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Summary of Approach & Result

¢ XGBC(lassifier
The classification probability across Rank1 to Rank5 serves as forecast value

Prediction Performance of Jay Street
¢ Robust and Excellent Result

1) Forecast score around (0.156

: | 3 2) Ranked around 2" to 5th

Forecast

mmm Prediction Score
== Ranking b

¢ Communication with Professor

XGBRegressor
(Previous Approach)
Regress on weekly return, use the predicted return as position

Decision Performance of Jay Street

(New approach)
Stop point-wise forecasting
Eliminate position in Crypto

Position generated from probability

of each category directly

101 Bosition =
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Decision - 0.1+Prob(Rank,) — 0.2xProb(Rank,)
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Investment Strategy of Jay Street

—— A machine learning-based approach

O

Feature Model Backtesting Conclusion
Engineering Selection Results
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Feature Engineering

g day v Capture the short-term patterns during a day,
sion "

Capture long-term relations in prices and volume, where
traditional technical analysis including MOM, RSl is applie

DET]\Y
Dimension

Capture the relative performance across 110 assets
by standardlizing all features created above

Cross-Asset
Dimension
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Feature Engineering

Original Feature Generator Rolling Window Standardlization
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Feature Selection

Feature Importance Correlation

Feature Importance helps us retain the most invaluable features while
eliminating redundant features, keeping our model at highest efficiency
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We calculated the correlation
between the target (i.e. Price
Return of each asset we want to
predict) and each feature

We keep the features that share
significant correlations with the
target we want to predict, and
together with results from feature
importance, we eliminate
redundant  features, therefore
making our model as efficient as
possible

price_kurtosis40 -0.0033
price_Skewness40 0.0044
MOM_price10 -0.026
RSI_price10 -0.031
MOM_price40 -0.0081
RSI_price40 -0.026
corr_vol_Close_volume -0.034

IVVadClose_corr

IWMadClose_corr
SHYadClose_corr-0.00067
IUVL.LadClose_corr
IUMO.LadClose_corr  $10kF!
SPMV.LadClose_corr
XLKadClose_corr
VXXadClose_corr
BTC-USDadClose_corr
ETH-USDadClose_corr -0.018

Asset_corr_Intraday-1.8e-15
Asset_corr_ ATR40 57e-16
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Forecast: Model Selection

Xgboost shows better performance regarding three metrics:
1) Cross Validation Result
2) Confusion Matrix Result (including Precision, Recall and F-1 Score)

3) Backtesting of Prediction Score (which we values the most)

1) Cross Validation Results 2) Confusion Matrix Result

4 Cross Validation Results

Metric Scores
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Forecast: Model Selection & Backtesting

Xgboost shows better performance regarding three metrics: Real World Performance

1) Cross Validation

Our forecasting score is around 0.156, which aligns with

2) Precision, Recall and F-1 Score

3) Backtesting of Prediction Score (Weighs more) e gy ot

The scientific approach (including feature engineering,
3) Backtesting Result

model selection, backtesting, etc.) make it possible for us

Train Set Randomness Valid Set Randomness Out Sample Randomness . . nd th
- to secure a robust high ranking around 2" to 5
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Investment Insights

1) Crypto Ban: 1) Large vol harms Sharpe

11) Plunge Return to negative

Decision: Backtesting Results

2) Equal Long/Short Position: Do not take Market Trend

Returns with Crypto

Asset Backtest of XGB

Returns w/o Crypto

Return Backtest of XGB

Asset Return

4 Sharpe Ratio with Crypto N

Cumsum Sharpe by Asset Backtest of XGB

—— Asset_all_sharpe
Asset_all_ETF_sharpe
400 4 — Asset_all_Crypto_sharpe
—— Asset_all_Stock_sharpe
—— sharpe_asset_baseline

300

N
o
=)

100 -

— profit_asset —— profit T r T T T r T
> % 1 ° o3 > > ® 1 o N
1.2 4 profit_ETF 1.75 4 rofit baseline PYCHNPY Y LN NPV PV LRV CINPY PN LY L P
— profit_Crypto e zroflt_long L i
= - Week
— profit_Stock —— profit_short
104 profit_asset_baseline 1.50
Cumsum Sharpe by Asset Backtest of XGB
—— Asset_all_sharpe
0.8 1251 600 1 Asset_all_ETF_sharpe
. —— Asset_all_Crypto_sharpe
£ —— Asset_all_Stock_sharpe
2 1.00 4 500 1 —— sharpe_asset_baseline
[
= 0.6 1 S
[
7] & o5 400 4
< .75
0.4 1 3
3 3001
0.50 A c
0.2 1 2 200
0.25 A
100 4
0.0
0.00 tf %
04
T T T T : | ] P SV
N C N - R LR - R SN | N - I\ - I LN - B 2 a e Meat ™
s A SOy TR LA L L R N R o P .9 D N L > 00 M\
20 10 10 10 20 20 W?k 29 19 29 10 1011 1011 107_1 1011 107_1 1013 101”: 101‘5 1001 aa Tl
€ Week

> 3 i\ ) LY A > ) 1 o) 3
1(,11’0 1011'° 1011'6 ,Lgﬂ’“ 1011’\’ 101”"0 101”'0 1@”’“ 101”"“ 101”’0 1013’\'

Week

9 Sharpe Ratio w/o Crypto /|

8 | Investment Strategy of Jay Street 2% COLUMBIA | ENGINEERING

T\ The Fu Foundation School of Engineering and Applied Science




Decision: Model Selection & Backtesting

Backtesting Perspectives Rolling Backtesting: From 2021-09-27 to Today
1) Dimension One (Metrics): Info Coeff, Return and Sharpe 1) Training: 24 weeks
2) Dimension Two (Position): Long/Short, ETF/Stock/Crypto 2) Test: 8 weeks

3) Out Sample: 8 weeks

1.1) Return — Long/Short 1.2) Return — 3 Assets

Return Backtest of XGB Asset Backtest of XGB
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Decision: Backtesting Results

Backtesting Perspectives
1) Dimension One (Metrics): Information Coefficient, Return and Sharpe
2) Dimension Two (Position): Long/Short, ETF/Stock/Crypto

2.1) Sharpe — Long/Short 2.2) Sharpe — 3 Assets 3)IC
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Decision: Backtesting Results

Comparison of Two different Approach to Decision Real World Performance

significant
to unreliable

Cumsum Sharpe by Position Backtest of XGB
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The Probability Conversion Appro-
ach provides relative stability by strati-
fying, which strengthens the robustness
of investment decisions as a whole

Position =
0.2*Prob(Ranks) + 0.1*Prob(Rank,) —
0.1*Prob(Rank,) — 0.2*Prob(Rank;)
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The Point-wise Approach is suscepti-

Sharpe
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ble to market volatility, which exhibits

significant overfitting on the Out Sample

Cumsum Sharpe by Position Backtest of XGB
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return_long_sharpe

— return_short_sharpe

—— sharpe_baseline

=N

) 1 ) N . > o 1l ) N
011'0 011'0 07.1'0 011'\ 01'5'0 01“"0 a23° 101"»"0 101”'0 10133

% 2 0 2 0 ) 70
Week

The Point-wise Approach
overfitting

and volatility due

shows

point-wise Weekly Return prediction for each asset
in a drastically volatile financial world

The Probability Conversion Approach renders

robustness and stability in our investment decision,
which enables us to secure a high ranking around

2" to 5™ in the latest several submissions

Decision Performance of Jay Street
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Conclusion

Excellent Performance in Forecasting proves the efficacy of our feature engineering
and backtesting workflow, which is scientific, reliable and repeatable

The limited performance in Decision informed us of the volatility of financial
markets, and the pursuit of relative performance should prevail over the seeking for
absolute accuracy

Always wise to communicate more with the professor!!
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Thanks for your Attention

Jay Street

Yi Gao, Yanni Lu, Sirui Wang, Chen Xi, Hongyu Yao
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