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Discretionary decisions (first weeks submissions):

Used equal weights for 90% of the stocks.

Decisions Using : Intuition, News, Yahoo Finance

For the rest: +2%/-2% if Long/Short Decision

Fail : Lack of finance background
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Predictions using alternative indexes

Prediction using past performance of indexes as external features.

Alternative indexes: S&P GS, US Dollar Index, Nasdag Composite, S&P 500, Treasury Bill Index, Dow

Jones Index
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Predictions using options

Idea: if an investor is ready to pay c; to have the right to buy a security at strike price s, at
time t+1, it means that they expect the price to be s, +c..
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Autoregression on returns, by sector

Autoregression on returns instead of prices.
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a very strong (positive or
negative) autocorrelation,
witha 1, 2 or 3-period
lookback.






Autoregression on returns, by sector

- Sectors like Utilities, Real
Estate and Energy have a
strong autocorrelation.

- Mainly 1-period lookback

- Positive coefficients
— momentum pattern

- Negative coefficients
— mean reversion patterns

More systematic: ARIMA(p, 0, q)

period
1

1

sector

Utilities

Real Estate
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Energy

Communication Services
Volatility

Volatility

Energy
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beta

-0.227285

-0.163057

0.127575
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-0.104760

0.102662

0.093633

0.086448

-0.082969

p-value
1.011799¢e-08
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5.707084e-07
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1.008528e-02

6.729461e-04

rsquared
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0.015123
0.010608
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0.008823
0.016192

0.018977
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Momentum

Idea: assets that have performed well in the past tend to continue to perform well in the future
(Jegadeesh and Titman 1993).

Why it works:

- Behavioral biases (overconfidence, herding)
- Delayed reactions
- Positive feedback loops

Limitations:

- Momentum strategies may not work well in volatile markets
- May be affected by sudden changes in market conditions or news events



Mean reversion

Idea: prices tend to revert to their mean or average levels over time (Fama and French, 1988 over long
term horizons).

Why it works:

- Market overreaction, delayed reaction
- Value investing (buying undervalued assets increases their price)
- Risk management (avoid assets which prices are high compared to historical level)

Limitations:

- Timing (hard to know exactly when the mean will revert)
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Mean reversion
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Regression coefficient
expected to be negative

11



Analyst Ratings Updates

Scraped from MarketWatch.

Updates are very rare. Insightful updates (upgrades
or downgrades) even more.

— useful for discretionary investing, but hard to
embed in a model.

Interesting behaviour: often, the price follows the
opposite direction of the update. Among the
potential reasons:

- Buythe rumor, sell the news
- Higher expectations
- Profit-taking
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Forecast Method (first weeks)

Method based on the estimated performance rank on the
110 returns: gives a distribution on the 110 ranks.
Renormalisation on the 5 quintiles.

Test of three distribution families: triangle, Gaussian and
Laplace.

Select the distribution that minimizes the RPS for simulated
%sét)lmated ranks (following a gaussian error with variance =
We choose gaussian method with variance = 30.

Didn’t work well : 30 is a too low variance: needed a flatter
distribution
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group_name forecast_performance ¢

0 ew 0.16

1 quantstratslic 0.164

2 sudeep 0.17603

3 random 0.176709

4 Lihui 0.16074

; 5 bli 0.168336

Forecast Method (following weeks) E— e
7 index 0.173255

1. We noticed: forecast performance of other teams most 8  QUANTIy 0-204983
of the time in[0.158,0.17] o opt 0345455

10 ZibratQuant 0.257841

2. Ourreaction: select adistribution that doesn’t exceed Forecast performance for all of the teams
0.18 (no need to go under 0.15) week 3

0.010

0.008

3. We choose a gaussian distribution with a high variance
(variance = 100), closer to equal weights.

0.006

-

0.002

R T T & @ 100
Final distribution chosen (rank=60)




Optimal Portfolio :

Used PyPortofolioOpt (Python library) to get an optimal portfolio 2 {

Needed: covariance matrix and forecasted returns

Issue: for the options based method, no data for crypto

801 »

Solution : In crypto, forecast = median of the forecasted returns

100

To reduce risk, we added a constraint (less than 10% for each stock)
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Results — Overall Progress in Performance

Decision Performance over Time

Forecast Performance over Time
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Results - ABig Comeback ? ke keaways:

Overall Rank over Time

Rank

3 - Increased finance knowledge and better
| finance intuition
/ - Implemented alternative methods to make
/ short-term predictions, as factor modeling
S ra works better on the long run.
y - But making accurate predictions is hard — we
! can try to predict the direction of the price
! - Technical analysis is not enough (EMH)
\ 4 - Quantity and quality of the data is important
- to beat the market — difficult/expensive to

w , garner
— 1 - . - Importance of human psychology
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