A Note on Undominated Bertrand Equilibria*

Navin Kartik †

First draft: August 2010; This draft: December 15, 2010

Abstract

This note shows that the conventional outcome associated with Bertrand competition with homogenous products and different marginal costs is obtained in *every* Nash equilibrium in which firms use undominated strategies. This strengthens an existence result due to Blume (2003).

Keywords: Asymmetric Bertrand, undominated strategies, non-identical costs. **JEL codes**: C70, D43, L11.

^{*}I thank Jonathan Vogel for stimulating this note and Uliana Loginova for proofreading.

[†]Department of Economics, Columbia University. Mailing address: 1022 IAB, 420 W. 118th Street, New York, NY 10027. Phone: (+1) 212-854-3926. Fax: (+1) 212-534-8059. Email: nkartik@columbia.edu.

The standard model of Bertrand competition with homogenous products and identical marginal costs has a unique Nash equilibrium: each firm prices at marginal cost. Unfortunately, these strategies are weakly dominated. Blume (2003) has shown that when marginal costs are *non-identical*, there is an equilibrium (in fact, more than one) in undominated strategies. These equilibria achieve the conventional market outcome of the lowest-cost firm serving the entire market at a price equal to the next-to-lowest marginal cost. A natural question in this case is whether *all* undominated equilibria have the same outcome in terms of market price and share. To my knowledge, this issue has not been settled in the literature.¹ This note provides an affirmative answer under mild assumptions.

Model. Consider the standard two-firm homogenous-products Bertrand pricing model with constant but non-identical marginal costs, $0 \le c_1 < c_2$.² Market demand is given by a function Q(p), where $Q : \mathbb{R} \to \mathbb{R}_+$. Denote $\Pi_i(p) := Q(p)[p-c_i]$ as the monopoly profit for firm *i* at price *p*. Firms choose prices simultaneously, denoted p_1 and p_2 respectively. If $p_i < p_j$, firm *j*'s payoff is zero and firm *i*'s payoff is $\Pi_i(p_i)$; if $p_1 = p_2$, each firm *i* gets $\frac{1}{2}\Pi_i(p_i)$.

I make the following five assumptions, all of which are satisfied in textbook examples:

(A0): There exists $\hat{\varepsilon} > 0$ such that $Q(\cdot)$ is Lipschitz continuous on $[c_2, c_2 + \hat{\varepsilon})$.

(A1): For any $p > c_2$ with Q(p) > 0, there exists some $i \in \{1, 2\}$ and p' < p such that $\Pi_i(p') > \frac{1}{2}\Pi_i(p)$. In other words, firm *i* would rather charge the price p' < p and sell to the whole market than split the market at p.³

(A2): For each $i \in \{1, 2\}$, max $\Pi_i(p)$ exists and is finite. In other words, for each firm, there exists an optimal monopoly price.

(A3): For any $p < c_2$, $\Pi_1(p) < \Pi_1(c_2)$. In other words, as a monopolist, any price below c_2 would be strictly worse for firm 1 than pricing at c_2 .

(A4): There exists $\tilde{\varepsilon} > 0$ such that $\Pi_2(p)$ is strictly increasing on $(c_2, c_2 + \tilde{\varepsilon})$. In other words, monopoly profits for firm 2 are strictly increasing just above price c_2 .

Role of the Assumptions. (A0) and (A3) are used to construct an equilibrium where firm 1 serves the entire market at price c_2 ; (A3) and (A4) ensure that this equilibrium is in undominated

¹Blume (2003) notes that lower market prices can be supported in equilibria with weakly dominated strategies.

 $^{^{2}}$ The analysis extends straightforwardly to more than two firms. What is important is that there is only one firm with the lowest cost.

³Note that this assumption is automatically satisfied if the demand function, Q(p), is non-increasing.

strategies. (A1) and (A2) guarantee uniqueness of the desired market outcome; in particular, (A2) rules out the kinds of equilibria constructed by Baye and Morgan (1999).

Given that there are a continuum of pure strategies, say that a mixed strategy is *weakly undominated* if, viewed as a probability measure, it assigns zero probability to any (Borel) set of pure strategies that are all weakly dominated.

Proposition. Any Nash equilibrium in weakly undominated strategies has the property that with probability one, firm 1 sells to the entire market at price c_2 . Moreover, such an equilibrium exists.

Proof. (A0) and (A3) imply existence of a Nash equilibrium (NE, hereafter) with the desired market price and share using Blume's (2003) construction: firm one plays a pure strategy of charging price c_2 and firm 2 mixes, say with a uniform distribution, on $[c_2, c_2 + \delta]$ for some small enough $\delta > 0.^4$ Firm 1's strategy is undominated because, by (A3), it is playing its unique best response to firm 2. Similarly, any $p_2 > c_2$ in firm 2's support would be the unique best response to firm 1 playing a uniform distribution on $[p_2, p_2 + \varepsilon(p_2)]$ for some small enough $\varepsilon(p_2) > 0$ (by (A0), (A4), and that δ can be chosen small enough); hence firm 2 is also playing an undominated strategy.

To prove the first statement of the Proposition, fix any undominated NE with strategies (σ_1, σ_2) . For $i \in \{1, 2\}$, denote $\overline{p}_i := \sup[Supp[\sigma_i]]$ and $\underline{p}_i := \inf[Supp[\sigma_i]]$. By (A4), it is weakly dominated for firm 2 to charge any price less than or equal to c_2 , so $\underline{p}_2 \ge c_2$ and σ_2 must put zero probability on c_2 , which implies $\overline{p}_2 > c_2$. By (A3), any $p_1 < c_2$ is not a best response for firm 1, hence $\underline{p}_1 \ge c_2$. Therefore, it suffices to show that $\overline{p}_1 = c_2$.

Assume, to contradiction, that $\overline{p}_1 > c_2$. Notice that by (A4), firm 2 can get a positive expected profit by choosing some $p_2 = c_2 + \varepsilon$ for small enough $\varepsilon > 0$; hence σ_2 must put zero probability on prices that yield a zero expected profit against σ_1 . This implies that $\overline{p}_2 \leq \overline{p}_1$. Similarly, since (A3) implies $\Pi_1(c_2) > 0$, it also follows that $\overline{p}_1 \leq \overline{p}_2$. Combined, we must have $\overline{p} := \overline{p}_1 = \overline{p}_2 > c_2$. Moreover, since charging any price above an optimal monopoly price is weakly dominated for a firm, (A2) implies that $\overline{p} < \infty$. There are now two cases to consider:

1) Suppose first that σ_2 puts positive probability on \overline{p} . Then \overline{p} must yield firm 2 a positive expected profit, hence $Q(\overline{p}) > 0$ and σ_1 must also put positive probability on \overline{p} . But then (A1) implies that one of the two firms is not playing a best response.

2) Suppose next that σ_2 puts zero probability on \overline{p} . This implies that $\Pr_{\sigma_2}(p_2 \ge \overline{p} - \varepsilon) \to 0$ as $\varepsilon \downarrow 0$. But then, σ_1 is not a best response, because firm 1's expected profit from p_1 becomes

⁴Plainly, firm 2 is playing a best response to firm 1. It is routine to verify that (A0) ensures that $\delta > 0$ can be chosen small enough so that firm 1 does not want to raise price above c_2 , while (A3) obviously implies that it does not want to decrease price below c_2 .

arbitrarily small as $p_1 \uparrow \overline{p}$ (since (A2) implies that monopoly profits are bounded) whereas charging price c_2 gives firm 1 some strictly positive expected profit (by (A3)). Q.E.D.

References

- Baye, Michael R. and John Morgan, "A Folk Theorem for One-shot Bertrand Games," *Economics Letters*, 1999, 65 (1), 59–65.
- Blume, Andreas, "Bertrand Without Fudge," *Economics Letters*, February 2003, 78 (2), 167–168.