Portfolio Management Project

JAVIER AREVALO
DATA DRIVEN METHODS FOR FINANCE

Predictions

The weekly investment decisions where made from the following models:

1. Fundamental Model

 Consisted in factor models, namely the Fama French 3 Factor Model, Fama French 5 Factor model and the Barra Model

2. Sentiment Model

- Used Natural Language Processing to analyze the market sentiment towards a particular stock
- Used the Google BERT Model for the Sentiment Analysis Task

3. Options Volatility Data

 Used Local Volatility Surface data to monitor trading activity for OTM Puts (i.e. "crash protection")

Fundamental Model 1: Fama French 3 Factor Model

- This model aims to describe stock returns through a combination of factors.
- Fama French 3 Factor Model aims to describe a stock's excess returns through 3 factors:
 - Market Risk
 - Excess returns of small cap over large cap
 - Excess returns of value stocks over growth stocks
- Due to the model being outdated, results were not as expected.
- Concluded that those 3 factors were helpful but not enough to explain a stock's excess returns.

Fundamental Model 2: Fama French 5 Factor Model

- Fama French 5 Factor Model expands on the FF3 Model by adding two additional factors:
 - Excess returns of the most profitable over least profitable firms
 - Excess returns of firms that invest conservatively over firms that invest aggressively
- Results were considerably better with Fama French 5 model.
- However, similarly to FF3 its predictive power was limited due to the fact that all traders know about it
 - Does not provide any additional information that others traders/market does not have access to

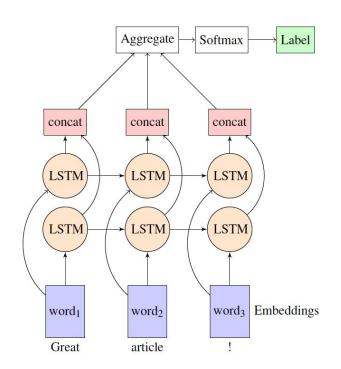
Investment Decision

- The previous models output a expected excess return of a given stock
- Thus needed a way to pass from the model output to one of 5 ranks

Approach used:

- Found the 20th, 40th, 60th and 80th percentile of the expected returns distributions.
- If the expected return of a stock fell below the 20th percentile, it was categorized in the first rank exclusively and so on for the rest of the ranks.
- Note: just assigned each stock to one of the ranks instead of probability of being in each of the ranks.

Barra Model

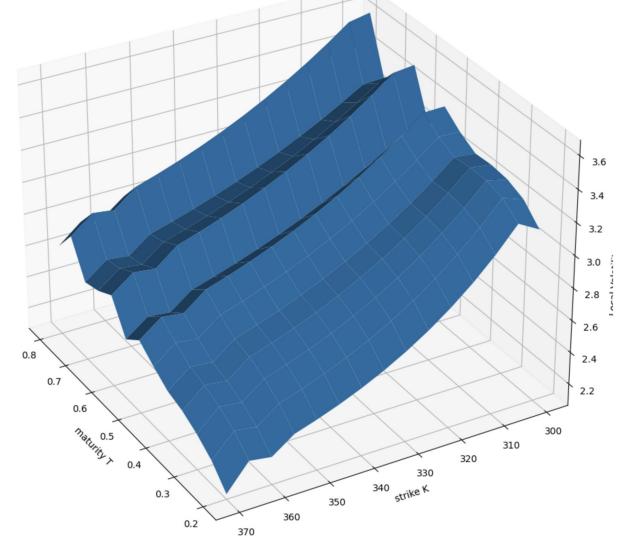

- Barra model is a multi factor model that incorporates more than 40 data metrics including earnings, growth, and many other ratios.
- The risk of using to many factors is overfitting which performs poorly out of sample.
- Key to using these model is factor picking

Two approaches to selecting factors:

- Combinatorial approach: brute force
- Pick 3-5 factors based on theory -> backtest -> repeat

Sentiment Model

- The second main model used in the predictions was the Sentiment Model.
- Used data from the news (Forbes, Analyst Reports, tweets from prominent investors, etc.)
- Feed data into pre trained model that outputs a Buy/Hold/Sell recommendation.
- Model used for prediction was Google's BERT Model: State-of-the-Art Pre-training for Natural Language Processing


Options Data Intro

- Even though trading options was not allowed, options market data provide a really valuable source of information to analyze stocks.
- Volatility data across different maturiteis can be a indication of the demand/supply for a company's option and thus the demand/supply for the stock itself.

Crash protection:

- Out of the money Puts are considered "crash protection"
- When demand for OTM Puts is high, it might be an indication that experienced traders or a market in general expect the company's stock to go down in the near future.
- By buying the OTM Put, the traders minimize their losses if a particular stock goes down significantly.

Vol Surface

