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Overview of Methodology

1. Features

General Market Data
(Betas & Residuals)

Fundamental Factors

Time Series Factors
(ARIMA/LSTM)

Analyst Reports

Price Movement
(Bollinger Bands/SMA/EMA)

Sentiment Analysis

“Alpha” Features
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(. Feature
Selection

< Full Multiple Linear
Regression
(Issue of Overfitting)
< PCA Model [Unsupervised]
(Not entirely predictive)

< Selective Factor Model:

Backtesting for robust features:

1) feature correlation, 2)
Significance, 3) Consistency &

Expectation

Model Selection:

Binning
Bootstrapping

Prediction Errors

< ‘Bayesian’ Uniform

rior

Decision:
% Portfolio Optimization

< "“Ad-hoc” Approaches



Week 0 - 2 Highlights:
), 2) 3) 4)

Market - o
Features Binning Decisions
Betas
1) Momentum: 1) ‘Scrape’ names: - Ranking base.d ?n predl?tlon > Simple Idea:
Predicted Price Change = Pct - 500 stocks mean prediction ranking
Change of last week - By Bl Scale by the
- 50 representative cryptos |- Create distribution bootstrapping
— _ standard
2) ARIMA: prediction errors in test set deviation of
Train/test set £ il BaE @ Bl eoni2ED prediction error
prices in the test set - We later realize that metric :
' ) in test set
3) Moving Average: (~1/1/2021 - 6/1/2022) strongIY pr.efetjs flatter Aorayidane
5, 10, 15, 20, 25 weeks el e measure of
3) Extract 2 PCA Components .
uncertainty)
Captures up <80% of the R2 3

4) Volume



Week 0 - 2 Lessons:

1 X = combined members_pcaed.reset_index(drop=True)[:-1]
. 2 y = weekly data[weekly data.symbol == 'ABBV']['close'][1l:].reset_index(drop=True)
® Market beta' 3 X = sm.add_constant(X)
o Captures large amount of variance — up 4 est = sm.OLS(y, X).fit()
2 5 est.summary()
to 90% R
OLS Regression Results
1 ARI MA' Dep. Variable: close R-squared:  0.904
o Not very predictive too far into the Model:  OLS Ad). R-squared: 0.903
f t Method: Least Squares F-statistic:  1113.
uture. Date: Sat, 02 Dec 2023 Prob (F-statistic): 1.79e-180
o Bottomline: More features! Time:  16:23:05 Log-Likelihood: -1366.0
e No. Observations: 360 AIC: 2740.
—a= Df Residuals: 356 BIC: 2756.
Df Model: 3
Covariance Type: nonrobust
coef stderr t P>|t| [0.025 0.975]
const 99.5562 0.570 174.630 0.000 98.435 100.677

0 1.3552 0.026 52.582 0.0001.304 1.406

1 1.1012 0.045 24.332 0.0001.012 1.190

2 -0.0733 0.054 -1.355 0.176-0.180 0.033
Omnibus:  4.331 Durbin-Watson: 0.169
Prob(Omnibus): 0.115 Jarque-Bera (JB): 4.340
’M Skew: 0.239  Prob(JB): 0.114

Kurtosis:  2.754 Cond. No. 22.1
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Week 3 - 4 Highlights:

LSTM + Light GBM:

o Performs well even on OOS data
vs. ARIMA and Momentum-based
ideas for predicting returns

Fundamental Data:

o A total of 22 Valuation
Ratios/Factors from Factset

o EPS, BVG, P/E, P/S, EV/EBITDA

ete. Decision

Portfolio Optimization
o Maximize Sharpe Ratio
o Predicted Sharpe:
Stocks: ~2
ETFs: ~ 3
Cryptos: ~ 0O

b

Overall Approach:

- Shared Drive Folder
where we collect features

- Central notebook running
model, binning and
decisions

PCA Feature
Selection

o Done cross-sectionally

o Distinguish between
Stocks/ETFs/Cryptos (specifically
have ‘more data’ for stocks)

o CV on % of variation - roughly 2-
3 vectors



Week 3 - 4 Lessons:

3.1.3.2) Test Set performance

LSTM/LGBM: la=y tests

2b = nodel.predict (X test s).reshape(-1)
3c =X test s[:,0]

4d = gbm.predict(X_test_s).reshape(-1)

o LGBM outperforms ‘momentum’ substantially
fOr OOS MSE 1 print(f'LGBM loss = {((a-d)**2).sun()/a.shape[0]}, LSTM loss = {((a-b)**2).sum()/a.shape[0]} and momentum loss = {((a-c)**2).sun()/a.shape[0]}")

o I—STM nOt SO mUCh LGBM loss = 0.0011615374440617882, LSTM loss = 0.0033138850596911205 and momentum loss = 0.0029761479631527643

I
Fundamental Data ﬂ |,
1 . . | /
mportance of accounting for time lag 0
Not Universal - cross-sectional feature wor f
selection fails. i
o Using all 22 valuation ratios does not . 4y
significantly improve the prediction Wl \ S
o Need for Selection “ad Wl \_\ Ah J
0.10 S 7 = i P 3
W Y| v



Week 3 - 4 Lessons:

LSTM/LGBM:

o LGBM outperforms ‘momentum’ substantially
for OOS MSE
o LSTM not so much

Fundamental Data

Importance of accounting for time lag
Not Universal = cross-sectional feature
selection fails.
o Using all 22 valuation ratios does not
significantly improve the prediction
o Need for Selection

Slope
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Slope of Regression Over Time
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Week 3 - b Highlights:

Production Model

o Add a ‘production model’ that trains until Friday
o Continued cross-sectional PCA for feature selection

03
New Features
Analyst Reports (FactSet) Naive Backtesting
o Combining Buy/Overweight/Hold/ o Comparing portfolio with predictions
Underweight/Sell Ratings against actual values with OOS R?
o Accounting for predicted target price o Found R2 to be variable, and we later

switched to correlation

Started working on scraping FactSet o More carefully looking at individual

headlines > not yet any features feature backtesting



Week 5 - 6 Lessons:

Overall Findings

e Some more testing of our inputs reveals that
cryptos contribute significantly to our errors in

the decision portion
e Set all crypto decisions to zero.

e Remove Light-GBM — seems to overfit.
e Train LSTM/LGBM/ARIMA on all ~1200 market

data in the training period to avoid overfitting
e Found LGBM performs poorly — drop

e IS and OOS R? of our full model.



Week 5 - 6 Lessons:

Analyst Reports

e New ideas for more features from

the same FactSet information:
e Key Features:

e Rating: Creating scores for
analysts’ buy/hold/sell
ratings

e Target Price: Using
deviation from target
price as a feature

e Target Price Change:

e Deciding on frequency of
downloading data
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Week / - 10 Highlights:

Backtesting

Backtesting Model Selection:

Sentiment Analysis:

o Backtesting individual features and

o Bing Scrape and Factset Headline
Analysis

combinations of features

Methodology

o Testing how portfolios would have OVEI'hEIU| _
o A sample of the 101 Formulaic Alphas

performed in previous weeks
o Backtesting our portfolio against )
Price Movement:

residual price

Backtesting Decisions:
Alpha Features:

o Simple/Exponential Moving Averages

Binning/Decisions for 5-30 weegs

o Revamped momentum for 5-50 weeks,
Optimizing Ranking z-scoring by ticker
o Realizing it’s very hard to outperform 0.2 version which gives 16% o Bollinger Bands: A weighted signal
o Changing to using 0.2 as a prior and superimposing our prediction

11
when the price goes beyond 20 of SMA
distribution with some weighing hyperparameter (‘Bayes’).



WEEk 7 ] ].0 I_ESSO nS: Week 10 submission (rank 1 decision):

1 ['Mean_summ', 'Mean_summ_agg_diff 1°',
2 'nr_of_ search_results_pct_change',
Features: 3 'LSTM pred for following week',
'rating', 'sma_5', 'volume',
5 |' Mean_roberta diff 1']

Last 10 week decision Residual prediction

IS

e Predict on residual price = price
- market, market = running PCA
on ticker type (stock, etf, crypto)

e Focus on the decision column

and by-hand feature selection P T e
e Automated feature selection - —
(PCA) performs poorly > get -
roughly middle-of-pact :
performance 2
e Canimprove a lot by more broad . |

testing of feature selection and
several thresholds (= include into
decision if past prediction >
threshold correlation)

0.164
0.162

Ranking performance oo

0.158

0.156




Bing Scrape & Sentiments: Methodology

ece

& O 8 hupsifwww bing.com/ssarch?a=AlZ AssurantsNOT+www.assurant. comsfilters=ex1%3a‘ez5_19685 19692/881 . 7% © o =

MicrosoftBing O AIZ Assurant NOT www.a:

e Bing search: Extract weekly 50 headlines, summaries, date,
number of search results, and website for specific search
terms

o Clean data (remove ads, ...)
e Do forall 110 tickers - get a lot of data ~ 10 * 300k.

e Run sentiment analyzer (parallelize for speed) on title and
summary and aggregate over week:
o Sentiment of each article > Mean/median over week
o String together articles and get overall sentiment

e Use DistilBERT financial sentiment analyzer from
Hugglngface. Slope of Regression Over Time Median Sum backtest:

People also ask

ooooo

e Upshot: Get roughly ~5% correlation of oos residual
predictions vs actual price for a single sentiment feature.

ooooo

Nov 2022 Jan 2023 Mar 2023 May 2023 2ul 2023 Sep 2023 Nov 2023
Date



Factset Headline & Sentiments: Methodology

e Download factset news headlines per stock as pdf.
Clean data.

Run 2 (clsf, roberta) different sentiment analyzers and aggregate
by week (same as before) > engineer sentiment score.

Add additional feature: number of articles per week.

Take small sample and compare vs full articles > high correlation

- restrict to headlines only.

Full articles vs headlines
for 6 months example:

Mean_roberta_diff1
Mean_clsf_diff1
Mean_roberta_agg_diff1

Mean_clsf_agg_diff1

Mean_roberta_diffl
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0.227825
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Lessons: Other Features

Alpha#i2: (-1 * correlation(rank{delta(log(volume), 2)), rank(((close - open) / open)), 6))

44

Formulaic Alphas:

e Don't perform very strongly on
backtesting

e Only one alpha made it in the final
model

Price Movement:
e 50-week SMA/EMA/Momentum
analysis found to be the most robust

2019 2020 2021 2022 2023
Date
15



Lessons: Feature Selection

01

Individual Features 02 Mass Testing o3  (orrelation Matrix

Backtesting individual Testing all features at Combinations of

features against future once on two metrics:
returns: o Whether average

o Looking at regression slope
consistency of the meets expectation

slope of the based on theory

Features:

o Looking for paired
combinations that
are least correlated
with each other

regression Whether t-value is Minimizing repetition

Given 99 features, robust/significant

this would be

of features selected
from the same

4 ”
i r
laborious group

16



Lessons: Feature Selection

01

Individual Features

Backtesting individual
features against future
returns:

o Looking at
consistency of the
slope of the
regression

o Given 99 features,
this would be

laborious

Alpha #4
Alpha #2
EMA .

(50 Weeks)”

Slope of Regression Over Time
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Lessons: Feature Selection

Correlation Matrix

alpha_2 1.00

alpha_6 ||
sma_5
sma_10
sma_15
sma_20
sma_30
sma_50
ema_5
ema_10
ema_15
ema_20
ema_30
ema_50
mom_15
mom_30
implied_return
tgt_price_change
implied_return_change
analyst
nr_of_search_results
Mean_title
Mean_title_agg
Median_title_agg
nr_of_articles
Mean_title_agg_diff_1

-0.50

-0.25

- 0.00

- —-0.25

-0.50

-0.75

o3  Correlation Matrix

Combinations of

Features:

o Looking for paired
combinations that
are least correlated
with each other
Minimizing repetition
of features selected
from the same

Ilgroupll

18



Fina| mOdE|: Week 11 submission:

['LSTM pred_for_ following week',
'ema_50', 'mom 50', 'alpha 2',
Features: 'tgt_price_change', 'analyst',
'nr_of_articles', 'Mean_title_agg',

e More comprehensive feature ‘Median_roberta' |
selection.

e Fix backtested portfolio Correlation: Mean: 0.52, Median: 0.59, stds 0.21
optimization for decision

e Select top 4 models found with S e e

around >52% mean correlation vs : Mot

Performance:
re S I d u a | p rl Ce . 1 pd_dec_metric = pd.DataFrame(dec_metric)

2 print(f'Overall: Mean: {pd_dec_metric[10:].mean().values[0]

i f'Recent: Mean: {pd_dec_metric[-10:].mean().values[0 ‘
e Grid search over threshold and . o ’ \‘ L

Overall: Mean: 4.36, Median: 3.34, Std: 13.56. 0158

model (btw ad-hoc, min-variance, Recent: Nean: 0.41, Nedian: 3.71, Std: 8.91.

and max-sharpe portfolio

optimization) o )
e Best 90 week average ~4.36 e Thents
e Found models that performed i
better recently (~12+in last 11 == =

weeks), but worse overall. g

0 5.54236
dtype: float64
0 24.470449
dtype: float64



Future Directions/Highlights

Overall Methodology

o Automate weekly data generation: Currently generating
features over multiple notebooks and combining them with
another notebook

Data

o Generate more data for more thorough performance analysis
o Consider scraping Yahoo finance research reports
o Consider including more macro data such as unemployment etc.

Model Selection

o More comprehensive feature selection: Consider testing
combinations of features
o Consider other forms of regression: Robust regression chosen
now but can backtest against LASSO, Ridge, etc.
o  OLS vs Huber — relatively similar performance for the
tests we performed.
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