Data-driven Methods in Finance: Final Presentation

April 24, 2023

10		
110	hum	hinl
	IUIII	ומוט
		,

1/10

Use forecasting models to predict expected return and determine the weights for each asset by solving a constrained optimization problem. Main models used are:

- Prophet
 - developed by Facebook
 - can capture daily/weekly/yearly seasonality along with holiday effects
 - not in our data 🔅
- 2 LSTM
- ARIMA

An example of using LSTM to predict stock price:

- Normalize the data to [0,1] through the min-max scaler
- Itime lag of 1 day and 60 time steps
- 4 hidden layers each with 100 neurons
- **1** neuron in the output layer for predicting the normalized stock price
- **o** It is better to fit the price than to fit the lead return

ARIMA

Using the ARIMA model with parameters p = 4, d = 1, q = 0, and the rolling forecasting procedure: the model is recreated after each new observation is received.

(Columbia)

Data is obtained using python yfinance. Risk-adjusted return

$$\min_{w} Aw^{T} \Sigma w - w^{T} \mu$$

s.t. $\|w\|_{1} = 1$

where the first term in the objective is the risk, and the second term can be seen as the expected return.

 μ is predicted using the average of the outputs from ARIMA model and LSTM model.

Risk-adjusted return

$$\min_{w} \quad Aw^{T} \Sigma w - w^{T} \mu$$
 s.t. $\|w\|_{1} = 1$

diversification constraints

 $\underline{w} \leq w \leq \overline{w}$

Ø dollar neutrality w is rescaled so that

 $\|\max(w,0)\|_1 = \|\min(w,0)\|_1$

For the past week (April 17 - April 21), the forecast performance is 0.159961 and the decision performance is -8.6. 51 out of 110 contribute positive return, and the **worse** 8 picks are:

symbol	name	weights	rank in submission
UNH	UnitedHealth Group	0.203	1
IEF	ETF	-0.099	110
XLK	ETF	8×10^{-4}	26
CZR	Casears Entertainment	0.029	4
PRU	Prudential Financial	2.8×10^{-5}	49
COP	ConocoPhillips	0.007	12
REET	ETF	-2×10^{-4}	78
AXP	American Express	-0.014	99

If remove the worst one (UNH), the decision performance is 0.701.

For the past week (April 17 - April 21), the best 8 picks are:

symbol	name	weights	rank in submission
DPZ	Domino's Pizza	-0.043	108
CNC	Centene	0.106	2
XLU	ETF	-0.036	97
IAU	ETF	0.011	8
ICLN	ETF	-0.010	96
META	Meta Platforms	0.010	11
XLP	ETF	0.010	10
PG	Procter & Gamble	-0.029	103

Image: A matrix

< 3 >

æ

- Impose stronger diversification constraints
- Collect data and extract factors/features. For instance, sentiment analysis using Refinitiv.