Improving Information from Manipulable Data

Alex Frankel Navin Kartik

July 2020

Improving Information

Frankel and Kartik

Allocation Problem

Designer uses data about an agent to assign her an allocation

Wants higher allocations for higher types

■ Credit: Fair Isaac Corp maps credit behavior to credit score used to determine loan eligibility, interest rate, ... → Open/close accounts, adjust balances

Web search: Google crawls web sites for keywords & metadata used to determine site's search rankings

 $\rightarrow \text{SEO}$

 Product search: Amazon sees product reviews used to determine which products to highlight

 \rightarrow Fake positive reviews

Given an allocation rule, agent will manipulate data to improve allocation Manipulation changes inference of agent type from observables

Response to Manipulation

Allocation rule/policy \rightarrow agent manipulation \rightarrow inference of type from observables \rightarrow allocation rule

Fixed point policy: best response to itself

- Rule is ex post optimal given data it induces
- May achieve through adaptive process

Optimal policy: commitment / Stackelberg solution

- Maximizes designer's objective taking manipulation into account
- Ex ante but (perhaps) not ex post optimal

Our interest:

- 1 How does optimal policy compare to fixed point?
- 2 What ex post distortions are introduced?

Fixed Point vs Optimal (commitment) policy

In our model:

1 How does optimal policy compare to fixed point?

- Optimal policy is flatter than fixed point Less sensitive to manipulable data
- 2 What ex post distortions are introduced?
 - Commit to underutilize data Best response would be put more weight on data

Fixed Point vs Optimal (commitment) policy

Two interpretations of optimally flattening fixed point

- Designer with commitment power
 - Google search, Amazon product rankings, Government targeting
 - Positive perspective or prescriptive advice
- Allocation determined by competitive market
 - Use of credit scores (lending) or other test scores (college admissions)
 - Market settles on ex post optimal allocations
 - What intervention would improve accuracy of allocations? (Govt policy or collusion)

Related Literature

Framework of "muddled information"

- Prendergast & Topel 1996; Fischer & Verrecchia 2000; Benabou & Tirole 2006; Frankel & Kartik 2019
- Ball 2020
- Björkegren, Blumenstock & Knight 2020

Related "flattening" to reduce manipulation in other contexts

- Dynamic screening: Bonatti & Cisternas 2019
- Finance: Bond & Goldstein 2015; Boleslavsky, Kelly & Taylor 2017
- Other mechanisms/contexts to improve info extraction

CompSci / ML: classification algorithms with strategic responses

Background on Framework

Information Loss

In some models, fixed point policy yields full information, so no need to distort

• When corresponding signaling game has separating eqm

Muddled information framework (FK 2019)

- Observer cares about agent's natural action η
 - Agent's action absent manipulation
- Agents also have heterogeneous gaming ability γ
 - Manipulation skill, private gain from improving allocation, willingness to cheat
- No single crossing: 2-dim type; 1-dim action
- When allocation rule rewards higher actions, high actions will muddle together high η with high γ

Muddled Information

Frankel & Kartik 2019

- Market information in a signaling equilibrium Analogous to fixed point in current paper
- Agent is the strategic actor
 - chooses x to maximize $V(\hat{\eta}(x), s) C(x; \eta, \gamma)$
 - x is observable action, $\hat{\eta}$ is posterior mean, s is stakes / manipulation incentive
 - leading example: $s\hat{\eta}(x) \frac{(x-\eta)^2}{\gamma}$

Allocation implicit: agent's payoff depends on market belief

- Key result: higher stakes \implies less eqm info (about natural action)
 - suitable general assumptions on $V(\cdot)$ and $C(\cdot)$
 - precise senses in which the result is true

Current paper explicitly models allocation problem;

How to use commitment to \downarrow info loss and thereby \uparrow alloc accuracy Improving Information

Model

Frankel and Kartik

Designer's problem

Agent(s) of type
$$(\eta,\gamma)\in\mathbb{R}^2$$

Designer wants to match allocation $y \in \mathbb{R}$ to natural action η :

Utility
$$\equiv -(y - \eta)^2$$

- Allocation rule Y(x), based on agent's observable $x \in \mathbb{R}$
- Agent chooses x based on (η, γ) and Y (details later)
- Expected loss for designer:

$$\operatorname{Loss} \equiv \mathbb{E}[(Y(x) - \eta)^2]$$

- Nb: pure allocation/estimation problem
 - Designer puts no weight on agent utility
 - Effort is purely "gaming"

Designer's problem

Agent(s) of type
$$(\eta,\gamma)\in\mathbb{R}^2$$

Designer wants to match allocation $y \in \mathbb{R}$ to natural action η :

Utility
$$\equiv -(y - \eta)^2$$

- Allocation rule Y(x), based on agent's observable $x \in \mathbb{R}$
- Agent chooses x based on (η, γ) and Y (details later)
- Expected loss for designer:

$$\operatorname{Loss} \equiv \mathbb{E}[(Y(x) - \eta)^2]$$

Useful decomposition:

Loss =
$$\mathbb{E}[(\mathbb{E}[\eta|x] - \eta)^2]$$

Info loss from estimating η from x

$$\underbrace{\mathbb{E}[(Y(x) - \mathbb{E}[\eta|x])^2]}_{\checkmark}$$

Misallocation loss given estimation

Linearity assumptions

We will focus on

Linear allocation policies for designer:

 $Y(x) = \beta x + \beta_0$

• β is allocation sensitivity, strength of incentives

Agent has a linear response function:

Given policy (β, β_0) , agent of type (η, γ) chooses

 $x=\eta+m\beta\gamma$

Parameter m > 0 captures manipulability of the data (or stakes)

Such response is optimal if agent's utility is, e.g.,

$$y - \frac{(x-\eta)^2}{2m\gamma}$$

Improving Information

Frankel and Kartik

Summary of designer's problem

• Joint distribution over (η, γ)

- Means μ_{η} , μ_{γ} ; finite variances $\sigma_{\eta}^2, \sigma_{\gamma}^2 > 0$; correlation $\rho \in (-1, 1)$
- $\rho \geq 0$ may be more salient, but $\rho < 0$ not unreasonable
- Main ideas come through with $\rho = 0$

• Designer's optimum (β^*, β_0^*) minimizes expected quadratic loss:

$$\min_{\beta,\beta_0} \mathbb{E}\left[\underbrace{\left(\beta(\eta+m\beta\gamma)+\beta_0\right)}_{\text{allocation }Y(x)}-\eta\right)^2\right]$$

• Simple model, but objective is quartic in β

Preliminaries

Linearly predicting type η from observable \boldsymbol{x}

- Suppose Agent responds to allocation rule $Y(x) = \beta x + \beta_0$, then Designer gathers data on joint distr of (η, x)
- Let $\hat{\eta}_{\beta}(x)$ be the best linear predictor of η given x:

$$\hat{\eta}_{\beta}(x) = \hat{\beta}(\beta)x + \hat{\beta}_0(\beta),$$

where, following OLS, $\hat{\beta}(\beta) = \frac{\text{Cov}(x,\eta)}{\text{Var}(x)} = \frac{\sigma_{\eta}^2 + m\rho\sigma_{\eta}\sigma_{\gamma}\beta}{\sigma_{\eta}^2 + m^2\sigma_{\gamma}^2\beta^2 + 2m\rho\sigma_{\eta}\sigma_{\gamma}\beta}$

Can rewrite designer's objective

Loss =
$$\mathbb{E}[(\mathbb{E}[\eta|x] - \eta)^2]$$

Info loss from estimating η from x

+ $\underbrace{\mathbb{E}[(Y(x) - \mathbb{E}[\eta|x])^2]}_{}$

Misallocation loss given estimation

Preliminaries

Linearly predicting type η from observable x

- Suppose Agent responds to allocation rule $Y(x) = \beta x + \beta_0$, then Designer gathers data on joint distr of (η, x)
- Let $\hat{\eta}_{\beta}(x)$ be the best linear predictor of η given x:

$$\hat{\eta}_{\beta}(x) = \hat{\beta}(\beta)x + \hat{\beta}_0(\beta),$$

where, following OLS, $\hat{\beta}(\beta) = \frac{\text{Cov}(x,\eta)}{\text{Var}(x)} = \frac{\sigma_{\eta}^2 + m\rho\sigma_{\eta}\sigma_{\gamma}\beta}{\sigma_{\eta}^2 + m^2\sigma_{\gamma}^2\beta^2 + 2m\rho\sigma_{\eta}\sigma_{\gamma}\beta}$

+

Can rewrite designer's objective for linear policies

Loss =
$$\mathbb{E}[(\hat{\eta}_{\beta}(x) - \eta)^2]$$

Info loss from linearly estimating η from x

$$\mathbb{E}[(Y(x) - \hat{\eta}_{\beta}(x))^2]$$

Misallocation loss given linear estimation

• Info loss
$$\propto 1 - R_{\eta x}^2$$

• For corr. $\rho \ge 0$, $\hat{\beta}(\beta)$ is \downarrow on $\beta \ge 0$ (:: $x = \eta + m\beta\gamma$)

Improving Information

Frankel and Kartik

Benchmarks

Benchmarks

Loss = Info loss from linear estimation + Misallocation loss given linear estimation

Constant policy: $Y(x) = 0 \cdot x + \beta_0$

- No manipulation, $x = \eta$
- Info loss is 0
- Misallocation loss may be very large

Naive policy: $Y(x) = 1 \cdot x + 0$

- Designer's b.r. to data generated by constant policy $Y(x) = \hat{\eta}_{\beta=0}(x) = \hat{\beta}(0)x + \hat{\beta}_0(0)$
- But after implementing this policy, agent's behavior changes Agent now responding to $\beta = 1$, not $\beta = 0$

Benchmarks

Loss = Info loss from linear estimation + Misallocation loss given linear estimation

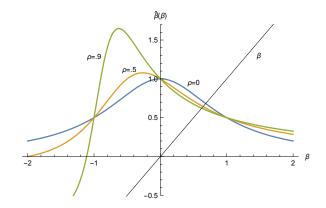
Designer's b.r. if agent behaves as if policy is (β, β_0)

Set
$$Y(x) = \hat{\eta}_{\beta}(x) = \hat{\beta}(\beta)x + \hat{\beta}_{0}(\beta)$$

Designer's optimum if agent's behavior were fixed

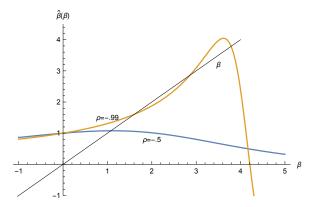
- Fixed point policy: $Y(x) = \beta^{\text{fp}} x + \beta_0^{\text{fp}}$
 - $\hat{\beta}_0(\beta^{\mathrm{fp}}) = \beta_0^{\mathrm{fp}}$ and $\hat{\beta}(\beta^{\mathrm{fp}}) = \beta^{\mathrm{fp}}$
 - Simultaneous-move game's NE (under linearity restriction)
 - NE w/o restriction if (η, γ) is elliptically distr
 - Misallocation loss given linear estimation = 0, allocations ex post optimal
 - Info loss may be large

Designer best response $\hat{\beta}(\cdot)$ and fixed points If (η, γ) 's corr. is $\rho \geq 0$, then:



For β≥ 0, best response sensitivity β̂(β) is positive and ↓
Unique positive fixed point, and it is below naive b.r.: β^{fp} < 1

Designer best response $\hat{\beta}(\cdot)$ and fixed points If (η, γ) 's corr. is $\rho < 0$, then:



- $\begin{array}{l} \beta \gg 0 \implies \text{ higher } x \text{ indicates lower } \eta \implies \hat{\beta}(\beta) < 0 \\ \hline \hat{\beta}(\beta) \text{ can increase on } \beta \geq 0 \end{array}$
- Possible for fixed point sensitivity above naive: $\beta^{\rm fp} > 1$
- Multiple positive fixed points possible

Main Result

Main Result

Designer chooses policy $Y(x) = \beta x + \beta_0$

Nb: Always at least one positive fixed point; just one if $\rho \geq 0$

Proposition

For the optimal policy's sensitivity β^* :

(Flattening.) $0 < \beta^* < \beta^{\text{fp}}$ for any $\beta^{\text{fp}} > 0$.

2 (Underutilize info.) $\hat{\beta}(\beta^*) > \beta^*$.

Commitment can yield large gains: \exists params s.t.

$$L(\beta^{\rm fp}) \simeq L(0) = \sigma_{\eta}^2$$
, arbitrarily large $L(\beta^*) \simeq 0$, first best

Main Result

Designer chooses policy $Y(x) = \beta x + \beta_0$

Nb: Always at least one positive fixed point; just one if $\rho \geq 0$

Proposition

For the optimal policy's sensitivity β^* :

(Flattening.) $0 < \beta^* < \beta^{\text{fp}}$ for any $\beta^{\text{fp}} > 0$.

2 (Underutilize info.) $\hat{\beta}(\beta^*) > \beta^*$.

Proof logic:

1 First order benefit of $\uparrow \beta$ from 0: constant policy not optimal

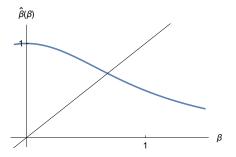
2 Lemma 1: First order benefit of $\downarrow \beta$ from any $\beta^{\rm fp}$

 \implies There is a local max in $(0,\beta^{\rm fp})$

Show that such local max is global max (quartic polynomial)

Intuition for main result

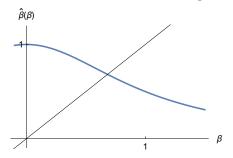
Loss = Info loss from linear estimation + Misallocation loss given linear estimation



- Misallocation loss is smaller when β close to b.r. $\hat{\beta}(\beta)$
- Info loss from estimation is smaller when β is smaller
 - Stronger incentives $\beta \implies$ more manipulation, less informative x
 - True for all $\beta > 0$ when $\rho \ge 0$, true for relevant range of β when $\rho < 0$

Intuition for main result

Loss = Info loss from linear estimation + Misallocation loss given linear estimation



At $\beta=\beta^{\rm fp},$ misallocation loss is minimized

Slightly reducing sensitivity β yields

- First order benefit from \downarrow info loss

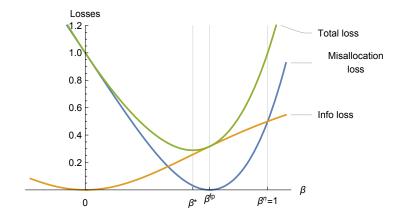
(Analogously for $\uparrow \beta$ from 0, because there info loss minimized.)

Improving Information

Frankel and Kartik

Intuition for main result

Loss = Info loss from linear estimation + Misallocation loss given linear estimation



(In general, Loss not convex or even quasiconvex on \mathbb{R} .)

Some comparative statics

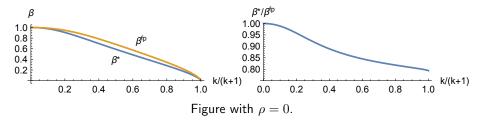
Recall $x = \eta + m\beta\gamma$

Let $k \equiv m\sigma_{\gamma}/\sigma_{\eta}$ describe susceptibility to manipulation

Proposition

1 As
$$k \to \infty$$
, $\beta^* \to 0$; As $k \to 0$, $\beta^* \to 1$;
When $\rho \ge 0$, $\beta^* \downarrow$ in k .

2 When
$$\rho = 0$$
, $\beta^* / \beta^{\text{fp}} \downarrow$ in k;
 $\beta^* / \beta^{\text{fp}} \to 1 \text{ as } k \to 0 \text{ and } \beta^* / \beta^{\text{fp}} \to \sqrt[3]{1/2} \simeq .79 \text{ as } k \to \infty.$



Conclusion

Frankel and Kartik

Discussion

- Can nonlinear allocation rules do better?
 - Typically yes
 - Linear rules are simple, easier to verify/commit to
 - Comparable to linear fixed points, which exist for elliptical distrs and to naive, which is linear
- \blacksquare If designer wants to reduce manipulation costs, $\downarrow \beta^*$
- If manipulation is productive effort, $\uparrow \beta^*$
- Crucial asymmetry in agent behavior $x = \eta + m\beta\gamma$
 - E.g., agent chooses effort (cost) e to generate data $x = \eta + \sqrt{\gamma}\sqrt{e}$ Is effort a substitute or complement to the trait designer's values?
 - If designer wants to match allocation to γ , logic flips \rightarrow For $\rho \ge 0$, $\beta^* > \beta^{fp}$ for any β^{fp}
 - If designer wants to match $(1-w)\eta + w\gamma$, \rightarrow For $\rho = 0$, $\operatorname{sign}[\beta^* - \beta^{\operatorname{fp}}] = \operatorname{sign}[w - w^*]$

Discussion

- Our model: info loss driven by heterogeneous response to incentives Does flattening fixed point extend to other sources of info loss?
 - Appendix: simple model of info loss driven by bounded action space
- More research: counterparts to "flattening" / "underutilizing information" in general allocation problems

Thank you!