Forecasting Report

Group MSG

Martin Fluder Jonathan Chan Saloni Jaitly Gareth Goh

Overview of Methodology

Features

66

General Market Data (Betas & Residuals)

Fundamental Factors

Time Series Factors (ARIMA/LSTM)

Analyst Reports

Price Movement (Bollinger Bands/SMA/EMA)

Sentiment Analysis

"Alpha" Features

2. Feature Selection

Model Selection:

- Full Multiple Linear Regression
- (Issue of Overfitting)
- PCA Model [Unsupervised]
 (Not entirely predictive)

Selective Factor Model:

Backtesting for <u>robust</u> features: 1) feature correlation, 2) Significance, 3) Consistency & Expectation

3. Binning/ Decision

<u>Binning</u>

Bootstrapping

Prediction Errors

<u>`Bayesian' Uniform</u>
 <u>prior</u>

Decision:

- Portfolio Optimization
- "Ad-hoc" Approaches

Week 0 – 2 Highlights:

Features	Market Betas	Binning	Decisions
1) <u>Momentum</u> : Predicted Price Change = Pct Change of last week	1) <u>Scrape' names:</u> - 500 stocks - 600 ETFs - 50 representative cryptos	 Ranking based on prediction → mean prediction ranking Create distribution bootstrapping 	<u>Simple Idea:</u> Scale by the standard
2) <u>ARIMA</u> : Train/test set	2) <u>Perform PCAs</u> on all ~1200 prices in the test set	prediction errors in test set - We later realize that metric strongly prefers "flatter" distributions	deviation of prediction error in test set (provides a measure of uncertainty)
3 <u>) Moving Average</u> : 5, 10, 15, 20, 25 weeks	(~1/1/2021 - 6/1/2022) 3) <u>Extract 2 PCA Components</u>		
4) Volume	Captures up <80% of the R^2		,,,

Week O – Z Lessons:

- Market beta:
 - Captures large amount of variance → up to 90% R^2

• ARIMA:

- Not very predictive too far into the future.
- Bottomline: More features!


```
1 X = combined_members_pcaed.reset_index(drop=True)[:-1]
2 y = weekly_data[weekly_data.symbol == 'ABBV']['close'][1:].reset_index(drop=True)
3 X = sm.add_constant(X)
4 est = sm.OLS(y, X).fit()
5 est.summary()
```

OLS Regression Results

	-		
Dep. Variable:	close	R-squared:	0.904
Model:	OLS	Adj. R-squared:	0.903
Method:	Least Squares	F-statistic:	1113.
Date:	Sat, 02 Dec 2023	Prob (F-statistic):	1.79e-180
Time:	16:23:05	Log-Likelihood:	-1366.0
No. Observations:	360	AIC:	2740.
Df Residuals:	356	BIC:	2756.
Df Model:	3		

Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975] const 99.5562 0.570 174.630 0.000 98.435 100.677 1.3552 0.026 52.582 0.000 1.304 1.406 1.1012 0.045 24.332 0.000 1.012 1.190 -0.0733 0.054 -1.355 0.176 -0.180 0.033 Omnibus: 4.331 Durbin-Watson: 0.169 Prob(Omnibus): 0.115 Jarque-Bera (JB): 4.340 Skew: 0.239 Prob(JB): 0.114 Kurtosis: 2.754 Cond. No. 22.1

Week 3 – 4 Highlights:

New Features

LSTM + Light GBM:

Performs well even on OOS data
 vs. ARIMA and Momentum-based
 ideas for predicting returns

Fundamental Data:

- A total of 22 Valuation Ratios/Factors from Factset
 EPS, BVG, P/E, P/S, EV/EBITDA
- etc. **Decision**

Portfolio Optimization

- Maximize Sharpe Ratio
- Predicted Sharpe:

Stocks: ~2 ETFs: ~ 3 Cryptos: ~ 0

Overall Approach:

- Shared Drive Folder where we collect features
- Central notebook running model, binning and decisions

PCA Feature Selection

- Done cross-sectionally
- Distinguish between
- Stocks/ETFs/Cryptos (specifically have 'more data' for stocks)
- o CV on % of variation → roughly 2-3 vectors

Week 3 – 4 Lessons:

LSTM/LGBM:

- LGBM outperforms 'momentum' substantially for OOS MSE
- LSTM not so much

Fundamental Data

- Importance of accounting for time lag
- Not Universal → cross-sectional feature selection fails.
- Using all 22 valuation ratios does not significantly improve the prediction
 - Need for Selection

3.1.3.a) Test Set performance

1 a = y_test_s
2 b = model.predict(X_test_s).reshape(-1)
3 c = X_test_s[:,0]
4 d = gbm.predict(X_test_s).reshape(-1)

1 print(f'LGBM loss = {((a-d)**2).sum()/a.shape[0]}, LSTM loss = {((a-b)**2).sum()/a.shape[0]} and momentum loss = {((a-c)**2).sum()/a.shape[0]}')

LGBM loss = 0.0011615374440617882, LSTM loss = 0.0033138850596911205 and momentum loss = 0.0029761479631527643

Week 3 – 4 Lessons:

LSTM/LGBM:

- LGBM outperforms 'momentum' substantially for OOS MSE
- LSTM not so much

Fundamental Data

- Importance of accounting for time lag
- Not Universal → cross-sectional feature selection fails.
- Using all 22 valuation ratios does not significantly improve the prediction
 - Need for Selection

P/BV

Slope of Regression Over Time

Week 5 – 6 Highlights:

Production Model

Add a 'production model' that trains until Friday
 Continued cross-sectional PCA for feature selection

New Features

Analyst Reports (FactSet)

- Combining Buy/Overweight/Hold/ Underweight/Sell Ratings
- $\circ\,$ Accounting for predicted target price

Started working on scraping FactSet headlines \rightarrow not yet any features

Overall Approach

Naïve Backtesting

03

- Comparing portfolio with predictions against actual values with OOS R²
- Found R² to be variable, and we later switched to correlation
- More carefully looking at individual feature backtesting

Week 5 – 6 Lessons:

Overall Findings

- Some more testing of our inputs reveals that cryptos contribute significantly to our errors in the decision portion
 - Set all crypto decisions to zero.
- Remove Light-GBM \rightarrow seems to overfit.
 - Train LSTM/LGBM/ARIMA on all ~1200 market data in the training period to avoid overfitting

Jan 2022

- Found LGBM performs poorly \rightarrow drop
- IS and OOS R² of our full model.

Week 5 – 6 Lessons:

Analyst Reports

- New ideas for more features from . the same FactSet information:
- Key Features:
 - Rating: Creating scores for • analysts' buy/hold/sell ratings

1.5

1.0

0.5

-0.5

-1.0

-1.5

- Target Price: Using • deviation from target price as a feature
- Target Price Change:
- Deciding on frequency of downloading data

Week 7 – 10 Highlights:

Backtesting

Backtesting Model Selection:

 Backtesting individual features and combinations of features

Backtesting Decisions:

- Testing how portfolios would have performed in previous weeks
- Backtesting our portfolio against
 residual price

Binning/Decisions

Optimizing Ranking

- Realizing it's very hard to outperform 0.2 version which gives 16%
- Changing to using 0.2 as a prior and superimposing our prediction distribution with some weighing hyperparameter ('Bayes').

Methodology Overhaul

New Features

Sentiment Analysis:

 Bing Scrape and Factset Headline Analysis

Alpha Features:

A sample of the 101 Formulaic Alphas

Price Movement:

- Simple/Exponential Moving Averages for 5-50 weeks
- Revamped momentum for 5-50 weeks, z-scoring by ticker
- $\circ\,$ Bollinger Bands: A weighted signal when the price goes beyond 2 σ of SMA

Week 7 – 10 Lessons:

- Predict on residual price = price
 market, market = running PCA
 on ticker type (stock, etf, crypto)
- Focus on the **decision column** and **by-hand** feature selection
- Automated feature selection (PCA) performs poorly → get roughly middle-of-pact performance
- Can improve a lot by more broad testing of feature selection and several thresholds (→ include into decision if past prediction > threshold correlation)

Week 10 submission (rank 1 decision):

Bing Scrape & Sentiments: Methodology

- Bing search: Extract weekly 50 headlines, <u>summaries</u>, <u>date</u>, <u>number of search results</u>, and <u>website</u> for specific search terms
 - Clean data (remove ads, ...)
- Do for all 110 tickers \rightarrow get a lot of data ~ 10 * 300k.
- Run sentiment analyzer (parallelize for speed) on title and summary and aggregate over week:
 - Sentiment of each article \rightarrow Mean/median over week
 - String together articles and get overall sentiment
- Use DistilBERT financial sentiment analyzer from Huggingface.
- Upshot: Get roughly ~5% correlation of oos residual predictions vs actual price for a single sentiment feature.

AIZ Assurant NOT www.assurant.com	\$ S	Sign in Rewards 😵 🚍	
Q SEARCH S CHAT IMAGES VIDEOS MAPS	NEWS SHOPPING I M	ORE TOOLS	
About 507 results			
Assurant (AIZ) Earnings Data			
Upcorning Actual EPS	Consensus EPS	Assurant -	
Earnings Date (Nov 1)	(Nov 1)		
Feb 6 \$4.29	\$2.48		
Exonverse Beat by \$1.81		Assurant, Inc. is a global provider of risk management products and services with headguarters in Atlanta. Its	
Data from marketbeat.com	Feedback	businesses provide a diverse set of specialty, niche-	
See all>		market insurance products in the pro	
Yahoo Finance		🚯 assurant.com	
https://finance.yahoo.com/news/why-assurant-aiz	-		
Why is Assurant (AIZ) Down 1.6% Since Last	Earnings	Traded as NYSE: AIZ (NTSE) 168.3 050 A +0.28 (0.17%)	
per share, which beat the Zacks Consensus Estimate by 73%	. The bottom line surged more	Founded 1892	
than fourfold from the year-ago		Headquarters Atlanta - U.S.	
Taos: Assurant Aiz Assurant Inc AIZ Earnings		See more \sim	
Zacks Investment Research https://www.zacks.com/stock/gupte/AIZ *		Financial overview	
Assurant - AIZ - Stock Price Today - Zacks	(*\$*)	Strong buy Valuation	
web 2 days ago - View Assurant, Inc AIZ investment & stock in	nformation. Get the latest	Low P/S	
Assurant, Inc AIZ detailed stock quotes, stock data, Real-Time	e ECN, charts, stats and more.	6 analysts 0.82x	
Tags: Assurant Alz Assurant Inc		See more on MSN Money	
EXPLORE FURTHER			
Assurant Inc (AIZ) Stock Price Today, Quote, Latest	stocktwits.com	Assurant requires that each visitor (a "User") to	
Assurant Stock Price Today NYSE AIZ Live Ticker	investing.com	this Internet site on the World Wide Web (the "Site")	
Recommended to you based on what's popular + Feedback		adhere to the following Terms and Conditions.	
People also ask		Assurant Inc settled a New York probe of its "force-	
		placed" insurance by agreeing to pay the state a \$14	
		© Q + ∷ <i>P</i>	

Factset Headline & Sentiments: Methodology

- Download factset news headlines per stock as pdf.
- Clean data.
- Run 2 (clsf, roberta) different sentiment analyzers and aggregate by week (same as before) → engineer sentiment score.
- Add additional feature: <u>number of articles per week</u>.
- Take small sample and compare vs full articles → high correlation
 → restrict to headlines only.

Full articles vs headlines for 6 months example:

Mean roberta diff1 Mean clsf diff1 Mean roberta agg diff1 Mean clsf agg diff1

Mean_roberta_diff1	1.00000	0 0.223829	0.824872	0.214711
Mean_clsf_diff1	0.22382	9 1.000000	0.227825	0.581925
Mean_roberta_agg_diff1	0.82487	2 0.227825	1.000000	0.227604
Mean_clsf_agg_diff1	0.21471	1 0.581925	0.227604	1.000000

Lessons: Other Features

Formulaic Alphas:

- Don't perform very strongly on backtesting
- Only one alpha made it in the final model

Price Movement:

 50-week SMA/EMA/Momentum analysis found to be the most robust <u>Alpha#2:</u> (-1 * correlation(rank(delta(log(volume), 2)), rank(((close - open) / open)), 6))

Lessons: Feature Selection

o1 Individual Features

Backtesting individual features against future returns:

- Looking at consistency of the slope of the regression
- Given 99 features, this would be laborious

02

Mass Testing

Testing all features at
once on two metrics:
Whether average
regression slope
meets expectation
based on theory
Whether t-value is

robust/significant

os Correlation Matrix

Combinations of Features:

- Looking for paired combinations that are least correlated with each other
- Minimizing repetition of features selected from the same "group"

Lessons: Feature Selection

Slope of Regression Over Time

Individual Features 01

Backtesting individual features against future returns:

- Looking at consistency of the slope of the regression
- Given 99 features, this would be laborious

Slope of Regression Over Time

EMA

Slope of Regression Over Time

Lessons: Feature Selection

Correlation Matrix 03 Combinations of Features: Looking for paired combinations that are least correlated with each other Minimizing repetition 0 of features selected from the same "group"

Final model:

- More comprehensive feature selection.
- Fix backtested portfolio optimization for decision
- Select top 4 models found with around >52% mean correlation vs residual price.
- Grid search over threshold and model (btw ad-hoc, min-variance, and max-sharpe portfolio optimization)
 - Best 90 week average ~4.36
 - Found models that performed better recently (~12+ in last 11 weeks), but worse overall.

Week 11 submission:

['LSTM_pred_for_following_week', 'ema_50', 'mom_50', 'alpha_2', 'tgt_price_change', 'analyst', 'nr_of_articles', 'Mean_title_agg', 'Median_roberta']

Mean: 0.52, Median: 0.59, Std: 0.21

	dec_metric,	<pre>last_column = decision_opt(corr_threshold = 0.</pre>	. 2
2		rfr = 0.02,	
;		<pre>maximize_sharpe = False,</pre>	
ł		verbose = False,	
5		verbose1 = False)	

forecast_perf 0.159794
dtype: float64 forecast_perf 0.159747
dtype: float64
[<matpletib.lines.Line2D at 0x7b44f7e1f880>]

1 pd_dec_metric = pd.DataFrame(dec_metric)

2 print(f'Overall: Mean: {pd_dec_metric[10:].mean().values[0]
3 print(f'Recent: Mean: {pd_dec_metric[-10:].mean().values[0]

Overall: Mean: 4.36, Median: 3.34, Std: 13.56. Recent: Mean: 0.41, Median: 3.71, Std: 8.91.

1 print(pd.DataFrame(dec_metric[20:]).mean())
2 print(pd.DataFrame(dec_metric[20:]).median())
3 print(pd.DataFrame(dec_metric[20:]).std())

Features:

Correlation:

Performance:

0 1.22768 dtype: float64 0 1.411904 dtype: float64 0 16.332702 dtype: float64

1 print(pd.DataFrame(dec_metric[-11:]).mean())
2 print(pd.DataFrame(dec_metric[-11:]).median())
3 print(pd.DataFrame(dec_metric[-11:]).std())

0 12.040511 dtype: float64 0 5.54236 dtype: float64 0 24.470449 dtype: float64

Future Directions/Highlights

Overall Methodology

 Automate weekly data generation: Currently generating features over multiple notebooks and combining them with another notebook

03

01

Data

- o Generate more data for more thorough performance analysis
- Consider scraping Yahoo finance research reports
- Consider including more macro data such as unemployment etc.

Model Selection

- More comprehensive feature selection: Consider testing combinations of features
- Consider other forms of regression: Robust regression chosen now but can backtest against LASSO, Ridge, etc.
 - OLS vs Huber \rightarrow relatively similar performance for the tests we performed.