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Introduction
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● Portfolio managers need to assign relative weights to stocks in a portfolio rather than merely 

selecting "good" or "bad" stocks.

● Stock weighting can range from simple methods, like equal weighting or market capitalization 

weighting, to complex methods derived from modern portfolio theory.

● When managing portfolios against a benchmark, managers have multiple weighting possibilities, 

including matching weighted-average factor exposures or maximizing expected return while 

limiting tracking error.

● The presentation covers mathematical and statistical aspects of portfolio weighting, discussing 

ad-hoc methods and the mean-variance optimization method, and comparing four approaches for 

portfolios managed against a benchmark.



Mean-variance optimization
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● Mean-variance optimization (MVO) uses quadratic programming to find the portfolio with the 

lowest risk for a given expected return, based on the mean and variance of future stock returns.

● The method involves theoretically computing and comparing the risk and expected return of all 

possible portfolios from individual stock return data.

● A challenge with MVO is that it may assign large weights to outlier stocks, potentially due to 

estimation errors in stock means and variances.

● Portfolio managers can address this by adding constraints during optimization, such as 

short-sale constraints, diversification constraints, and sector constraints.

● Care must be taken when adding constraints to ensure they don't conflict with one another, and 

only the most essential constraints should be imposed.



Mean-Variance Optimization Without Constraints
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● Mean-variance optimization (MVO) finds the portfolio with the lowest risk for a given expected 

return.

● Setup: Use a vector μ for expected stock returns and a matrix Σ for variances and covariances of 

stock returns.

● Portfolio Specification: Defined by a weight vector w, summing to 1, representing the weight of 

each stock in the portfolio.

● Optimization Problem: The task is to minimize the portfolio's risk w'Σw for a set expected return 

w'μ = μP.

● Solution Method: Quadratic programming is used to solve this quadratic optimization problem.



Mean-Variance Optimization With Equality Constraints
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● General constraints are written as: Aw=b.

● Minimize the objective w'Σw subject to the equality constraints Aw=b results in a closed form 

solution: w=Σ-1A'(AΣ-1A')-1b



Solve analytically and numerically
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Given:

Sigma = np.array([[452, 249 , 189, 70, 481 , 106],
  [249, 1094, 356, 93, 1216, 135], 
  [189, 356 , 617, 161, 1304, 110],
  [70 , 93 , 161, 372, 462, 107],
  [481, 1216, 1304, 462, 5658, 425],
  [106 , 135, 110, 107, 425 , 244]])

A = np.array([[1,1,1,1,1,1], [14,10,9,7,20,2]])
b = np.array([1, 8])

Use the solution: w=Σ-1A'(AΣ-1A')-1b

Solve: 

min w'Σw

s.t. Aw=b



Solution:
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import numpy as np
from numpy.linalg import inv
import cvxpy as cp

#Analytic solution:
w = inv(Sigma) @ A.T @ inv( A @ inv(Sigma) @ A.T) 
@ b
print(w, w.T @ Sigma @ w)

import numpy as np
from numpy.linalg import inv
import cvxpy as cp

#Numerical solution:
N = 6
w = cp.Variable(N)
risk = cp.quad_form(w, Sigma)
prob = cp.Problem(cp.Minimize(risk), [A@w == b])
prob.solve(solver=cp.SCS)

print(w.value, prob.value)

w = [ 0.34693742 0.0600378 0.18721722 0.28894524 -0.07771101 0.19457333] 160.73067023861194
457333] 
w'Σw = 160.73067023861194



Short-sale and diversification constraints

8 | Data Driven Methods in Finance

● Short-sale Restrictions: Portfolio managers often face constraints like not being allowed to short 

securities. This requires weights for each stock to be at least zero (w≥0) and adds complexity to 

the optimization problem.

● Efficient Frontier Shift: When short-sale constraints are added, the efficient frontier shifts to the 

right, indicating that minimum risk portfolios will inherently have higher risk.

● Constrained vs. Unconstrained Portfolios: A constrained portfolio might have higher risk and 

fewer stocks than its unconstrained counterpart but will adhere to regulations and practical needs 

of a long-only portfolio manager.

● Diversification Constraints: In addition to short-sale restrictions, managers might incorporate 

diversification limits (wB≤w≤wT) to ensure a balanced exposure to stocks, reducing diversifiable 

risk.



Sector, Industry, and Trading Volume constraints
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● Sector or Industry Constraints: Managers, especially those aligning with benchmarks, often 

adjust portfolios to ensure specific sector weightings are maintained (wB
j≤w≤wT

j).

● Trading-Volume Constraint: For large portfolios, like those valued at $500 million, managers 

introduce constraints to prevent their transactions from significantly impacting stock prices.

● Example of Trading Constraint: A manager may want a stock holding to be less than 10% of the 

stock's average daily trading volume (ADV). If a stock's portfolio weight is represented by wi and 

its average trading volume is xi (in millions of dollars), then the constraint is set such that 500wi≤ 

0.1xi.

● General Constraint Expression: This trading volume constraint can be broadly expressed with a 

formula involving the stock's portfolio weight, its average daily trading volume in dollars, and a 

predefined threshold (wi≤ cxi).



Risk-Adjusted Return
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● Risk-Adjusted Return vs. Traditional Methods: While traditionally mean-variance optimization 

has been about risk minimization, some managers prefer maximizing expected returns based on 

their specific goals: max w'μ, s.t.w'Σw=σP

● Expected Return Maximization: Useful when a portfolio manager has a predetermined target 

risk level but no specific expected return.

● Risk-Aversion Parameter (A): This represents how much risk a manager is willing to take. A high 

A value suggests a manager views risk as costly. For instance, an A value of 2 means equating a 

1% variance increase to a 2% expected return decrease.

● Formulation Utility: Adjusting expected returns for risk, through parameters like A, provides a 

versatile approach beneficial in various portfolio management scenarios: max w'μ-Aw'Σw



Benchmark
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● Portfolio Management Styles: 

○ Managers can closely follow a benchmark (index managers) or 

○ manage more loosely aiming to outperform the benchmark (active or enhanced index 

managers).

● Balancing Act: Active managers aim to outperform a benchmark without straying too far from its 

structure, especially if the benchmark isn't inherently efficient.

● Tools for Tracking: Various methods exist to align portfolios with benchmarks, including (1) factor 

exposure targeting and (2) tracking error minimization, the latter being favored for its balance of 

risk control and stock selection freedom.



Benchmark: Ad Hoc, and Stratification
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● Simple Ad Hoc Approach: A basic method to create a benchmarked portfolio is to select the top 

holdings of the benchmark by market capitalization and adjust their weights based on preferred 

stocks.

○ Z-Score Adjustment: Portfolio managers can tweak the relative market capitalization 

weighting using the aggregate Z-score methodology, adjusting weights based on a 

computed multiplier.

● Stratification Method: Stratification, or stratified sampling, is a technique where stocks are 

divided into non-overlapping groups, often by industry or size, ensuring broad diversification. The 

idea is to select representative stocks (often at random) from each group, allowing portfolio 

managers to focus on high-α stocks while still controlling risk relative to the benchmark.



Benchmark: Factor exposure targeting
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● Factor Exposure Targeting: This approach aligns the portfolio with the benchmark by setting the 

benchmark’s factor exposures as the target for the portfolio, often aiming for a portfolio's overall 

beta close to 1 with respect to the benchmark.

● Benchmark Beta: The beta of any portfolio is the weighted average of individual stock betas. By 

adding constraints, a portfolio can ensure its beta aligns with the benchmark's desired range. For 

example, 0.75≤w'β≤1.25.

● Effect of Constraints: Constraints can lead to different portfolio compositions and may increase 

variances. In the given example, portfolios with a beta constraint had higher variances compared 

to unconstrained portfolios.

● Factor Tilting: Beyond just beta, a portfolio manager can also adjust (or tilt) other factor 

exposures in the portfolio. This allows for alignment with specific market views or strategies, such 

as favoring growth investments by setting a minimum exposure to the growth factor.



Benchmark: Tracking-error minimization
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● Tracking-Error Minimization: Professional portfolio managers often use this approach to weight 

stocks and build a portfolio. The goal can be to either minimize tracking error for a specified 

excess return over the benchmark or maximize the excess return without exceeding a set 

tracking-error constraint.

● Defining Tracking Error (TE): It is typically defined as the standard deviation of the difference 

between portfolio returns and benchmark returns: TE = std(rP-rB)

● Var(rP-rB)=Var(rP)-2C(rP,rB)+Var(rB)≈Var(rP)-2C(rP,rB)

To minimize the tracking error:    

min w'Σw-2w'γ s.t. w'μ=μP=μB+δ 

where γ = [C(r1,rB), C(r2,rB), … C(rn,rB)]



Benchmark: Tracking-error minimization
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● To minimize the tracking error:    

min w'Σw-2w'γ s.t. w'μ=μP=μB+δ 

where γ = [C(r1,rB), C(r2,rB), … C(rn,rB)]

● Other forms: 

○ Risk-Adjusted w/ target tracking error: max w'μ s.t. Var(rP-rB)=σ2
x

○ Risk-Adjusted w/ tracking-error aversion parameter: max w'μ - A Var(rP-rB)



Quick optimization review: simple linear programming
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To produce one unit of Product A, the company requires 2 hours of labor and 3 pounds of material. For Product 
B, it takes 3 hours of labor and 2 pounds of material to produce one unit. The company has a total of 80 hours 
of labor and 100 pounds of material available, which has to be shared between the two products. The profit 
from each unit of Product A is $5, and the profit from each unit of Product B is $4. The objective is to determine 
the optimal number of units of Product A and Product B to produce, in order to maximize the company's profit, 
while considering the constraints in labor and material availability.

● Objective Function (to be maximized): Profit = 5x1 + 4x2
○ where x1 is the number of units of Product A and x2 is the number of units of Product B.

● Constraints:
○ Labor constraint: 2x1 + 3x2 ≤ 80
○ Material constraint: 3x1 + 2x2 ≤ 100

● Non-negativity constraints:
○ x1 ≥ 0
○ x2 ≥ 0



Quick optimization review: simple linear programming
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Quick optimization review: binary linear programming
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min   x1 + x2+ x3

s.t.    x1 + x2 ≥ 2

         x2 + x3 ≤ 1

         x1, x2, x3 are binary



Quick optimization review: binary linear programming
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min   x1 + x2+ x3

s.t.    x1 + x2 ≥ 2

         x2 + x3 ≤ 1

         x1, x2, x3 are binary



Quick optimization review: integer linear programming
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max   3x1 + 2x2

s.t.    x1 + x2 ≤ 4

         x1 ≥ 0

         x2 ≥ 0

         x1, x2 are integers



Quick optimization review: integer linear programming
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max   3x1 + 2x2

s.t.    x1 + x2 ≤ 4

         x1 ≥ 0

         x2 ≥ 0

         x1, x2 are integers



Quick optimization review: Quadratic Programming
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min   x2
1 + x2

2

s.t.    x1 + x2 ≥ 1

  



Quick optimization review: Quadratic Programming
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min   x2
1 + x2

2

s.t.    x1 + x2 ≥ 1

  



Quick optimization review: Quadratic Programming

24 | Data Driven Methods in Finance

max  w'μ - Aw'Σw

s.t.    Σx =1

 x ≥ 0

set N=5, random risk and return, 

set gamma to 0.5 



Quick optimization review: Quadratic Programming
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max  w'μ - Aw'Σw

s.t.    Σx =1

 x ≥ 0

set N=5, random risk and return, 

set gamma to 0.5 



Disclaimer
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This course is for educational purposes only and does not offer investment advice or pre-packaged trading 

algorithms. The views expressed herein are not representative of any affiliated organizations or agencies. 

The main objective is to explore the specific challenges that arise when applying Data Science and 

Machine Learning techniques to financial data. Such challenges include, but are not limited to, issues like 

short historical data, non-stationarity, regime changes, and low signal-to-noise ratios, all of which 

contribute to the difficulty in achieving consistently robust results. The topics covered aim to provide a 

framework for making more informed investment decisions through a systematic and 

scientifically-grounded approach.


