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The operating characteristic is used to examine the relation between
the recognition of a single item and the recognition of a pair of items.
29 Ss listened to a sequence of § digits, then copied a sequence of 8 digits,
and then were given a test of recognition memory for 1 or 2 digits from
the griginal sequence. The operating characteristic for single digits
is a smooth function that is symmetrical about the major diagonal,
whereas the curve for pairs is highly asymmetrical. False-recognition
rates for test pairs containing 1 digit from the original sequence are only
slightly greater than false-recognition rates for completely new pairs.
Recognition of a pair does not appear to result from independent
recognition of each digit. A mathematical model is developed in which
the strength of the memory trace has a continuous distribution which is
incremented in a probabilistic fashion upon presentation of an item

or pair.

A recognition experiment is a choice
experiment, for which powerful ana-
lytical tools exist (Bush, Galanter,
& Luce, 1963 ; Swets, Tanner, & Bird-
sall, 1961). The analytical tools de-
veloped in psychophysics can be
applied to the results of many sub-
stantive areas so long as the data come
from experiments that meet certain
formal requirements. Experiments in
recognition memory, as opposed to
experiments in recall, meet these
requirements.

In an experiment in recognition
memory S is asked to judge whether
a test item appeared in the original
list (and is an old item) or whether it
is new. In a choice experiment such
as this, changes in S's response biases
can have as much effect on his per-
formance as changes in the stimulus
conditions. A conservatively biased
S might respond ‘‘yes’’ only if he were
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certain that the test item was old,
whereas a liberally biased .S might
always respond yes unless certain that
the test item was new.

We consider here a rather general
two-stage model of the recognition
process in which two systems operate
to determine the response: a memory
and a decision system. Stimulus
items are represented in the memory
system by any one of a number of
forms—the actual process need not
concern us at this time. When the
recognition test takes place, the
decision system must select a response
using, as a basis, the information
provided by the memory system.
The output of the memory system can
be characterized as a reflection of the
strength of the test item in the storage
system. (At this time it is important
to note that even a new test item
may have some strength in the mem-
ory system.) The decision function
maps these strengths onto responses
by comparing the strength of the test
item with some criterion value. Items
that exceed the criterion receive a
response of yes, otherwise they are
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assumed to be unfamiliar (new) items
and receive a no response. In this
scheme, then, false recognitions con-
tain valuable information. By forcing
S to vary his biases (and thereby his
criterion strength) while holding the
stimulus conditions constant (and,
hopefully, holding constant his mem-
ory of the items) we trace out the
relative strengths of the distributions
of old and new items. The relation
between the relative amount of hits
and false recognitions in psycho-
physics is called the receiver-operating
characteristic (ROC curve). To em-
phasize the study of memory rather
than signal detection, we call our
curves the memory-operating char-
acteristic (MOC curve).

In the binary-choice experiment
just described each point must be
obtained in what is essentially a
separate experiment in which S's
biases are manipulated by changing
his instructions or payoffs. Fortun-
ately, however, a more economical
technique has been developed (Egan,
Schulman, & Greenberg, 1959; Pol-
lack & Decker, 1958). After making
his binary decision an .S can indicate
his confidence in that decision on a
rating scale. We interpret his con-
fidence as a direct reflection of the
strength of the item along a unidimen-
sional scale from a ‘‘most confident
no’’ to a “most confident yes.” This
permits us to get several points of the
operating characteristic in one ex-
periment.

The present study applies the
operating characteristic to examine
the relation.between the recognition
of a single item and the recognition
of a pair of items. In particular, we
are concerned with the following
problems:

1. Is the strength of the memory
trace two valued, multivalued, or
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continuous? Is the number of values
different for single items and pairs of
items?

2. How does the presentation of an
item or pair of items transform its
strength in memory? That is to say,
what is the relationship between the
old and new distributions for single
items and for pairs of items? Is the
relation different for single items and
pairs?

3. How does the nature of the test
pair affect the recognition of pairs?
In the case of single items there are
only two types of test items: new and
old. In the case of pairs there are
many more possibilities: Test pairs
might have both items old and in the
original order, both items might be
old but in the reversed order, test
pairs might have only one item old,
or neither item might be old. Does
the false-recognition rate for pairs
increase with increasing similarity of
the test pair to a presented pair? If
it does, then it would appear that
recognition of a pair results from
independent recognition of its com-
ponents. 1f it does not, then perhaps
what is recognized is the association
between the items or a concept as-
sociated strongly to the pair, but
weakly to each item.

METHOD

Procedure.—The procedure for each trial
was as follows: Presentation: A random
sequence of five different digits was presented
at the rate of 4 sec/digit. The Ss listened to
these digits and attempted to remember them.
Interference: A random sequence of eight
different digits (though not all different from
the first set of five digits) was presented at the
rate of § sec/digit. The Ss copied these digits
as they were presented and covered with a
blank card the digits they copied. Probe: A
single digit or a pair of digits was presented.
The Ss decided whether this digit or pair of
digits was in the original sequence of five
digits and indicated their confidence in this
decision on a S-point rating scale. The Ss
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were given 15 sec. on each trial to indicate
their decision and confidence. A ‘ready”
signal was given at the beginning of each trial,
and a buzzer was sounded during the 1-sec.
intervals between presentation and interfer-
ence and between interference and probe. A
trial required about 25 sec. altogether. The
entire experiment was recorded on tape.

\When the probe was a single digit, S's
decision was yes or no. When the probe was
a pair of digits (e.g., 85), Ss chose one of the
following four alternatives: (85) both digits
were in the original sequence in the same order
as in the probe, (58) both digits were in the
original sequence but in the opposite order,
(5 or 8) only the one indicated digit was in
the original sequence, (no) neither probe
digit was in the original sequence. The Ss
were assured that if both digits were ‘“‘old”
(i.e., in the original sequence), then they had
been immediately adjacent in the original
sequence in one order or the other.

Design.—There were 20 conditions defined
by the relation of the probe to the presented
sequence. In 5 conditions the probe was a
single digit that had occurred in the presented
sequence, 1 condition for each serial position
in the presented sequence. Since the probe
consisted of one “old” digit, we refer to this
as Cond. 0. Condition # refers to cases where
the probe was a single ‘‘new” digit (i.e., the
digit did not occur in the original sequence
of five digits). Condition n occurred as often
as Cond. o.

In four conditions the probe was a pair of
digits that had occurred in the presented
sequence as a pair of adjacent digits in the
same order as the probe; there is one condition
for each serial position for a pair. Since the
probe consisted of two old digits in the same
order, we refer to this as Cond. oos. In four
conditions the probe was a pair of old adjacent
digits but in the reverse order from their
order in the presented sequence: this is Cond.
oor. In five conditions the probe was a pair
of digits, one old and one new: this is Cond.
on. In one condition the probe was a pair of
new digits (Cond. #n) ; this condition occurred
as often as Cond. on.

There were 18 conditions replicated once
each per block of 28 trials and two control
conditions (n# and nn) replicated five times
each per block. Thus, there were 28 trials
per block, and three blocks in the experiment,
for a total of 84 trials. Conditions were
ordered randomly in each block. All three
blocks were different. The Ss were 29 M.1.T.
undergraduates who participated in the ex-
periment to fulfill a requirement of their
psvchology courses. The 29 Ss were run in

two groups of about equal size. Total time
for the experiment was about 50 min.

Data analysis.—When the probe is a single
digit (o or n) S must choose 1 of 10 decision-
confidence pairs. Leti =1, 2,--+, 5, 6,--,
10 stand for the responses running from yes
with confidence 5" (greatest confidence),
through yes with confidence ‘1" (least con-
fidence), no with confidence ‘‘1,”” and finally
to no with confidence *‘5.” Let fi(x) repre-
sent the total frequency (over all three blocks,
all serial positions for that condition, and all
29 Ss) with which response i occurred in
Cond. x. Letri(x) = fi(x)/ Z fi(x) represent

the relative frequency with which response 4

occurred in Cond. x. Let Ri(x) = Zri(x)

i=1
represent the cumulative relative frequency
with which responses 1 through ¢ occurred in
Cond. «.

Using the above definitions it is easy to
compute two functions that will be used in the
analysis of the data, the MOC curve and the
a posteriori probability of a response. The
MOC curve is a plot of Ri(x), the “hit rate”
for some Experimental Cond. x, against Ri(y),
the “‘false-recognition’ rate for some Control
Cond. y. Since the MOC curve is a plot of
two cumulative-probability functions, one
against the other, the curve originates at
(0, 0) and ends at (1, 1). The shape and the
area under the curve are the principal
properties of the MOC curve.

The ratio, r:0)/[ri(0) + ri(n)], is the a
posteriori probability that the probe item was
old when the response of S was ¢. If the
memory trace has many different degrees of
strength over some range of values of 4, then
the a posteriori probability will be a mono-
tonic decreasing function of i, for values of ¢
in this range. If the memory trace has a more
or less constant strength for several values
of 7, then the a posteriori probability for these
values will be constant.

The analysis of single-digit conditions is
easier than the analysis of pair conditions
because with pairs there are four, instead of
two, possible decisions. However, for our
purposes it is possible to classify these four
decisions into two categories (yes or no).
Having done this, the data are in the same
form as the data for single digits, and we can
use the previously described analytic functions
for both pairs and single digits. There are
two meaningful ways of classifying these four
decisions into two decisions, ordered-pair
analysis and unordered-pair anlaysis. To
analyze recognition memory of ordered pairs
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we count a decision as yes only if S responded
that both digits were old and in the same
order as the probe. This is called “‘ordinary
scoring.” In “‘reverse scoring,” a decision is
counted as a yes response only if S reversed
the order of the probe. To analyze recogni-
tion memory of unordered pairs, we count a
decision as yes if .S responded that both probe
digits were old, regardless of the order of the
digits in his response.

Theory.—Aside from the purely empirical
question of whether pairs are remembered
differently from single digits, there are certain
theories of the nature of the memory trace
that can be evaluated using the data of the
present experiment. One theoretical issue
with which we are concerned in this paper is
whether the memory trace is two valued,
multivalued, or continuous. With a con-
tinuity model the memory trace may take on
all degrees of strength over some range. If we
assume that the memory traces for both old
and new items have overlapping normal
distributions, then we have a ‘‘normal-
continuity model” formally identical to
Thurstone's Law of Comparative Judgments
(1927) and the decision aspects of signal-
detectability theory in psychophysics. The
normal-continuity model predicts MOC
curves that are smooth functions with con-
tinually changing slope, which when plotted
on normal-normal probability paper become
straight lines. This model also predicts that
the a posteriori probability function will be
monotonic decreasing. Similar predictions
would be made by any model which assumed
that the strength distributions for old and new
items were continuous and unimodal. There-
fore, one could refer to this model as the
“unimodal-continuity model.”

The two-valued strength model of memory
is formally equivalent to the two-state
threshold model in psychophysics (Luce,
1963). The two strengths are ‘‘full strength”
(above threshold) and ‘‘no strength’ (below
threshold). In the threshold model it is
possible for some new items to have full
strength. This model predicts MOC curves
that consist of two intersecting straight-line
segments ending at (0, 0) and (1, 1), where
the probability that an old item exceeds the
threshold (p) and the probability that a new
item exceeds the threshold (g) defines the
intersection of the lines at coordinates (g, p).
If there are but two states for the memory
trace, then Ss cannot make the fine distinc-
tions required of them by the category
judgments, and the a posteriori probability
function will consist of two horizontal
straight-line segments, one above the thresh-
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old having the value p/(p + ¢) and one below
the threshold having the value (1 — p)/
[(1 — p) + (1 — ¢)] (Nachmias & Steinman,
1963).

REsuLTS

Comparison of single digits and
pairs.—The MOC curve for single
digits is shown in Fig. 1A and 1B.
The ordinate is the hit rate estimated
by the average of all five serial posi-
tions of Cond. o [R;(0)]; the abscissa
is the false-recognition rate estimated
from Cond. n [R;(n)]. The data are
shown on linear coordinates in Fig.
1A; Fig. 1B contains the same data
plotted on normal-normal probability
coordinates. Figure 1 also shows the
two MOC curves of Cond. oos aver-
aged over all four serial positions for
pairs [ R;(00s)], vs. the Control Cond.
nn [Ri(nn)], analyzed as both ordered
and unordered pairs. In Fig. 1A the
smooth curve is the best-fitting predic-
tion of the normal-continuity model
for the single digits; the two straight-
line functions are the best-fitting
predictions of the two-valued strength
model to the ordered- and unordered-
pair data. The normal-continuity
curves were obtained by visually
estimating the best-fitting straight
lines to the data on normal-normal
coordinates (Fig. 1B) and transfer-
ring the estimated function to Fig.
1A. The curves for the two-valued
strength model were obtained by
visually estimating the best-fitting
pair of straight lines to the data of
Fig. 1A, with the restriction that the
lines pass through the coordinates
(0,0) and (1, 1).

The curve for single digits appears
to be a smooth function of continually
changing slope that is symmetrical
about the major diagonal. The fact
that the MOC curve for single digits
is a straight line with a slope of
approximately 1 in Fig. 1B implies
that these results could have been
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A P the function) where the correct-
et / +,,//’°// ] recognition rate is changing very
3 Py rapidly relative to the false-recogni-
i S A ad ] tion rate. The a posteriori probability
o i 2 function provides a more sensitive
L0 | test for the fit of thé two-valued
3 D‘ strength model.
3 The a posteriori probabilities for
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°5— _; < + 9 straight horizontal lines are the theo-
Rj(n) AND R;(nn) retical predictions of the two-valued
IO o 4 +2 model; and it is clear that, above the
| ' ' /* ' e threshold at least, they do not de-
Sr 8 S scribe the data. The data do suggest,
B ol %; 4+1%  however, that although the response
L - y/ < .
& | 0% > categories above threshold do convey
o * Ko lo © information, those below the thresh-
=T g 3 old donot. Thus, even though we are
2 a2re’ 1., & forced to discard the two-valued
* Z  threshold model, we cannot discard
oo . L . 1o, the idea of a threshold.
o5 B Atk . MOC curves for ordered and un-
' ' ordered pairs, analogous to those of
Fic. 1. MOC curves for single digits, Fig. 1A, can be obtained for Cond.

ordered pairs, and unordered pairs. (The
data are plotted on regular, linear coordinates
in A and on normal-normal probability co-
ordinates in B. In A the smooth curve is the
best-fitting prediction of the normal-con-
tinuity theory to the data for single digits,
and the straight-line functions are best-fitting
predictions of the two-valued strength model
to the data for pairs.)

obtained if the strengths of old and
new items had overlapping normal
distributions with equal variances.
The curves for pairs are highly
asymmetrical and can be closely
approximated by the two intersect-
ing straight lines of the two-valued
strength model. The data are fit very
poorly by normal-continuity curves,
even without the restriction that the
variances of two underlying distribu-
tions be equal. It is difficult to
assess visually the fit of the straight
lines to the data, particularly above
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Fic. 2. A posteriori probability func-

tions for ordered and unordered pairs. (The
dotted lines are the theoretical predictions
of the two-valued strength model.)




484 DONALD A. NORMAN AND WAYNE A. WICKELGREN

oor. The method of analyzing the
unordered-pair data of Cond. oor is
identical to the method of analyzing
the unordered-pair data of Cond. oos.
In the ordered-pair analysis for oo7,
however, a response is scored as yes,
if and only if S correctly reverses the
order of the probe (reverse scoring).
Figure 3A compares the MOC curves
for the ordered-pair analysis of Cond.
oos and oor. MOC curves for the
unordered-pair analysis of Cond. oos
and oor are compared in Fig. 3B. The
curves for the two conditions are very
similar in shape and location, allowing
us to draw the same conclusions about
the underlying processes of recogni-
tion memory in the two conditions.
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F15. 3. MOC curves for Cond. oos and oor.

Correct recognition of pairs, either
ordered or unordered, is superior in
Cond. oos, but the difference between
the functions for oos and oor is very
small. It is rather surprising that it
makes so little difference for the
recognition of pairs whether the
probe is in the same or reversed order
as the initial presentation.

Degree of oldness and false-recogni-
tion rates—In the preceding section
the false-recognition rate for pairs was
determined for Cond. nn using or-
dinary scoring. Using ordinary scor-
ing in the analysis of ordered-pair
recognition, false-recognition rates can
also be determined for Cond. on and
oor. Using reverse scoring in the
analysis of ordered-pair recognition,
false-recognition rates can be deter-
mined for on and oos. In the analysis
of unordered pairs, the false-recogni-
tion rates can also be determined for
Cond. on.

Using ordinary scoring and ordered-
pair analysis, the pair conditions were
ranked as follows according to in-
creasing ‘‘degree of oldness’’: nn, on,
oor, and oos. In Cond. nn, neither
digit is old; in on one of the digits is
old; in oor both digits are old but in a
new order; in oos both digits are old
and in the old order. Using reverse
scoring and ordered-pair analysis the
pair conditions were ranked in in-
creasing degree of oldness in the
following way: nn, on, oos, and oor.
The ranking of degree of oldness
depends on the oldness of the response
that is scored as a yes, not on the
oldness of the probe pair. With
reverse scoring the inversion between
oor and oos occurs because the probe
pair must be reversed to qualify as a
yes response.

The lower three curves in Fig. 4A
show the cumulative false-recognition
rates for each response category using
ordinary scoring and ordereqd-pair
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analysis. The false-recognition rates
are determined for conditions where
the yes responses have three different
degrees of oldness—namely, oor, on,
and nn. If Ss used partial cues to
help in the recognition task we might
expect the results to be, ordered by
degree of oldness; the greater the
degree of oldness, the more false
recognitions. The results of the
ordered-pair analysis show that this
effect does indeed occur, although the
magnitude of the effect is very small.
On the bottom portion of the curves
(where Ss are responding yes with
various degrees of confidence), the
greater the degree of oldness, the
higher the curve. On the upper
portions of the curves (where Ss are
responding no with various degrees
of confidence) the situation is re-
versed : the higher the degree of old-
ness, the lower the curves. These
results indicate the degree of oldness
does not help much in deciding
whether to say yes or no, but Ss
generally are more confident of either
a yes or a no decision as the degree
of oldness increases.

Figures 4B and 4C present data
analogous to that in Fig. 4A. In Fig.
4B we used reverse scoring for or-
dered-pair analysis. In Fig. 4C we
used unordered-pair analysis. The
relationship between degree of oldness
and false-recognition rate in Fig. 4B
and 4C is the same as that in Fig. 4A.
No statistical test has been developed
to determine if two operating char-
acteristics are significantly different.
However, for the curves in Fig. 4A,
4B, and 4C it is possible to use the
Kolmogorov-Smirnov two-sample test
to determine if the maximum differ-
ence between any two cumulative-
probability functions is significant.
In this case a maximum difference of
.10 between two false-recognition
curves will be significant at the .0
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level. The maximum differences in
Fig. 4A, 4B, and 4C are .09, .07, and
.10, respectively. Only the latter
difference is significant at the .05
level, though the other differences are
close to significance.

The upper curve in Fig. 4A and 4B
and the upper two curves in Fig. 4C
are the correct-recognition rates for
ordered-ordinary, ordered-reverse, and
unordered analyses, respectively. It
is clear that the differences between
the correct-recognition curves and
any of the false-recognition curves are
far greater than any of the differences
among the various false-recognition
curves. The fact that we did not
obtain a gradual change in recognition
rate with degree of oldness indicates
that Ss do not remember a pair of
digits by the first digit, the second
digit, and the order independently.
Memory for a pair is clearly not an
additive function of the memory for
its parts.

Practice and serial-position effects.—
To examine the effects of practice, we
computed separate MOC curves for
each of the three blocks of the ex-
periment. The results show a definite
improvement in recognition memory
for single digits over the course of the
experiment. However, the opposite
practice effect is obtained in recog-
nition memory of ordered pairs.
There is no obvious interpretation of
this difference. We can only suggest
that the practice effects may result
from the differential operation of pro-
active inhibition or a change in
strategy of Ss during the experiment.
The reliability of the average MOC
curve for a condition is underscored
by the fact that the MOC curves for
a given condition in each of the three
blocks of the experiment are similar
in shape and differ only in height.

The conventional serial-position
effect was obtained for both pairs and
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single digits, but the effect was much
more pronounced for pairs.

DiIscussiON

The findings for recognition memory of
pairs of digits are rather different from
the corresponding findings for recognition
memory of single digits. There is a
bigger serial-position effect for pairs than
for single digits, the practice effects are
opposite in the two cases, and the MOC
curves have very different shapes. Log-
ically, the process of recognizing ordered
pairs must involve more than the single-
digit recognition process applied to each
of the two digits, viz., it must involve
the recognition of order. However, the
recognition of unordered pairs could
result from the independent recognition
of each digit of the pair. It is possible
to test this hypothesis using the MOC
curves for single digits and unordered
pairs by making some assumptions about
the way an S combines the recognition
of single digits into the recognition of
pairs. One reasonable assumption is that
S assigns to the pair the decision-con-
fidence rating that reflects the strength
of the weakest of the two digits. This
model is wrong. It predicts an MOC
curve for pairs that is similar in shape
to the curve for single digits and sub-
stantially above it. This means that the
predicted curve has a shape and location
entirely different from the empirically
obtained curve for pairs. Moreover,
several other models of the way that S
might combine single-digit recognition
into pair recognition fail in similar ways.
The conclusion that pair recognition is
not based on single-digit recognition is
further supported by the fact that degree
of oldness of a pair has so little effect on
the false-recognition rate.

Granted that pair recognition is a
different process from single-digit rec-
ognition, what relation obtains between
the recognition of a pair and the single
digits that make up the pair? Do pairs
containing common digits (94, 49, 91)
differ from each other in the same way
as pairs with no digits in common (94,
83)? The present findings indicate that
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they do, almost. The false-recognition
rates for two old items in reverse order,
one old item and one new item, and two
new items are almost identical, although
the ordering of these conditions is
consistent in the direction of higher false-
recognition rate for higher degrees of
oldness. The consistency of the ordering
should not detract from the more im-
portant fact that the differences in false-
recognition rate are extremely small.

It has already been shown that the
normal-continuity model is consistent
with the MOC curves for single digits,
although other continuous distribution
functions for old and new digits might
also describe these data. The important
result is that the memory trace for a
single digit may have one or many
different degrees of strength rather than
only two or three. It is completely
consistent with the present findings to
assume that the distribution of single-
digit trace strengths is a continuous
function of a real variable. It must be
noted, however, that the present findings
are obtained by averaging over all Ss.
If there are substantial individual differ-
ences in the trace distributions and the
characteristics of the decision systems,
then it is quite possible to obtain smooth
average MOC curves from individual
MOC curves of very different shape and
consistent with other models.

There is less need for caution in
interpreting the MOC curve for pairs
because such a curve is highly unlikely
to result from averaging individual
curves of very different shape. The
straight-line portion of the MOC curve
for pairs is inconsistent with the normal-
continuity model, no matter what one
assumes about individual differences.
However, as we shall show later, it is
the unimodal-distribution assumption,
not the continuous nature of the memory
trace that is contraindicated by the
data. The a posteriori probability
results for pairs are incompatible with
the two-valued strength model, but this
incompatibility is just the kind that
could result from averaging individuals.
Hence we must be cautious in deciding
that the memory trace has more than
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two values in either single-digit or pair
recognition, though the group data are
certainly not well described by the two-
valued strength model in either case.

Although we cannot conclusively es-
tablish whether the memory trace is two
valued, multivalued, or continuous for
either single digits or pairs, we can reach
a definite conclusion about the process of
incrementing the strength of digit pairs
upon presentation of the pair: Some
pairs are not incremented by presenta-
tion. With a two-valued or multivalued
strength model, this amounts to assum-
ing that presentation increments the
strength of a pair with some probability,
m < 1. This probability cannot be unity
because in that case there would be no
old pairs in the category with the lowest
strength. The deterministic-increment
model predicts that the straight-line
portion of the MOC curve would be
parallel to the horizontal axis, running
through the point (1, 1). This model is
clearlv. wrong. With a continuous-
strength model, the MOC curve for pairs
clearly requires that the strength dis-
tribution for old pairs be bimodal, with
one portion of the distribution being
directly beneath the distribution for new
pairs and proportional to it. The most
reasonable way for this to occur is for
some pairs not to be incremented in
strength by presentation, which is a
formal way of stating one consequence
of not “attending” to a pair. Thus,
whether trace strengths are two valued,
multivalued, or continuous, it is clearly
necessary to assume that pair strengths
are incremented with probability, = < 1.
On the other hand it is perfectly reason-
able to conclude from the present data
that the trace strength for a single digit
is incremented with probability, = = 1.
This result is quite plausible on intuitive
grounds if we assume that Ss code and
rehearse the digits in nonoverlapping
pairs. This would result in attending
to every digit, but only about half of the
pairs (since there are five items in a list).
This intuitive notion is confirmed by the
fact that the best estimate of = for
ordered pairs is .42.

Two formal models can describe
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the paired-digits results: a multivalue
strength model and a continuous-strength
model. Both must assume a probabil-
istic, rather than a deterministic, in-
crementing process. The multivalue
strength model is very similar to the
multistate threshold model developed by
Norman (1964) for psychophysical-de-
tection experiments and will not be
presented here. The probabilistic incre-
ment, continuous-strength model has not
been stated .previously and, for this
reason, we now present a brief summary
of the properties of such a model.

Assume some initial distribution of
strengths (s) for all new items (or pairs
of items), fa(s). We make no assump-
tions of f, except that it be a continuous,
unimodal probability-density function,
where s has a lower bound of 0, so that
fa(s) =0,s <0, and

/‘w fa(s)ds = 1.
0

When an item is presented, its strength
in memory receives some increment with
probability # (and no increment with
probability 1 — #x). Let the stochastic
operator T reflect the transformation of
new strengths into incremented (old)
strengths. The probability distribution
of the strengths of old items is then
simply

fols) = aT(fa(s)] + (1 — ) fa(s).

The probability of a response of 7 or less
to an old item is

p(iloo) == /w T fn(s)]1ds

*+

+ (- /wms)ds (1]

and of a response of 7 or less to a new
item is

pitwn) = [ foas 2

where ¢; is the decision cutoff for this
criterion.
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Solving Equations 1 and 2 for the
equation of the MOC curve yields

p(iloo) = (1 — w)p(i|nn)
+ / " ICfas)Jds. 3]

1

If the increment in strengths governed
by the operator T is sufficiently large to
preclude much overlapping of the new
distribution with the incremented part of
the old distribution, then for strengths
between zero and the region where the
overlap begins, the value of the integral
in Equation 3 is unity, so that

[4]

Equation 4 describes an MOC curve
which is a straight line of slope 1 — 7
that passes through point (1, 1). This
line describes the linear part of our curves
and allows us to estimate 7 as .42 for
ordered pairs.

The model can be made more specific
by assuming that, with probability =, a
presentation of an item causes itsstrength

p(iloo) = (1 — m)p(i[nn) + m.

fnls)

(1-m)fa(s)

f(s) Tin(s-4)

o] ‘A s
1.0
3
=
o b
% 1.0
P(ijan)
Fic. 5. MOC curve and theoretical dis-

tributions of trace strength for the proba-
bilistic-increment, continuous-strength model.
(The shaded area represents the old dis-
tribution, given by the sum of its two com-
ponent distributions. An item, or pair,
presentation is assumed to increment the
strength of the trace in memory by a constant
amount, A; the parameters are chosen to
illustrate the ordered-pair data.)
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in memory to be incremented by a con-
.stant amount of size A. In other words,

fa(s=4), 0=(s—-4),
0, (s—A4) <0.

The model described by Equations 3, 4,
and 5 is illustrated in Fig. 5A and 5B
with the parameters chosen to illustrate
the ordered-pair data.

This model has one important virtue
over the multivalued strength model:
It has the proper form for both the
single- and paired-digit results. If we
let  equal unity, the model contains two
overlapping continuous distributions of
the form required by the single-digit
results. Further development and speci-
fication of the functions and operator
cannot be performed with the limited
data of this study.

T fa(9)]= (5]
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