, which we will use to prove Theorem 1∗.

B.1. A related result

Proposition B.1. Fix any ε > 0. ∃ a finite information structure such that ∀(πb, πs) ∈ {(πb, πs) :

πb ≥ ε, πs ≥ πs(Γ) + ε, and πb + πs ≤ S(Γ)− ε}, ∃ a finite price grid defining a game that has a
sequential equilibrium with payoffs (πs, πb).

One aspect of this result is weaker than Theorem 1∗ because the price grid here varies
with the equilibrium payoffs (πb, πs). But another aspect is stronger: all payoffs ε away
from the boundary of Π(Γ) are obtained, rather than just an ε-net of payoffs.

Proof. Let us initially prove the statement assuming P(v) > 0. First, choose any δ ∈ (0, 1
2
)

and any η ∈ (0,P(v = v)). For now, we keep δ and η as free parameters and we define
the information structure and the corresponding equilibrium. At the end of the proof, we
will verify that when δ and η go to zero, the equilibrium payoffs span the target set of
payoffs in Proposition B.1.

We first define the information structure. Buyer is uninformed: Tb = {∅}. Seller gets
two signals: Ts = {l, h}, with distribution given by:

P (l, ∅, v) =ηδv(v),

P (h, ∅, v) =µ(v)− ηδv(v).

That is, v = v is revealed to Seller with probability η using signal “l”. In the rest of the
proof we omit tb, as Buyer is uninformed.

We next specify certain prices and a property of the finite price grid. Choose any σh ∈
[δ, 1− δ]. Define

ph =
E[v]− ηv

1− η
and ph =

ηv + (1− η)σhph
η + (1− η)σh

.

That is, ph is E[v|ts = h] and ph is the expectation of v conditional on the event that pools

σh proportion of ts = h with all ts = l. Pick any pl ∈
[
max

{
E[c(v)]−ηc(v)

1−η
, v
}
, ηv+(1−η)δph

η+(1−η)δ

)
.25

It holds that v ≤ pl < ph < E[v] < ph. Consider any finite grid of prices that contains{
pl, ph, ph

}
, and is otherwise arbitrary.

Now we specify the strategy profile and beliefs, and verify equilibrium.

25 Fixing δ > 0, the interval is nonempty when η is sufficiently close to 0.
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• Case 1: c(v) > E[c(v)]. Seller’s and Buyer’s strategies, σ and α, and Buyer’s beliefs ν
are respectively:

σ(ph|h) = σh, σ(pl|h) = 1− σh, and σ(ph|l) = 1;

α(ph) =
pl − E[c(v)]−ηc(v)

1−η

ph − E[c(v)]−ηc(v)
1−η

, α(pl) = 1, and ∀p /∈ {pl, ph}, α(p) = 1p≤v;

ν(v|ph) =
η(1− σh)δv(v) + σhµ(v)

η(1− σh) + σh

, ν(v|pl) =
µ(v)− ηδv(v)

1− η
, and ∀p /∈ {pl, ph}, ν(v|p) = δv(v).

That is, Seller with signal h randomizes between prices ph and pl, while after signal
l she chooses ph. Buyer randomizes after price ph, accepts pl, and off-path accepts
prices below v and rejects otherwise.

Let us verify that (σ, α, ν) is a sequential equilibrium. Buyer’s sequential rationality
is straightforward, as Eν [v|pl] = ph > pl, Eν [v|ph] = ph and Eν [v|p] = v for any other p.
For Seller, note that by definition of α(ph), Seller with signal h is indifferent between
offering pl and ph. Since c(v) > E[c(v)] by hypothesis, Seller with signal l finds it
strictly better offering ph than pl. Any other price p is worse than offering pl for both
Seller types. Finally, for consistency of Buyer’s belief: Bayes rule is straightforward
on the equilibrium path. The off-path belief can be derived from the limit of Seller’s
fully mixed strategy σ̃n(p|h) = n2−1

n2 σ(p|h)+ 1
n2×k

and σ̃n(p|l) = n−1
n
σ(p|l)+ 1

n×k
, where

k is the number of prices in the grid.

• Case 2: c(v) ≤ E[c(v)]. Now consider:

σ(ph|h) = σh, σ(pl|h) = 1− σh, and σ(pl|l) = 1;

α(ph) =
pl − E[c(v)]−ηc(v)

1−η

ph − E[c(v)]−ηc(v)
1−η

, α(pl) = 1, and ∀p /∈ {pl, ph}, α(p) = 1p≤v;

ν(v|ph) =
µ(v)− ηδv(v)

1− η
, ν(v|pl) =

ησhδv(v) + (1− σh)µ(v)

ησh + (1− σh)
, and ∀p /∈ {pl, ph}, ν(v|p) = δv(v).

That is, Seller with signal h randomizes between prices ph and pl, while after signal
l she chooses pl. Buyer randomizes after price ph, accepts pl, and off-path accepts
prices below v and rejects otherwise.

Let us verify that (σ, α, ν) is a sequential equilibrium. Buyer’s sequential rationality
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is straightforward, as Eν [v|pl] ≥ ηv+(1−η)δph
η+(1−η)δ

> pl, Eν [v|ph] = ph, and Eν [v|p] = v

for any other p. For Seller, note that by definition of α(ph), Seller with signal h is
indifferent between offering pl and ph. Since c(v) ≤ E[c(v)] by hypothesis, Seller
with signal l finds it weakly better offering pl than ph. Any other price is worse than
offering pl for both Seller types. Finally, for consistency of Buyer’s belief: Bayes rule
is straightforward on the equilibrium path. The off-path belief can be derived from
the limit of Seller’s fully mixed strategy σ̃n(p|h) = n2−1

n2 σ(p|h) + 1
n2×k

and σ̃n(p|l) =
n−1
n
σ(p|l) + 1

n×k
, where k is the number of prices in the grid.

Now we calculate the players’ payoffs in the above equilibria.

• Case 1: c(v) > E[c(v)]. In this case it is optimal for Seller to offer pl after signal h and
ph after signal l. Therefore, in equilibrium

πs = (1− η)pl + ηph − E[c(v)]− η(1− α(ph))(ph − c(v)).

Note that ph depends on σh but pl does not. For any σh ∈ [δ, 1 − δ], when pl =

max
{

E[c(v)]−ηc(v)
1−η

, v
}

,

πs ≤ pl−E[c(v)]+η(ph−pl) ≤ max

{
η

1− η
(E[c(v)]− c(v)), v − E[c(v)]

}
+η(E[v]−v).

When pl =
ηv+(1−η)δph
η+(1−η)δ

,

πs ≥ pl − E[c(v)]− η(E[v]− E[c(v)]) =
ηv + (1− η)δph
η + (1− η)δ

− E[c(v)]− ηS(Γ).

Therefore, when pl traverses its domain, πs traverses a set containing the interval

Is =
[
max

{
η

1− η
(E[c(v)− c(v)]), v − E[c(v)]

}
+η(E[v]−v),

ηv + (1− η)δph
η + (1− η)δ

−E[c(v)]−ηS(Γ)
)
.

In other words, ∀πs ∈ Is and ∀σh ∈ [δ, 1 − δ], there exists pl(σh) such that Seller’s
payoff is πs. Now consider Buyer’s payoff holding πs fixed. When σh traverses
[δ, 1−δ], πb changes continuously. If σh = 1−δ, then πb = (1−η)δ(ph−pl) ≤ δ(v−v).
If σh = δ, then with at most η + δ − ηδ probability the offer is rejected and hence
πs + πb ≥ S(Γ)− (η + δ)(v − inf c(v)).

• Case 2: c(v) ≤ E[c(v)]. In this case it is optimal for both Seller to offer pl no matter her
signal, which induces Buyer to accept with probability 1. Therefore, in equilibrium
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πs = pl − E[c(v)]. Buyer is indifferent between accepting the offer or not at ph. So
Buyer gets positive payoff only when the price offered is pl and hence πb = (ησhv +

(1−σh)E[v])−(ησh+(1−σh))pl. Similar to Case 1, we can calculate that as pl traverses
its domain, πs traverses[

max

{
η

1− η
(E[c(v)− c(v)]), v − E[c(v)]

}
,
ηv + (1− η)δph
η + (1− η)δ

− E[c(v)]
)
.

Holding any pl fixed, as σh traverses [δ, 1− δ], πb traverses

[
η(1− δ)v + δE[v]− (η(1− δ) + δ)pl, ηδv + (1− δ)E[v]− (ηδ + (1− δ))pl

]
.

It follows that in either case, as η and δ converge to zero (with the order η first and δ

second), Seller’s payoff that obtain across the family of equilibria we have constructed
converges to (max{0, πs(Γ)}, S(Γ)). For any such πs, Buyer’s payoff that obtain converges
(uniformly) to (0, S(Γ)− πs). This completes the proof of Proposition B.1 when P(v) > 0.

When P(v) = 0, we first modify the original environment by pooling a small mass of
valuations near v = v (which is feasible since v is the lowest value in the support of V ).
Call this modified environment Γ̃. Plainly, S(Γ̃) = S(Γ) and πs(Γ̃) ≈ πs(Γ). Therefore,
∀ε > 0, there exists such Γ̃ such that Π(Γ̃) covers all payoffs in Π(Γ) that are more than
1
2
ε away from the boundary of Π(Γ). We can now apply the previous argument with a

positive probability of the lowest valuation and find an information structure τ̃ that im-
plements all payoffs in Π(Γ̃) that are more than 1

2
ε away from the boundary of Π(Γ̃). The

proof is completed by converting τ̃ to an information structure for the original environ-
ment Γ. Q.E.D.

B.2. Proof of Theorem 1∗

Proof. We utilize the construction in the proof of Proposition B.1. First, ∀ε > 0, choose
δ and η as the corresponding parameters derived in Proposition B.1 such that the imple-
mentable payoffs cover all points ε/2 away from the boundary of Π(Γ). Then, ph = E[v]−ηv

1−η
.

Choose grid size ∆ ∈
(
0, 1

2
|ph − E[v]|

)
. Construct an arbitrary grid of [v, v] with grid size

∆. By the definition of grid size, there exists an on-grid price p′h ∈ [ph −∆, ph]. Now
choose η′ ≤ η s.t. p′h = E[v]−η′v

1−η′
. Note that p′h ≥ ph − ∆ implies 1−η′

η′(E[v]−v)
≤ 1

η
1−η

(E[v]−v)−∆
.

From now on, we fix ∆, η′, δ, p′h and the grid.

Pick any (πb, πs) ∈ Π(Γ) that is ε/2 away from the boundary of Π(Γ). Note that re-
ducing η to η′ expands the set of implementable payoffs in Proposition B.1. Therefore,
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given δ, η′, the construction in Proposition B.1 defines an information structure s.t. (πb, πs)

is an equilibrium payoff pair. Let (pl, σh) define the constructed equilibrium.26 Now we
modify pl and σh to “snap” the on-path prices onto the grid. Choose p′l to be the on-grid
price no greater than and closest to pl. So pl − p′l < ∆. Let p′

h
be the on-grid price closest

to p
h

such that σ′
h = η′

1−η′
p′h−v

p′h−p′h
∈ [δ, 1 − δ] (note that since σ′

h is increasing in p′
h
, this is

achieved by one of the two grid points to the left and right of p
h
). It can be easily verified

that p′l < p′
h
< E[v] < p′h. Observe that∣∣∣∣dσh

dp′h

∣∣∣∣ = η′

(1− η′)2
E[v]− v

(p′h − p′h)
2
≤ η′

(1− η′)2
E[v]− v

(p′h − E[v])2
=

1

η′(E[v]− v)
≤ 1

1− η′
1

η
1−η

(E[v]− v)−∆
,

where the last inequality is from 1−η′

η′(E[v]−v)
≤ 1

η
1−η

(E[v]−v)−∆
. Therefore, |p

h
− p′

h
| ≤ ∆ implies

|σh − σ′
h| ≤ 1

1−η′
∆

η
1−η

(E[v]−v)−∆
.

Take the information structure and equilibrium from the proof of Proposition B.1 cor-
responding to parameters η′, p′l and σ′

h. Now we calculate the equilibrium payoffs and
compare that to (πb, πs). We discuss the two cases separately:

In case 1 (c(v) > E[c(v)]), we first bound |α′(p′
h
)− α(p

h
)|:

|α′(p′
h
)− α(p

h
)|

≤ |p′l − pl|
p
h
− E[c(v)|v > v]

+

∣∣∣∣∣ p′l − E[c(v)|v > v]

p
h
− E[c(v)|v > v]

− p′l − E[c(v)|v > v]

p′
h
− E[c(v)|v > v]

∣∣∣∣∣
≤ 2∆

p
h
− E[c(v)|v > v]

.

The second inequality follows from p′
h
> p′l and |p′l−pl|, |p′h−p

h
| < ∆. In this case, Seller’s

payoff is α′(p′
h
)(p′

h
− E[c(v)]) (note that Seller always finds p′

h
optimal, which is accepted

with probability α′). Therefore,

|πs − π′
s| ≤ |α′(p′

h
)− α(p

h
)|(p

h
− E[c(v)]) + α′(p′

h
)|p′

h
− p

h
| ≤ 3∆,

where the last inequality uses E[c(v)] > E[c(v)|v > v]. Buyer’s payoff is π′
b = E[v] − p′

h
+

(1−η′)(1−σ′
h)(p

′
h
−p′l) (note that Buyer always finds accepting the on-path prices optimal).

Therefore,

|πb − π′
b| ≤|p

h
− p′

h
|+ (1− η′)

(
|σ′

h − σh|(ph − pl) + (1− σ′
h)(|ph − p′

h
|+ |pl − p′l|)

)
26 All other parameters defining the equilibrium are calculated from η′, pl, σh. Recall that the on-path

prices are pl, p
′
h, ph.
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≤3∆ + (v − v)
1

1− η′
∆

η
1−η

(E[v]− v)−∆
.

In case 2 (c(v) ≤ E[c(v)]), Seller finds it optimal to always offer pl; hence, πs = pl −
E[c(v)]. Therefore,

|πs − π′
s| ≤ |pl − p′l| ≤ ∆.

Buyer’s payoff is π′
b = E[v]−p′l−(1−η′)σ′

h(p
′
h−p′l) (note that Buyer always finds accepting

the on-path prices optimal). Therefore,

|πb − π′
b| ≤|pl − p′l|+ (1− η′)

(
|σ′

h − σh|(ph − pl) + σ′
h(|ph − p′

h
|+ |pl − p′l|)

)
≤3∆ + (v − v)

1

1− η′
∆

η
1−η

(E[v]− v)−∆
.

In either case,

||(πb, πs)− (π′
b, π

′
s)|| ≤ 6∆ +

2∆(v − v)

η(E[v]− v)− (1− η)∆
.

By choosing ∆ sufficiently small, we bound ||(πb, πs)− (π′
b, π

′
s)|| above by ε.

To summarize, ∀ε > 0, there exist parameters δ, η, η′, and ∆ such that for an arbitrary
grid of [v, v] with grid size ∆, for any (πb, πs) ∈ Π(Γ), we construct an information struc-
ture with sequential equilibrium payoff within the ε-neighbouthood of (πb, πs). That is,
the set of payoffs from sequential equilibria corresponding to some information structure
is an ε−net of Π(Γ).

Q.E.D.

C. Proof of Theorem 2

We prove most of the theorem here via three lemmas; a final step is relegated to sup-
plementary Appendix H.

Lemma C.1. ∀(π∗
b , π

∗
s) ∈ Π∗

us(Γ), ∀πs ∈ [π∗
s , S(Γ)] and πb ∈ [0, S(Γ)− πs], there exists τ̃ ∈ Tus

such that (πb, πs) ∈ Π∗(Γ, τ̃).

In words, this lemma says that the set Π∗
us(Γ) consists of all payoff pairs in Π(Γ) such

that Seller’s payoff is above some floor. By definition, the floor is πus
s (Γ) defined in (1).
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This proves part 2 of Theorem 2, modulo not assuring that the floor is actually achieved;
that argument is more technical and provided by Lemma H.2 in Appendix H.

Proof. Let γ = S(Γ) − (πb + πs) be the loss of total surplus for payoff pair (πb, πs). We
construct an information structure τ̃ such that the efficiency loss is γ, Seller’s payoff is
πs and Buyer’s payoff is πb. Let P (tb, v) be the joint distribution specified by an Seller-
uninformed information structure τ for which (π∗

b , π
∗
s) ∈ Π∗(Γ, τ).

First we determine the types that are not traded. For this, we find a threshold value z∗

such that trading all expected valuations strictly below z∗ and some fraction of expected
valuation z∗ generates surplus γ. Consider the function

y(z) =

∫
E[v|tb]<z

(v − c(v))P (dtb, dv),

which is well defined because the domain of integration is measurable. The set {tb|E[v|tb] < z}
expands when z increases. So y(z) is increasing in z. Moreover, y(∞) = S(Γ) and
y(−∞) = 0. So there exists z∗ such that y(z) ≤ (≥)γ for z < (>)z∗. By definition,
{tb|E[v|tb] < z} =

⋃
ε>0 {tb|E[v|tb] < z − ε}, so y(z) is a left-continuous function. Hence,

y(z∗) ≤ γ. Define β by:

γ = y(z∗) + β

∫
E[v|tb]=z∗

(v − c(v))P (dtb, dv)

The RHS is y(z∗) ≤ γ when β = 0 and limz→z∗+ y(z) ≥ γ when β = 1. So β ∈ [0, 1]. In
words, excluding all tb that induces E[v|tb] < z∗ and β portion of tb inducing E[v|tb] = z∗

leads to efficiency loss γ.

Next, we construct τ̃ ∈ Tus such that all remaining surplus is realized and Seller gets
payoff πs. If Seller sells at price p and trades with all remaining types, Seller’s payoff is:∫

E[v|tb]>z∗
(p− c(v))P (dtb, dv) + (1− β)

∫
E[v|tb]=z∗

(p− c(v))P (dtb, dv).

Therefore, Seller’s payoff is πs when trading with all remaining types at the price27

p∗ =
πs +

∫
E[v|tb]>z∗

c(v)P (dtb, dv) + (1− β)
∫
E[v|tb]=z∗

c(v)P (dtb, dv)∫
E[v|tb]>z∗

P (dtb, dv) + (1− β)
∫
E[v|tb]=z∗

P (dtb, dv)
.

To ensure that all non-excluded Buyer types accept price p∗, we construct τ̃ by pooling all

27 Note that πs ≤ S(Γ)− γ guarantees that p∗ ≥ z∗.
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non-excluded types such that E[v|tb] < p∗ and a λ fraction of those with signal tb such that
E[v|tb] ≥ p∗. The fraction λ is determined as follows:

λ

∫
E[v|tb]≥p∗

(v − p∗)P (dtb, dv) +

∫
z∗<E[v|tb]<p∗

(v − p∗)P (dtb, dv)

+ (1− β)

∫
E[v|tb]=z∗

(v − p∗)P (dtb, dv) = 0

=⇒ λ =

∫
z∗<E[v|tb]<p∗

(p∗ − v)P (dtb, dv) + (1− β)
∫
E[v|tb]=z∗

(p∗ − z∗)P (dtb, dv)∫
E[v|tb]>p∗

(v − p∗)P (dtb, dv)
,

where λ ∈ [0, 1] follows from the fact that the LHS of the first equality traverses from
negative to positive when λ traverses [0, 1].

Let T̃b = Tb ∪ {t∅}, where t∅ is topologically disjoint from Tb. The information structure
τ̃ ∈ Tus is given by the following distribution:

P̃ (tb, v) =


(1− λ)P (tb, v) ∀ tb s.t. E[v|tb] ≥ p∗

P (tb, v) ∀ tb s.t. E[v|tb] < z∗

βP (tb, v) ∀ tb s.t. E[v|tb] = z∗;

P̃ (t = t∅, v) = λ

∫
E[v|tb]≥p∗

P (dtb, v) +

∫
z∗<E[v|tb]<p∗

P (dtb, v) + (1− β)

∫
E[v|tb]=z∗

P (dtb, v).

(It can be verified that P̃ defines a valid information structure.)

Now we define Buyer’s strategy α̃. Let α be Buyer’s strategy corresponding to the
wPBE of game (Γ, τ). Define α̃(p, tb) = α(p, tb) when tb ̸= t∅, and α̃(p, t∅) = 1p≤p∗ . Sequen-
tial rationality of α̃ is straightforward.

It remains only to verify that pricing at p∗ is optimal for Seller. There is no profitable
deviation to any higher price because

sup
p>p∗

∫
α̃(p, tb)(p− c(v))P̃ (dtb, dv) = (1− λ)

∫
α(p, tb)(p− c(v))P (dtb, dv) ≤ (1− λ)π∗

s .

There is no profitable deviation to any price lower than z∗ because

sup
p≤z∗

∫
α̃(p, tb)(p− c(v))P̃ (dtb, dv) ≤ sup

p≤z∗

∫
α(p, tb)(p− c(v))P (dtb, dv) ≤ π∗

s .

By construction, there is no tb that induces a belief with Eν̃ [v|tb] ∈ (z∗, p∗). Therefore, it
is suboptimal for Seller to post any price in (z∗, p∗). It follows that it is optimal (strictly
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optimal when πs > π∗
s ) for Seller to offer p∗ and get payoff πs. Buyer’s payoff is all the

remaining surplus: S(Γ)− γ − πs = πb.

Remark 6. If πb = S(Γ)−πs, the market is efficient, z∗ = −∞, and p∗ = inftb E[v|tb]. Q.E.D.

Lemma C.2. Π∗
us(Γ) = Π∗(Γ).

In words, this lemma says that uninformed-Seller information structures implement all
payoff pairs implementable with price-independent beliefs under any information struc-
ture. As it is trivial that Π∗

us(Γ) ⊂ Π∗
mb(Γ) ⊂ Π∗(Γ), this establishes part 1 of Theorem 2.

Proof. Π∗
us(Γ) ⊂ Π∗(Γ) is trivial, so we need only prove the opposite direction. Suppose

that under some information structure τ there is a wPBE (σ, α, ν) with price-independent
beliefs and payoffs (πb, πs). Consider an information structure τ ′ ∈ Tus defined by Q(tb, v) =

P (Ts, tb, v). ν is a consistent belief system given information structure τ and strategy σ.
Now we verify that ∀σ′, ν is a consistent belief system given τ ′ and σ′. For every measur-
able rectangle D ⊂ R× Tb × V ,∫

D

ν(dv|p, tb)σ′(dp)Q(dtb, V )

=

∫
Dp

σ′(dp) ·
∫
Dtb,v

ν(dv|p, tb)P (Ts, dtb, V )

=

∫
Dp

σ′(dp) ·
∫
Dtb,v

P (Ts, dtb, dv)

=

∫
D

σ′(dp)Q(dtb, dv),

where Dp and Dtb,v are the projection of D on dimension p and tb, v respectively. The first
and third equalities use the definition of measure Q. The second equality is the definition
of price-independent belief. Since the product-sigma-algebra is uniquely defined by the
product of sigma-algebras, verifying on all rectangular D guarantees that ν is a consistent
belief system. Therefore, α remains a best response for Buyer. Moreover,

sup
σ′

∫
(p− c(v))α(p, tb)σ

′(dp)Q(dtb, dv)

= sup
σ′

∫
(p− c(v))α(p, tb)σ

′(dp)P (dts, dtb, dv)

≤
∫

(p− c(v))α(p, tb)σ(dp|ts)P (dts, dtb, dv) = πs.

The first line is achievable by a Seller’s strategy when α is modified to break tie in favor
of Seller. Therefore, πs ≥ πus

s (Γ) and hence (πb, πs) ∈ Π∗
us(Γ). Q.E.D.
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Lemma C.3. For any (πb, πs) ∈ Π∗
us(Γ) with πs > πus

s (Γ), there is τ ∈ Tus with Π(Γ, τ) =

{(πb, πs)}.

This “unique implementation” lemma corresponds to part 3 of Theorem 2.

Proof. Lemma H.2 shows that πus
s (Γ) is achieved in an equilibrium. Use πus

s (Γ) as the π∗
s

in the proof of Lemma C.1 and construct the corresponding information structure. Note
that given the information structure, Seller’s payoff from any deviation to a price other
than p∗ is bounded above by π∗

s < πs. As a result p∗ is the uniquely optimal price given
Buyer’s best response α̃.

Now we show that for any other α′ that is sequentially rational, Seller’s payoff is
still bounded above by π∗

s . Suppose not, to contradiction. Then there is p such that∫
α′(p, tb)(p− c(v))P (dtb, dv) > π∗

s . Let Tp be the subset of all Buyer’s signals tb for which
E[v|tb] = p — signals making Buyer indifferent between buying or not. Note that any two
sequentially rational Buyer strategies differ only on Tp. We have:

lim
p′→p−

∫
α̃(p′, tb)(p

′ − c(v))P (dtb, dv)

=

∫
E[v|tb]≥p

(p− c(v))P (dtb, dv)

=

∫
α′(p, tb)(p− c(v))P (dtb, dv) +

∫
tb∈Tp

(1− α′(p, tb))(p− c(v))P (dtb, dv)

≥
∫

α′(p, tb)(p− c(v))P (dtb, dv) > π∗
s .

The first two equalities are from the fact that α̃ and α′ differ from 1E[v|tb]≥p only on Tp. The
inequality is from E[v|tb] = p on Tp, v ≥ c(v) and α′ ≤ 1. This implies that there exists
p′ < p giving Seller payoff strictly above π∗

s , which is a contradiction.

Therefore, when πs > π∗
s , the information structure constructed in Lemma C.1 im-

plements the unique equilibrium payoff pair (πb, πs). The result follows from choosing
π∗
s = πus

s (Γ). Q.E.D.

D. Proof of Theorem 3 when Supp(µ) is finite

For brevity, we provide here a proof of Theorem 3 when Supp(µ) is finite. In the online
appendix (Appendix I) we handle the general case by using approximations with finite
Supp(µ).
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Proof. We first introduce some notations. For any finite support ν, let Supp(ν) = {vi}ni=1.
Let ci = c(vi). For any p define28

π(c, ν, p) =
∑
vi≥p

(p− ci)νi,

σ∗(c, ν) = argmax
p∈R

πs(c, ν, p).

In words, π and σ∗ are Seller’s payoff from offering p and optimal price set respectively
given cost function c and belief of Buyer’s valuation ν. Lemma D.1 is a key lemma that
states that µ can be decomposed into a convex combination of a collection of IPDs.

Lemma D.1. When Supp(µ) is finite, there exists IPDs {νj}Jj=1 and {qj} ∈ ∆(J) such that∑
qjνj = µ and σ∗(c, µ) ⊂ σ∗(c, νj).

Proof. We prove the result by induction. When | Supp(µ)| = 1, the statement is trivially
true. Now we assume by induction that the statement is true for | Supp(µ)| ≤ n and
prove it for | Supp(µ)| = n + 1. Let V = Supp(µ) = {v1, . . . , vn+1}. We discuss two cases
separately:

• Case 1: vi > ci for all i ≤ n. Define ν̂n+1 = 1 and recursively define

ν̂i =

∑n+1
j=i+1 ν̂j · (vi+1 − vi)

vi − ci

for i = n . . . 1. Normalize {ν̂i} to a probability vector ν = 1∑
i ν̂i

ν̂. Then, it is easy to
verify that ν ∈ ∆V and ν is an IPD:

π(c, ν, vi+1)− π(c, ν, vi) =
n+1∑

j=i+1

νj · (vi+1 − vi)− νi · (vi − ci) = 0, ∀i.

Therefore, σ∗(c, ν) ⊃ V .

• Case 2: vi = ci for some i ≤ n. Let i0 be the smallest i such that this is true. Define
ν̂i0 = 1 and recursively define ν̂i =

∑n+1
j=i+1 ν̂j ·(vi+1−vi)

vi−ci
for i = 1, . . . , i0. Normalize {ν̂i}

to ν = 1∑
i ν̂i

ν̂. Then, the exactly same argument as in Case 1 implies that ν ∈ ∆V and
ν is an IPD. Moreover, since vi0 = ci0 , π∗(c, ν) = 0. Therefore, σ∗(c, ν) ⊃ Supp(ν) ∪
[vi0 ,+∞) ⊃ V .

28 Note that we are recycling the notation π, which was defined differently in the proof of Theorem 2.
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Next, we “remove ν from µ” to reduce its support size. Let q = min
{

µi

νi

}
and µ̂ = µ−q ·ν.

By definition, | Supp(µ̂)| ≤ n. Normalize µ̂ to µ′ = 1∑
i µ̂i

µ̂. Then, ∀i, i′ ∈ (1, . . . , n+ 1),

(∑
ℓ

µ̂ℓ

)
(π(c, µ′, vi)− π(c, µ′, vi′)) =π(c, µ, vi)− π(c, µ, vi′)− q · (π(c, ν, vi)− π(c, ν, vi′))

=π(c, µ, vi)− π(c, µ, vi′)

=⇒ σ∗(c, µ′) = σ∗(c, µ).

The first equality is from the linearity of π and the second equality is from σ∗(c, ν) ⊃ V .
Then, by induction, there exists IPDs νj and qj s.t.

∑
qjνj = µ′ and σ∗(c, µ) = σ∗(c, µ′) ⊂

σ∗(c, νj). Therefore, the statement is proved by appending ν to (νj), and normalizing the
probability to (qj ·

∑
µ̂i, q). Q.E.D.

Since
∑

qjνj = µ, (νj, qj) is a mean-preserving spread of µ; hence, there exists informa-
tion structure τ ∈ Tfb that induces posterior beliefs of Seller νj with probability qj . Note
that σ∗(c, µ) ⊂ σ∗(c, νj). Therefore, Seller’s payoff under τ is attained by charging a price
in σ∗(c, µ), which yields πs = πfb

s (Γ). On the other hand, since each νj is an IPD, Seller
finds it as profitable to charge the lowest and highest values in each Supp(νj). Therefore,
{(0, πfb

s (Γ)), (S(Γ)− πfb
s (Γ), πfb

s (Γ))} ⊂ Π∗
fb(Γ).

Evidently, (0, S(Γ)) can be implemented by perfectly revealing v to Seller. Any other
(πb, πs) in Π∗

fb(Γ) can be implemented by public randomization, which means Buyer
is better informed in the strong sense that his information is a refinement of Seller’s.

Q.E.D.

E. Proof of Proposition 1

Proof. We first show that Π(Γ) is included in the set defined in Proposition 1. ∀(πb, πs) ∈
Π(Γ), it is clear that πb ≥ 0 and πs ≥ πs(Γ). Now we prove that the inequality λπb + πs ≤
Sλ(Γ) is satisfied for any λ ∈ [1,∞). Let τ be the information structure and (σ, α, ν) be the
corresponding PBE associated with payoff (πb, πs). Then define a Borel measure β. For
any Borel set V ′ ⊂ R:

β(V ′) =

∫
v∈V ′

α(p, tb)σ(dp|ts)P (dtb, dts, dv)
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In plain words, β calculates the trading probability for a given set of types V ′. By defini-
tion: 

πb =

∫
(v − E[p|v])β(dv)

πs =

∫
(E[p|v]− c(v))β(dv)

=⇒ λπb + πs =

∫
(E[p|v]− c(v) + λ(v − E[p|v]))β(dv)

=

∫
(λv − c(v)− (λ− 1)E[p|v])β(dv)

≤
∫

(λv − c(v)− (λ− 1)v)β(dv)

≤ Sλ(Γ)

The first inequality is implied by that any on-path price must be no lower than v and
λ ≥ 1.

Now we show that all payoff pairs (πb, πs) satisfying the inequality constraints can be
implemented by equilibrium payoffs in Π(Γ). ∀λ ∈ [1,∞) and α ∈ [0, 1], define βα(v) =

1λv+v>c(v)+λv+α1λv+v=c(v)+λv. Let us ignore the individual rationality constraint πs ≥ 0 for
now.

Construct the following information structure: a public signal is sent to both play-
ers indicating whether βα(v) = 0. Following the positive signal, construct information
structure as in Theorem 1 that induces Seller selling with probability one at p = v al-
most surely in the subgame.29 When βα(v) = 0, trading surplus is for sure non-positive
as c(v) ≥ v + (λ − 1)(v − v) so an equilibrium with no transaction exists. The realized
weighted total surplus is exactly Sλ(Γ) and Buyer gets

∫
βα(v)(v − v)µ(dv), Seller gets∫

βα(v)(v − c(v))µ(dv). Note that Buyer’s payoff is continuously increasing in α. There-
fore, ∀λ ∈ [1,∞), we can implement an interval (possibly degenerate) on the frontier
Sλ(Γ) defined by

{
(πα

b , π
α
s ) =

(∫
βα(v)(v − v)µ(dv),

∫
βα(v)(v − c(v))µ(dv)

)}
α∈[0,1]. Since

we construct the equilibria explicitly, this interval satisfies all other constraints.

Next, we show two key properties of the interval {(πα
b , π

α
s )}α∈[0,1].

• ∀λ ≥ 1, ∀δ > 0, (π′
b, π

′
s) = (π1

b + δ, π1
s − λδ) violates some frontier Sλ′(Γ) with λ′ > λ.

29 In the subgame following βα(v) > 0, the support of v might not contain v. This does not affect the
consistency of off-path beliefs as we use wPBE as the equilibrium notion (without imposing subgame per-
fection).
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It is easy to calculate:

λ′π′
b + π′

s = (λ′ − λ)(π1
b + δ) + Sλ(Γ)

=⇒ λ′π′
b + π′

s − Sλ(Γ)

λ′ − λ
= (π1

b + δ)

Now we calculate Sλ′(Γ):

Sλ′(Γ)− Sλ(Γ)

λ′ − λ
=

∫
λ(v−v)+v−c(v)≥0

(λ′ − λ)(v − v)µ(dv)

λ′ − λ

+

∫
λ(v−v)+v−c(v)∈[(λ′−λ)(v−v),0)

(λ′(v − v) + v − c(v))µ(dv)

λ′ − λ

→
∫

β1(v)(v − v)µ(dv) = π1
b when λ′ → λ

The limit is derived by canceling out (λ′ − λ) in the first line and observing the
integrand is bounded by (λ′ − λ)(v − v) in the second line. Since δ > 0, when λ′ − λ

is sufficiently small, λ′π′
b + π′

s > Sλ′(Γ), violating the frontier Sλ′(Γ).

• ∀λ > 1, ∀δ > 0, (π′
b, π

′
s) = (π0

b − δ, π0
s + λδ) violates some frontier Sλ′(Γ) with λ′ < λ.

The argument is totally symmetric.

For any point on frontier S1(Γ) between (0, S1(Γ)) and (π1
b , π

1
s), it can be implemented

by public randomization. Therefore, any payoff pair on the envelope of all frontiers is
implementable (while ignoring Seller’s individual rationality constraint). Then we can
just truncate below by the extra constraint πs ≥ 0. The implementation of (0, πs(Γ)) is
trivial. Then public randomization implements all other points in the set. Q.E.D.

F. Proof of Proposition 2

Proof. As is discussed in the main text, it is sufficient to show the existence of cdf G(v)

such that 1) G ∈ D(µ), 2) G is an IPD, 3) ∃p ∈ Supp(G) s.t.
∫ p

v
G(s)ds =

∫ p

v
F (s)ds.

First, we show that ∀v∗ ∈ [v,Eµ[v]] s.t. v∗ > c(v∗) and v∗ ≥ c(E[v]), IPD Gv∗ exists.

Case 1. λ ̸= 1. The indifference condition of IPD is equivalent to:

d

dv

∫ v∗

v

(v − c(s))dGv∗(s) = 0

⇐⇒ − (v − c(v))gv∗(v) + (1−Gv∗(v)) = 0

⇐⇒ (c(v)− v)d log (1−Gv∗(v)) = 1
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⇐⇒ Gv∗(v) = 1− C (c(v)− v)
1

λ−1 .

Using condition Gv∗(v∗) = 0, we can pin down C:

Gv∗(v) = 1−
(

v − c(v)

v∗ − c(v∗)

) 1
λ−1

v∗ can be pinned down using the following condition30:

(1−Gv∗(v
∗))(v∗ − c(v∗)) = v∗ − c(Eµ[v])

=⇒ (1− λ)v∗ − γ = (v∗ − c(E[v]))
λ−1
λ ((1− λ)v∗ − γ)

1
λ

Note that if v∗ → E[v], then v∗ → E[v]. One can also verify that v∗ increases when v∗

decreases:

dv∗

dv∗
= (v∗ − E[v])(v∗ − c(E[v]))−

1
λ ((1− λ)v∗ − γ)

1−λ
λ ≤ 0

Case 2. λ = 1. (in this case γ < 0 for sure) The indifference condition of IPD is equiva-
lent to:

d log (1−Gv∗(v)) =
1

γ

⇐⇒ Gv∗(v) = 1− C · e
v
γ

Pin down C and v∗ using the CDF at v∗ and the MPS condition:
C = e−

v∗
γ

v∗ = v∗ + γ log

(
v∗ − c(Eµ[v])

−γ

)

Second, we show that there exists v∗ s.t the corresponding IPD Gv∗(v) satisfies condi-
tion 1) and 3). It is trivial that if v∗ = Eµ[v], then Gv∗ has unit mass at Eµ[v], which is
included in D(µ). By the linearity of c, v = c(v) can only happen on the boundaries of
V . Therefore: v∗ = inf

{
v′ ∈ (max{v, c(E[v])},Eµ[v]]

∣∣Gv′ ∈ D(µ)
}

is well defined. Then we
discuss several cases separately:

• Case 1. v∗ > max{c(v∗), c(E[v])}. In this case νv∗ is well defined. By the formula of
Gv′(v), it is continuous in v′ for each v. Obviously, CDFs are uniformly bounded. So

30 It is easy to verify that the condition is equivalent to
∫
vdGv∗(v) = Eµ[v].
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by dominated convergence theorem, ∀q:∫ v

v

Gv∗(s)ds = lim
v′→v+∗

∫ v

v

Gv′(s)ds

This implies Gv∗ ∈ D(µ). Now we claim that there exists p ∈ [v∗, v
∗] such that∫ p

v
F (s)ds =

∫ p

v
Gv∗(d)ds. If not, this implies

∫ p

v
F (s)ds <

∫ p

v
Gv∗(d)ds ∀p ∈ [v∗, v

∗].
Then choosing v∗ slightly smaller, Gv∗ is still in D(µ), contradiction.

• Case 2. v∗ = c(v∗) ≥ c(E[v]). We show that this case is never possible. Since c is
linear, this can happen only when v∗ = v and λ ≤ 0. Consider v′∗ = v + ε where
ε > 0. Then Gv′∗ ∈ D(µ) when ε is very small. However, v∗ is pinned down by:

(1− λ)v∗ = γ + (v′∗ − c(E[v]))
λ−1
λ ((1− λ)ε)

1
λ

When ε → 0, v∗ → ∞, so Gv′∗ ̸∈ D(µ) for sufficiently small ε, contradiction.

• Case 3. v∗ = c(E[v]) > v. In this special case, Gv∗ gives Seller zero profit and Gv∗ ∈
D(µ). Then πus

s (Γ) = 0. So the proof of Proposition 2 is already done. Q.E.D.

G. Proof of Corollary 1

Proof. First, if V is binary, then c(v) is always a affine function of v. Let λ = c(v2)−c(v1)
v2−v1

and γ = c(vi) − λvi. Then, Condition 1 is satisfied and Proposition 2 applies. Let v∗ be
the corresponding parameter defining profit minimizing IPD. Since V is binary,

∫ v

v
F (s)ds

is a piecewise linear function with two kinks at v1, v2. Meanwhile,
∫ v

v
Gv∗(s)ds is strictly

convex on its support (v∗, v∗). Therefore,
∫ v

v
F (s)ds can not intersect

∫ v

v
Gv∗(s)ds at any

v ∈ (v∗, v
∗). So either (v∗ = v1 and v∗ ≤ v2) or (v∗ = v2 and v∗ ≥ v1). First consider the case

v∗ = v2. This implies:

(1−Gv∗(v2))(v2 − c(v2)) = v∗ − Eµ[c(v)]

=⇒ (p− c(p))
1

λ−1 (p− Eµ[c(v)]) = (v2 − c(v2))
λ

λ−1

It is not hard to verify that the solution to Equation 6 is unique and denote it by p′. If
p′ ≥ v1 then p = p′. If p′ < v1 then in this case v∗ = v2 is not possible, so p = v1. To sum up,
p = max {p′, v1}. Q.E.D.
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Supplementary Material (for Online Publication Only)

H. Final Step in the Proof of Theorem 2

Lemma H.2 below addresses the remaining issue mentioned after Lemma C.1 in Ap-
pendix C. But we require a preliminary technical result. Denote elements of ∆(V ) by ν

and elements of ∆2(V ) by P , with the former being a belief over valuations and the latter
a distribution of beliefs.

Lemma H.1. Fix any sequence of Pn ∈ ∆2(V ) with Pn
w−→ P ∗ (weak convergence). For any

p ∈ R, define

π(p, P ) =

∫
Eν [v]≥p

(p− Eν [c(v)])dP (ν).

It holds for all p ∈ R and δ > 0 that

lim
n→∞

π(p+ δ, Pn)− δ ≤ π(p, P ) ≤ lim
n→∞

π(p− δ, Pn) + δ.

Proof. Define

hδ,p(ν) =

(
Eν [v]− p+ δ

δ
∧ [0, 1]

)
· (p− Eν [c(v)]), (H.1)

where · ∧ [0, 1] is the truncation functional: x · ∧[0, 1] = max{min{x, 1}, 0}. Since c(v) ∈
C(V ) (where C(·) is the set of continuous and bounded functions), and the truncation
function is continuous, hδ,p(ν) ∈ C(∆V ). Therefore, ∀p ∈ R, δ > 0:

Pn
w−→ P ∗ =⇒

∫
hδ,p(ν)dP

∗(ν) = lim
n→∞

∫
hδ,p(ν)dPn(ν).

By construction, the following is a key property of hδ,p:

1Eν [v]≥p(p− Eν [c(v)]) ≤ hδ,p(ν) ≤ 1Eν [v]≥p−δ(p− Eν [c(v)]).

It follows that

π(p, P ∗) =

∫
1Eν [v]≥p(p− Eν [c(v)])dP

∗(ν)

≤
∫

hδ,p(ν)dP
∗(ν)

= lim
n→∞

∫
hδ,p(ν)dPn(ν)
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≤ lim
n→∞

∫
1Eν [v]≥p−δ(p− Eν [c(v)])dPn(ν)

≤ lim
n→∞

π(p− δ, Pn) + δ,

and

π(p, P ∗) ≥
∫

1Eν [v]≥p(p+ δ − Eν [c(v)])dP
∗(ν)− δ

≥
∫

hδ,p+δ(ν)dP
∗ − δ

= lim
n→∞

∫
hδ,p+δ(ν)dPn − δ

≥ lim
n→∞

π(p+ δ, Pn)− δ. Q.E.D.

Lemma H.2. For πus
s (Γ) defined in (1), there exists τ ∈ Tus such that (πb, π

us
s (Γ)) ∈ Π∗(Γ, τ),

for some πb ∈ [0, S(Γ)− πus
s (Γ)].

Proof. By definition of the infimum operator, there exist a sequence of τn, with each τn ∈
Tus, and (πn

b , π
n
s ) ∈ Π(Γ, τn) such that limn→∞ πn

s = πus
s (Γ). By the argument in the proof of

Lemma C.1, we may without loss choose τn such that πn
s + πn

b = S(Γ) and Seller is willing
to price at the lowest possible Buyer valuation in the support of beliefs induced by τn. Let
pn be such price for each τn. Define π(p, P ) =

∫
Eν [v]≥p

(p− Eν [c(v)])dP (ν). The existence of
such τn is then equivalent to: ∃Pn ∈ ∆2(V ) such that

pn ∈ argmax
p

π(p, Pn) and
∫

νdPn(ν) = µ.

Equipped with the Prokhorov metric, ∆(V ) is a compact metric space because V is com-
pact (by Prokhorov’s theorem). In turn, again equipped with the Prokhorov metric, ∆2(V )

is also a compact metric space. For probability measures over compact metric spaces, con-
vergence under the Prokhorov metric is equivalent to weak convergence. Therefore there
exists a subsequence Pn

w∗
−→ P ∗. It holds that

∫
νdP ∗(ν) = µ (cf. fn. 31), and hence P ∗

corresponds to some τ ∈ Tus. Since πn
s = pn − Eµ[c(v)], the convergence of πn

s implies
pn → p∗. It remains to show that

π(p∗, P ∗) = sup
p

π(p, P ∗) = lim πn
s .

We first verify that limπn
s is an upper bound. Lemma H.1 implies that for all p ∈ R and
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δ > 0,
π(p, P ∗) ≤ lim

n→∞
π(p− δ, Pn) + δ ≤ lim

n→∞
πn
s + δ,

and hence
π(p, P ∗) ≤ lim

n→∞
πn
s .

We next verify that the profit level limπn
s is attained by Seller offering p∗. Without loss,

we may take πn
s to be a strictly decreasing sequence. So p∗ < pn ∀n. Therefore,

Pn (Eν [v] < pn) = 0 =⇒ Pn (Eν [v] < p∗) = 0.

{ν : Eν [v] < p∗} is open under the weak topology, as v 7→ v is a continuous function. By
the Portmanteau theorem,

P ∗ (Eν [v] < p∗) ≤ lim
n→∞

Pn (Eν [v] < p∗) = 0.

That is, p∗ is a lower bound of the support of Eν [v] when ν ∼ P ∗. So offering p∗ induces
Buyer to buy with probability one (as we are constructing an equilibrium, we can resolve
Buyer’s indifference in favor of buying), hence π(p∗, P ∗) = p∗−Eµ[c(v)] = πus

s (Γ). Q.E.D.

I. Proof of Theorem 3

Proof. We first introduce some notations. For any continuous function c(v), any ν ∈
∆(V ), and any p ∈ V define

π(c, ν, p) =

∫
v≥p

(p− c(v))ν(dv),

π∗(c, ν) = max
p∈V

π(c, ν, p),

σ∗(c, ν) = argmax
p∈V

π(c, ν, p).

In words, π, π∗ and σ∗ are Seller’s payoff from offering p, optimal payoff and optimal price
set respectively given cost function c and belief of Buyer’s valuation ν. Since v− c(v) ≥ 0,
π(c, ν, p) is a left-continuous function of p that only jumps up, and hence is upper semi-
continuous. Therefore, π∗ is well-defined and σ∗(c, ν) is nonempty and compact. For
notational simplicity, we sometimes group c, ν and denote the pair by Γ.

We prove Theorem 3 in 4 steps. In step 1, we define a discretized environment for a
grid size d. In step 2, we construct a distribution of IPDs for the discretized environment.
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In step 3, we show that as d → 0, the distributions in step 2 converge to a distribution of
IPDs whose expectation is the prior µ. In step 4, we construct an information structure
and equilibrium for the original environment utilizing the distribution derived in step 3.

Step 1. We discretize the problem. Pick any d > 0. Discretize the support V to a grid
V ′ = {v1, . . . , vn} such that vi+1−vi < d, v1 ≤ v and vn > v. Let p∗ be an element of σ∗(c, µ)

and include p∗ in V ′. Define

µ′
i =

∫
1vi≤v<vi+1

µ(dv),

c′(vi) =

∫
1vi≤v<vi+1

c(v)µ(dv).

Now consider a new environment Γ′ = (c′, µ′) with the discrete support V ′. Γ′ augments Γ
by grouping all Buyer types in interval [vi, vi+1) and assuming the Buyer behaves as if the
valuation is vi. A key property of the environment Γ′ is that ∀vi ∈ V ′, π(Γ′, vi) = π(Γ, vi),
that is, Seller’s payoff from offering on-grid prices is invariant under the environment
change. Since p∗ ∈ V ′, π∗(Γ′) = π∗(Γ).

Step 2. Lemma D.1 implies that that there exist IPDs {νj}Jj=1 and {pj} ∈ ∆(J) such that∑
pjνj = µ′ and σ∗(c′, µ′) ⊂ ∩σ∗(c′, νj).

Step 3. For each dn = 1
2n

, go through Steps 1–2 and construct a collection {pj, νj}.
This collection resembles a probability measure Pn ∈ ∆2(V ). By construction, any ν ∈
Supp(Pn) is an IPD satisfying p∗ ∈ σ∗(c, ν). We use the following lemma—whose prooof
follows after this proof is completed—to construct a measure P ∗ whose support contains
only those IPDs such that p∗ is an optimal price ( P ∗ is a limit point of Pn under the weak
topology.

Lemma I.1. Suppose the sequence (Pn) in ∆2(V ) satisfies
∫
νPn(dν)

w−→ µ and ∀ν ∈ Supp(Pn), ν
is an IPD satisfying p∗ ∈ σ∗(c, ν). Then, ∃P ∗ ∈ ∆2(V ) s.t.

∫
νP ∗(dν) = µ and ∀ν ∈ Supp(P ∗),

ν is an IPD satisfying p∗ ∈ σ∗(c, ν).

Then, ∫
π∗(c, ν)P ∗(dν) =

∫
π(c, ν, p∗)P ∗(dν) = π∗(c, µ). (I.1)

Step 4. Now we define a fully-informed Buyer information structure that implements
any (πb, π

fb
s (Γ)) ∈ Π(Γ). Let β ∈ [0, 1] satisfy πb = β(S(Γ) − πfb

s (Γ)). Take the signal
space Ts = ∆(V ) and define the signal distribution by

∫
D
P (dts, dv) =

∫
D
ts(dv)P

∗(dts).
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That is, the information structure τ = (Ts, P ) ∈ Tfb induces Seller’s belief ν according to
distribution P ∗(ν).

Buyer’s strategy is α(v, p) = 1v≥p, which is obviously optimal. Seller’s strategy is
σ(p|ts = ν) = βδp=min Supp(ν) + (1− β)δp=maxSupp(ν). Then ∀σ′:∫

(p− c(v))1v≥pσ
′(dp|ts)P (dts, dv) =

∫
(p− c(v))1v≥pσ

′(dp|ν)ν(dv)P ∗(dν)

=

∫
π(c, ν, p)σ′(dp|ν)P ∗(dν)

≤
∫

π∗(c, ν)P ∗(dν) because π(c, ν, p) ≤ π∗(c, ν),

where the equalities are accounting identities. Meanwhile, Seller’s payoff using strategy
σ is∫

(p− c(v))1v≥pσ(dp|ts)P (dts, dv) =

∫
βπ(c, ν,min Supp(ν)) + (1− β)π(c, ν,maxSupp(ν))P ∗(dν)

=

∫
π∗(c, ν)P ∗(dν) = πfb

s (Γ),

where the second equality is from ν being an IPD and the third equality is from Equa-
tion I.1. Therefore, σ is optimal for Seller and Seller’s equilibrium payoff is πfb

s . Buyer’s
payoff is:∫

(v − p)1v≥pσ(dp|ts)P (dts, dv)

=

∫
β(v −min Supp(ν))1v≥minSupp(ν) + (1− β)(v −maxSupp(ν))1v=maxSupp(ν)ν(dv)P

∗(dν)

=

∫
β(v − c(v)− (min Supp(ν)− c(v)))ν(dv)P ∗(dν)

=β(S(Γ)−
∫

π∗(c, ν)P ∗(dν)) = πb,

where second equality is from v−maxSupp(ν)1v=maxSupp(ν) = 0, the third equality is from
ν ∈ Supp(P ∗) being an IPD, and the last equality is from Equation I.1.

To sum up, we construct τ ∈ Tfb such that (πb, π
fb
s (Γ)) ∈ Π∗(Γ, τ). Since (0, S(Γ)) can

be implemented by perfect revealing v to Seller, any other (πb, πs) in Π∗
fb(Γ) can be im-

plemented by public randomization, which means Buyer is better informed in the strong
sense that his information is a refinement of Seller’s. Q.E.D.

Proof of Lemma I.1. By Prokhorov’s theorem, there exists a convergent subsequence of
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Pn; without loss we suppose Pn
w−→ P ∗ (i.e., weak convergence, which is implied by con-

vergence in the Prokhorov metric). Let µn =
∫
νPn(dν). By assumption, µn

w−→ µ. It
follows that

∫
νP ∗(dν) = µ.31

Now we show that ∀ν ∈ Supp(P ∗), ν is an IPD. First, Lemma I.2 shows that there
exists a sub-sequence nk → ∞ and νnk

∈ Supp(Pnk
) such that νnk

w−→ ν. Then, ∀p ∈
Supp(ν), there exists a sub-sequence nks → ∞ and pnks

∈ Supp(νnks
) such that pnks

→
p. Lemma I.3 proves that π(c, ν, p) ≥ limπ(c, νnks

, pnks
) = limπ∗(c, νnks

). The equality
is from νnks

being IPD and pnks
being in its support. Lemma I.4 proves that π∗(c, ν) ≤

limπ∗(c, νnks
). Therefore, π(c, ν, p) = π∗(c, ν) and hence ν is an IPD.

In the previous analysis, if we pick p = p∗, then since p∗ ∈ Supp(νnk
), pnk

≡ p∗ satisfies
the condition that pnk

→ p∗. Therefore π(c, ν, p∗) = π∗(c, ν). Q.E.D.

Lemma I.2. Let (S, ρ) be a separable metric space, {Pn} ⊂ ∆(S) and Pn
w−→ P . Then ∀s ∈

Supp(P ), ∃ sequence snk
∈ Supp(Pnk

) s.t. nk → ∞ and snk

ρ−→ s.

Proof. For any s ∈ Supp(P ), suppose towards contradiction that the statement is not true.
Then we claim that ∃ε > 0, N ∈ N s.t. ∀n ≥ N Supp(Pn)

⋂
Bε(s) = ∅. Otherwise, ∀ε > 0,

N ∈ N exists n ≥ N s.t. Supp(Pn)
⋂
Bε(s) ̸= ∅ =⇒ pick any N = k and ε = 1

k
, there exists

nk ≥ k and snk
∈ Supp(Pnk

) s.t. ρ(s, snk
) < 1

k
and hence the assumption is not true.

Since ∃ε > 0 and N s.t. ∀n ≥ N Supp(Pn)
⋂
Bε(s) = ∅, this implies limPn(Bε(s)) =

0 ≥ P (Bε(s)) (by the Portmanteau theorem). This contradicts the assumption that s ∈
Supp(P ). Q.E.D.

Lemma I.3. Let c ∈ C(V ), {νn} ⊂ ∆(V ), {pn} ⊂ V . If νn
w−→ ν and pn → p, then

π(c, ν, p) ≥ limπ(c, νn, pn).

Proof. Define

hδ,p(v) =
v − p+ δ

δ
∧ [0, 1], (I.2)

31 For any continuous h(v), ν 7→
∫
h(v)ν(dv) is a bounded an continuous function on ∆(V ) under the

Prokhorov metric. Therefore, since µn
w−→ µ and Pn

w−→ P ∗,∫
h(v)µn(dv) →

∫
h(v)µ(dv) and

∫∫
h(v)ν(dv)Pn(dν) →

∫∫
h(v)ν(dv)P ∗(dν).

Since
∫
h(v)µn(dv) =

∫∫
h(v)ν(dv)Pn(dν), it follows that

∫
νP ∗(dν) = µ.
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where · ∧ [0, 1] is the truncation functional on [0, 1]. Then it is easy to verify that hδ,p is a
continuous and bounded function and 1v≥p ≤ hδ,p(v) ≤ 1v≥p−δ. Then ∀η > δ > 0:∫ ∞

p−η

(p− c(v))ν(dv) ≥
∫

hδ,p−η+δ(v)(p− c(v)ν(dv))

= lim
n→∞

∫
hδ,p−η+δ(v)(p− c(v))νn(dv)

≥ lim
n→∞

∫ ∞

p−η+δ

(p− c(v))νn(dv)

≥ lim
n→∞

∫ ∞

p−η+δ

(p+ η − c(v))νn(dv)− η

≥ lim
n→∞

∫ ∞

pn

(p+ η − c(v))νn(dv)− η

≥ lim
n→∞

∫ ∞

pn

(pn − c(v))νn(dv)− η.

The first inequality above is because hδ,p−η+δ(v) ≤ 1v≥p−η and ∀v ∈ [p−η, p−η+δ], p > v ≥
c(v). The first equality is from νn w−→ ν and the integrand being continuous and bounded.
The second inequality is from hδ,p−η+δ(v) ≥ 1v≥p−η+δ and ∀v ∈ [p−η, p−η+δ] p > v ≥ c(v).
The third inequality is straightforward. The forth inequality is from lim pn > p − η + δ.
The last inequality is from lim pn < p+ η.

Letting η → 0, we obtain π(c, ν, p) ≥ limπ(c, νn, pn). Q.E.D.

Lemma I.4. Let c ∈ C(V ), {νn} ⊂ ∆(V ). If νn
w−→ ν, then:

π∗(c, ν) ≤ limπ∗(c, νn)

Proof. First observe that π(c, ν, p) ≤ limn→∞ π∗(c, νn) because ∀p ∈ V , ∀δ > 0:

π(c, ν, p) =

∫ ∞

p

(p− c(v))ν(dv)

≤
∫

hδ,p(v)(p− c(v))ν(dv)

= lim
n→∞

∫
hδ,p(v)(p− c(v))νn(dv)

≤ lim
n→∞

∫ ∞

p−δ

(p− c(v))νn(dv)

≤ lim
n→∞

π(c, νn, p− δ) + δ.

hδ,p(v) is defined by Equation I.2. Since p is arbitrary, π∗(c, ν) ≤ limn→∞ π∗(c, νn). Q.E.D.
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