Data Driven Method in Finance Null Capital LLC

Jiayue Wu Rachata Kongcheep Vladislav Kim Zixiao Yang

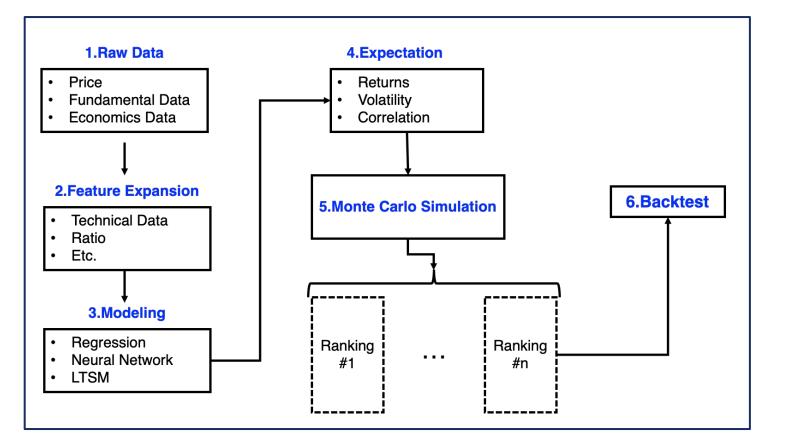
TRANSCENDING DISCIPLINES, TRANSFORMING LIVES

Agenda

- Our Approaches 2
- Data 1
- Model and Methods 1
- Week to week flow of data 1
- Results 2
- Lesson Learned 2

Approach (1/2) - Initial Approach

- Our goal is to build a **framework** that will ensure **robust performance** and **streamlined** our ideas into quantitative decision
- We then divided the framework construction into multiple modules. As shown below



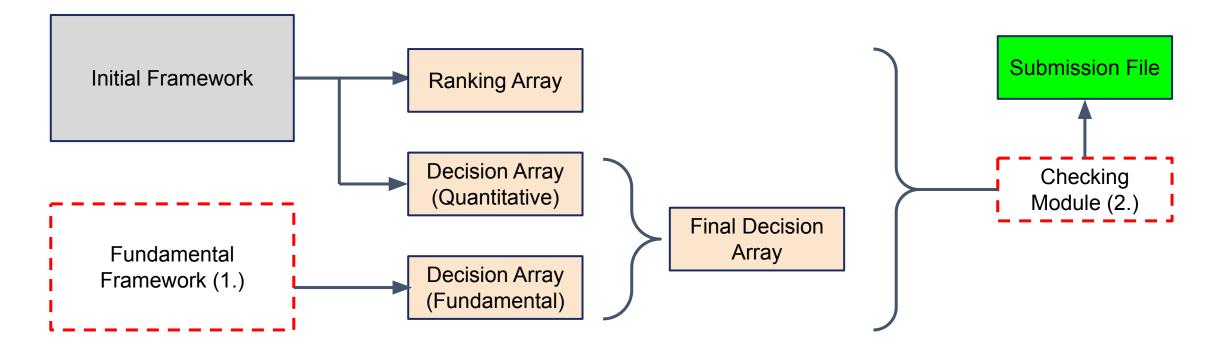
Key component in Each Module

- 1. **Raw Data** Get Data from from openbb, FRED, and yahoo finance
- 2. **Feature Expansion** python Technical Analysis Library
- 3. Modeling XGBoost
- 4. **Expectation** manually adjusted through python and csv file
- 5. Simulation Through python
- 6. Backtest Through python

Approach (2/2) - Implementation

As competition went on we made 2 improvement to the initial implementation

- 1. We add fundamental approach module to the framework to express view that is harder to express quantitatively
- 2. Adding Checking Module at the end of the pipeline
- 3. We wrap each module into python object for easier implementation



Data

Our data came from 4 main sources each serving different dimensions of market view:

- 1. Yahoo Finance: for security prices and fundamental data
- 2. FRED: for macroeconomic data
- 3. Estimize: for trading earnings
- 4. **OpenBB**: for high level data ex. sentiment + insider trading

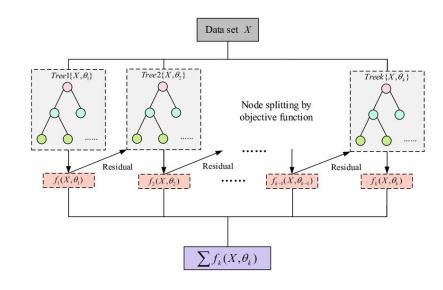
Overall, our size of features amounted to 427 features for each asset

Model and Methods

- At first we starts modeling expected returns using various ranges of single models. These include:
 - Linear Models: OLS, Ridge, Lasso
 - Support Vector Machine this being the one that give us the best results
 - Decision Trees
 - Neural Network Model
- Then we moves toward ensemble methods:
 - Bagging
 - Random Forest
 - AdaBoost
 - XGBoost this being the best performing one

Thus, our main modelling engine is based on XGBoost model

XGBoost Model



Pros:

- Works well with large dataset
- Resilient and Robust Results

Cons:

- Black Box Nature Hard to interpret
- Model is sensitive to outliers

Week to week flow

1. Import Related Module and Object

from Colab.code_base.data_utils import GetHistoricalData
from Colab.code_base.rank_simulator import RankSimulator

universe_df = pd.read_csv('data/universe_oct.csv')

2. Load Data via GetHistoricalData object

Getting Historical Data

hd = GetHistoricalData(universe_df)
weekly_ret,daily_ret = hd.get_return_data()
hist_rank = hd.get_historical_ranking()

3. Read Loaded Data

Read Fundamental Data

single_stock_data = pd.read_csv('data/single_stock_Data.csv',index_col=0)
x = single_stock_data.sort_values('TotalScore')
top_r_name = x[x['sector'] !='Communication Services'].dropna().index[:10].to_list()
bot_r_name = x[x['sector'] !='Communication Services'].dropna().index[-10:].to_list()

Read Forecast Data

return_forecast = pd.read_csv('Colab/guy_mu_dec2.csv',index_col=0)
top_name = return_forecast.iloc[-1].fillna(0).sort_values(ascending=False).index.to_list()
bottom_name = return_forecast.iloc[-1].fillna(0).sort_values(ascending=True).index.to_list()

7 | Presentation Title Presentation Title

4. Allocate Weight

```
## Allocate Weights by Variance
ivp_list = top_name[:10] + bottom_name[:10]
cov_today = daily_ret[ivp_list].cov()
ivp_weight = getIVP(cov_today)
```

5. Simulate Ranking via RankSimulator object

Get Rank Array by Simulation

rs = RankSimulator(return_forecast.iloc[-1].fillna(0)/252,daily_ret)
fore_mean = rs.simulate_rank()

6. Check and Save file

<pre>submission_file[['rank1', 'rank2', 'rank3', 'rank4', 'rank5']] = np.array(fore_me</pre>	an)
<pre>submission_file['decision'] = np.array(weights) checks(submission_file)</pre>	
<pre># submission_dir = dir_+'submissions/dueSep11/' filename = 'NullCapitalLLC'+''+submission_time submission_file.to_csv('submission/'+filename+'.csv') print(filename)</pre>	

For Fundamental Approach: We Long/Short top/bottom 10 asset based on score calculated from these fundamentals

- return on assets
- total cash per share
- forward PE
- recommendation means

In order to get the weights for each name, we use solver to construct minimum variance portfolio from long and short names

Results

- The results outperform the EW benchmark with 50% of the time (70% if week 7-8 is valid)
- Outperforming S&P 500 70% of the time (90% if week 7-8 is valid)

	group_name w	weekly_rank_1	weekly_rank_2	weekly_rank_3	weekly_rank_4	weekly_rank_5	weekly_rank_6	weekly_rank_7	weekly_rank_8	weekly_rank_9	weekly_rank_10	overall_rank
0	LionQuant	9.00	3.50	1.50	2.00	5.50	5.00	3.00	8.00	7.00	1.50	4.600
1	EW	5.50	5.00	2.00	7.25	5.25	2.75	4.25	4.50	6.50	6.25	4.925
2	NullCapitalLLC	1.00	1.00	4.50	3.00	5.00	3.00	13.00	13.00	1.50	6.50	5.150

• Data is everything -

- We spent too much time experimenting with the modelling we should've explore data more. Thing we should've explore more from data side includes:
 - Social Media Data
 - Quarterly and Annual Data
 - Data Cleaning Pipeline
 - Cross Sectional Analysis on Feature Importance for assets ex. which feature effects asset_i more; which feature can be excluded from asset_j
- Macroeconomics events can be significant factor, especially for week-to-week basis;
 - We tackle this by imposing manual view on top of portfolio (ex. Increase crypto short position in weeks with inflation print).
 - But there should be quantitative and robust ways to include macroeconomic events and views into decision making framework
- Portfolio construction -
 - We wish we had more time to explore a portfolio, which has a high correlation to the market when its rallying and market neutral or uncorrelated portfolio when the market is selling off.
- Don't forget to check everything including the checking function

