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ABSTRACT

High-dimensional data can be difficult to analyze, almost impossible to visualize, and expensive to process
and store. In many cases, the high-dimensional data points may all lie on or close to a much lower-dimensional
surface, or manifold, implying the intrinsic dimensionality of the data is much lower. In that case, the data could
be described with fewer dimensions, allowing us to mitigate the curse of dimensionality. Transforming the high-
dimensional representation of the data to a lower-dimensional one without losing important information is the
central problem of dimensionality reduction. Many methods of dimensionality reduction have been developed,
including classical techniques like Principal Component Analysis (PCA) and newer methods such as Diffusion
Maps (DM). Most of these methods often perform well on some types of data but poorly on others. We
apply different dimensionality reduction methods to medical data, including breast tissue tumor data and kidney
proteomics data, in order to determine which methods and parameters work best on on the different types of
data. To evaluate the performance of the reduction method, we also classify the data in the reduced dimension
using standard classification algorithms and evaluate the accuracy.

Keywords: Classification, Diffusion Maps, Dimensionality Reduction, High-dimensional Data, Independent
Component Analysis, Locally Linear Embedding, Kernel Principal Component Analysis, Mapping, Nonlinear
Dimensionality Reduction, Principal Component Analysis, K-Nearest Neighbors

1. INTRODUCTION

Dimensionality reduction is the mapping of high dimensional to a more meaningful, lower dimensional space.
DR is in some cases an essential preliminary step towards building models.2 In a medical context, dimensionality
reduction is often particularly necessary, as raw medical data (e.g.mass-spectra based proteomic data, human
gene distributions) is often of very high dimensionality. By reducing the dimensions, we can mitigate this
problem and possibly reduce computational time for analysis and further processing (e.g.clustering, regression,
etc), visualization and storing.

Reducing the dimensions of high-dimensional data also allows us to acquire a better understanding of the
underlying structure of the data, and bring to light a more meaningful representation of what is sometimes
difficult to interpret and impossible to visualize. Dimensionality reduction can be achieved either by feature
selection or feature transformation. Feature selection is the selection of relevant and non-redundant features
from certain data, thus reducing the dimensions. Feature transformation reduces dimensions by transforming
the data into a lower dimensional space while still maintaining the underlying structure from the feature space
(i.e.the mapped low-dimensional data through feature transformation should preserve similar characteristics of
the high-dimensional data in the feature space, such as the local mutual distances). After performing feature
transformation, the features of the reduced data do not correspond directly to original features. Since the
mapping of feature transformation expresses the relationship between the initial features, feature transformation
have more potential for exposing the difference in content than feature selection.2 This report is focused on a
few methods for feature transformation and their application on certain types of medical data. In particular,
we considered the following dimensionality reduction methods: PCA, Independent Component Analysis (ICA),

AMALTHEA REU Technical Report No. 2013-1; available at www.amalthea-reu.org. Please send your correspon-
dence to Georgios C. Anagnostopoulos. Copyright c© 2013 The AMALTHEA REU Program.

mailto:rec2111@columbia.edu
mailto:deg10e@my.fsu.edu
mailto:jsundram2012@my.fit.edu
mailto:gtenali@fit.edu
http://www.amalthea-reu.org


Locally Linear Embedding (LLE), and DM. Feature transformation can be further subcategorized into two
groups: linear dimensionality reduction methods and nonlinear dimensionality reduction (NLDR) methods.
PCA and ICA are both linear dimensionality reduction methods, while LLE and DM are NLDR methods.

1.1 Example of Dimensionality Reduction

As an example of the utility of dimensionality reduction, consider the following example, adapted from.20

Consider the study of motion of a ball attached to a spring, without anything about its motion or the best
way to represent its position. Let three cameras pointing at the ball from different angles capture the motion
of the ball. Over N frames, each camera captures an x and y coordinate representing the ball’s position in its
field of view (Figure 1a). Thus, we obtain N data points, each with six dimensions (Figure 1b). Clearly, this is
not the most efficent representation of the data; it also is difficult to interpret the results and understand the
underlying process when the data is in this form. If the data could be represented well in only one dimension,
a dimensionality reduction technique could be applied to reduce the N points from the original six-dimensional
space to N points in one-dimensional space—i.e.a single value for every instance (Figure 1c). (Choosing the
number of dimensions to reduce the data to is often a more difficult problem than this, as the true intrinsic
dimensionality of the data is rarely as obvious as in this example.) This reduced data better reflects the motion
of the ball, and also is easier to store and process.

(a) Three cameras capture the motion of a ball attached to a spring.
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collected by camera A in frame t.
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(c) Reduced data matrix R, consisting of N one-
dimensional data points. r(i) is the reduced version
of row i of X.

Figure 1: An example illustrating the utility of dimensionality reduction.

1.2 Linear vs. Nonlinear

Dimensionality reduction has traditionally been performed using linear methods such as PCA. However,
the intrinsic geometry of data points lying on a nonlinear manifold is better captured by applying nonlinear
dimensionality reduction methods. This point is highlighted by applying PCA (linear DR method) and LLE



(NLDR method) on the “Swiss roll” dataset, which consists of points lying on a two-dimensional manifold that
has been nonlinearly embedded in three-dimensional space (Figure 2a).

(a) (b)

(c)

Figure 2: (a)Original Swiss roll in 3-D; (b) reduced to 2-D with PCA; (c), reduced to 2-D with LLE

Linear methods fail to capture the underlying manifold of the data. Consider the PCA mapping of the “Swiss
roll” in Figure 2b. PCA maps far away points on the manifold to nearby points on the 2-D plane. In contrast to
the traditional linear methods, nonlinear methods such as LLE can correctly determine the underlying structure
and map the red points far from the blue points (Figure 2c).

1.3 Notations

We use the following notational conventions in this report. A dataset consisting of m data points each with
n dimensions is represented as an m× n matrix X. Each row of the data matrix X contains a single data point,
which we also refer to as an instance, and which is represented as a row vector x, or xi to indicate the ith data
point (ith row of X). Each data point x contains n elements, corresponding to the columns of X. We refer to
the columns of X as dimensions, features, variables, components, or parameters.

1.4 Organization of the Report

This report is organized as follows: an introduction on a few classification methods are discussed in Section 2.
Basic aspects, procedures and some examples of various dimensionality reduction algorithms are presented in
the following sections: PCA in Section 3, ICA in Section 4, LLE in Section 5, Kernel Principal Component
Analysis (KPCA) in Section 6, and DM in Section 7. We then discuss the two datasets we worked with, the
Wisconsin Diagnostic Breast Cancer (WDBC) dataset(Section 8) and the African American Study of Kidney
Disease and Hypertension (AASK) dataset (Section 9), and the results we obtained for them. Finally, Section 10
encompasses the conclusion of this report.

2. CLASSIFICATION METHODS

We made use of several classification methods We tested several classification methods on the data before
applying dimensionality reduction techniques in order to get a baseline accuracy level to which we could compare



the accuracy of classification after dimensionality reduction. After dimensionality reduction, we mainly used k-
nearest neighbors (KNN) to classify the results, because the choice of reduction method is usually more important
than the classification algorithm;8 we hoped to achieve results that would be easy to classify using any method,
and KNN is straightforward and well-tested.

2.1 K-Nearest Neighbors

KNN classifies data points based on the known classification of their nearest neighbors. We simply classify a
test point x according to the classes of the points closest to it by Euclidean distance in whatever dimension the
points lie. If a majority of x’s k nearest neighbors belongs to class 1, we classify x as belonging to class 1; if a
majority belongs to class 2, we classify it as belonging to class 2. k is taken to be an odd number to avoid ties;
we used values of k between 1 and 19, depending on the data.

We can also perform KNN after normalizing the dataset by subtracting the mean and dividing each feature
by the standard deviation of that feature. This has the advantage of not over-emphasizing features because they
have a greater magnitude.

2.2 Z-score Based Methods

We used several methods based on the z-score, or standard score, of the data points. The z-score of a data
point x is the difference between that point and the mean of the population, divided by the standard deviation
of the population:13

z(s) =
x− x̄
s

(1)

Where x̄ is the mean and s is the standard deviation. In other words, it measures how many standard deviations
away from the mean x is. A drawback of these methods is that (unlike KNN) they assume the data points are
normally distributed. To classify a data point based on the z-score, we compute the mean of each feature in
the training data, separately for each class. We also compute the overall standard deviation of each feature. To
classify a test point, for each of its features, we compute the difference between that feature and the mean of the
corresponding feature in class 1, and also the difference between that feature and the mean of the corresponding
feature in class 2. We then divide both these differences by the overall standard deviation of that feature, getting
a z-score for that feature for each class. We then take the average of these z-scores across all features, and
classify the test point as belonging to whichever class for which the average z-score of that point is smaller.

One variation on this method we used made use of feature selection to improve accuracy. After computing
the mean of each feature in the training data for each class, we compute the difference between these means for
each feature and normalize by the overall standard deviation of that feature. This gives a rudimentary score of
the “importance” of each feature based on how many standard deviations apart the means of that feature in the
two classes are. This can be thresholded, or features can be ranked according to this scale to select a certain
number of most important features.

2.3 Cross-validation

We used repeated random sub-sampling validation to cross-validate our results for all classification methods
we used. If X is the dataset on which we want to test a classification algorithm, we randomly divide the data
points in X into two groups: Xtr (training) and Xte (testing), with an 80%-20% split between groups. We use
Xtr as the training data for whatever classification algorithm we are using, then attempt to classify each point
in Xte with that classification algorithm, and record the accuracy of the classifications. We repeat this process
for some number of trials (usually at least 1000), with a new random division between testing and training data
for each trial, and take the average of the accuracy over all trials.



3. PRINCIPAL COMPONENT ANALYSIS

3.1 Overview

PCA is one of the most commonly used methods of dimensionality reduction. The goal is to linearly transform
the data to a lower-dimensional representation while preserving as much of the variance of the original data as
possible. After applying PCA, each data point from the original dataset is re-expressed in terms of a new
set of variables, known as the principal components. The principal components are linear combinations of the
original features, and are ordered such that the first principal component accounts for the most variance, the
second accounts for the second most variance, and so on. Ideally, nearly all of the variance in our data might be
expressed by only the first few principal components, allowing us to discard the rest of the components without
losing much important information. For example, after applying PCA to the data collected from the ball on a
spring example discussed previously, the first principal component would correspond to the ball’s position along
the axis of the spring. This would account for all of the variance in the data collected about the movement of
the ball, except what results from noise. After discarding the other components, the ball’s position would then
be expressed using only one variable, instead of the original six.

3.2 Procedure

Assume we have a dataset represented by X, an m×n matrix where rows represent data points and columns
represent variables/features. The first step is to subtract the mean. We compute the mean of each of the n
variables (columns) across all m rows, then subtract the result from each row. The data points are now centered
at the origin. Now we compute the covariance matrix C:

C =
1

m
XTX (2)

C is a symmetric n× n matrix which has been normalized by the number of data points. The entries on the
diagonal of C represent the variance of each feature, and the other entries (i, j) represent the covariance between
feature i and feature j. Then we calculate the eigenvector decomposition of C:

C = Φ∆Φ−1 (3)

where Φ is a square n × n matrix whose columns contain the normalized eigenvectors of C, and ∆ is a
diagonal matrix containing the eigenvalues corresponding to each eigenvector. Because C is a symmetric matrix,
Φ−1 = ΦT . The vectors in Φ represent an orthonormal basis for our data, and the eigenvalues in ∆ represent
the variance explained by each of the eigenvectors. If we sort the eigenvectors in Φ by their eigenvalues and save
this matrix as P, then the eigenvector in the first column of P is the principal component. P is a projection
matrix we can use to transform our original data:

Y = XP (4)

Each row of the transformed data in Y corresponds to the same data point as the corresponding row in X,
but the columns correspond to the components of the new basis, in order from most to least important. We can
thus take only the first d columns of Y, where d is the number of dimensions (components) to which we want to
reduce the data. (Or we could have taken only the first d columns of P instead of the full P in Eq. (4).)

3.3 Example: Image Compression

If we consider an m×n pixel grayscale image as an m×n matrix of pixel values X, we can perform PCA on
X to represent it as an n× d principal component matrix P and a m× d data matrix Y, saving storage space.
We run Algorithm 1 with X as input, saving P and the output Y. To view the compressed image X′, we convert
back to the original basis by calculating X′ = Y ×PT .16



Algorithm 1 Dimensionality Reduction by PCA

Input: Data X ∈ Rm×n, d (m = No. of data points, n = No. of dimensions, d = No. of dimensions to reduce
to)
Output: Y ∈ Rm×d
1. colMeans← mean of each column of X
2. For all rows xi in X:
3. xi ← xi − colMeans
4. End For
5. C← 1

mXTX
6. Φ← eigenvectors of C
7. λ← eigenvalues of C
8. P← columns of Φ sorted by corresponding eigenvalue in λ
9. P← first d columns of P
10. Y ← X×P

(a) d = 1 (b) d = 2 (c) d = 3 (d) d = 4 (e) d = 5

(f) d = 6 (g) d = 11 (h) d = 41 (i) d = 81 (j) Original

Figure 3: Image compression by PCA for different values of d, the number of principal components used.

4. INDEPENDENT COMPONENT ANALYSIS

4.1 Overview

To illustrate the motivation behind the method of Independent Component Analysis and to better explain the
algorithm, consider the famous cocktail-party problem. Consider a room where two people are talking. Suppose
two microphones located at different locations around the room. Each microphone captures a mixed signal from
the two voices of the people talking. We would like to get the independent voice signals (i.e. each individual
voice) from the mixed signals captured by both microphones. An important note to consider is that if N sources
are present, at least N observations (e.g. microphones) are needed to recover the original signals.

These mixed signals may be represented as the following linear system:

x1(t) = α11s1 + α11s2 (5)

x2(t) = α21s1 + α22s2 (6)

The idea is to separate the individual signals s1(t) and s2(t) using only the recorded signals x1(t) and x2(t). A
key assumption that is made in ICA, is that at each time instant t, s1(t) and s2(t) are statistically independent.



This allows for a reasonable estimation of the αij . Once the αij have been estimated, the independent signals
s1(t) and s2(t) can be extracted from the mixed signals x1(t) and x2(t).10

Let A be the matrix with elements αij .

Let x =

x1...
xn

 and s =

s1...
sn


The ICA model can then be written as

x = As (7)

All that is observed is the vector x, and both A and s must be estimated using it. After estimating the matrix
A, its inverse, say W, can then be computed. The independent signals can then be computed by:

s = Wx (8)

4.2 Independence

Two scalar-valued random variables x1 and x2 are said to be independent if information on the value of x1
does not convey any information on the value of x2 and vice versa. As a consequence, receiving information about
one of the variables does not change the probability distribution of the other. In technical terms, independence
between two random variables is defined as the joint probability density. Let p(x1, x2) denote the probability
density function of x1 and x2. Let p(x1) be the pdf of x1 when it is considered alone:

p1(x1) =

∫
p(x1, x2)dx2 (9)

p2(x2) is defined similarly. Then, random variables x1 and x2 are independent if and only if:

p1(x1, x2) = p1(x1)p2(x2) (10)

If two variables x1 and x2 are independent, then they are uncorrelated. However, if two variables x1 and x2
are uncorrelated, they are not necessarily independent. Uncorrelatedness is a weaker form of independence. Two
variables x1 and x2 are said to be uncorrelated if their covariance is zero:

E{x1x2}E{x1}E{x2} = 0 (11)

Many ICA methods give uncorrelated estimates of the independent components, reducing the number of
free parameters and simplifying the problem.10 For ICA to be possible, independent components must be
nongaussian.

4.3 Measures of Nongaussianity

A quantitative measure of nongaussianity of a random variable, say x, is needed to use nongaussianity in ICA
estimation. Let us assume that x is centered and has variance equal to one. Two methods will be discussed in
this section, Kurtosis and Negentropy.



4.3.1 Kurtosis

The kurtosis of x is defined by

kurt(x) = E{x4} − 3(E{x2})2 (12)

Since x is assumed to be of unit variance, the right-hand side equals E{y4}−3. Kurtosis is zero for a gaussian
random variable and nonzero for most nongaussian random variables.10

Other methods for measuring nongaussianity might be better in some cases because kurtosis is very sensitive
to outliers.9

4.3.2 Negentropy

The entropy of a random variable x with density function p(x) is defined as:

H(x) = −
∫
p(x) log p(x)dx = −E{log pi(x)} (13)

The negentropy can be approximated by:

J(x) ≈
p∑
i=1

ki [E{Gi(x)} − E{Gi(g)}]2 (14)

where ki are some positive constants, and g is a Gaussian variable with zero mean and unit variance. Gi are
some non-quadratic functions such as:

G1(u) =
1

a1
log cosh a1u,G2(u) = − exp(

−u2

2
) (15)

where 1 ≤ a1 ≤ 2 is some suitable constant.

4.3.3 Preprocessing for ICA

It is convenient to preprocess data before applying ICA. Two techniques will be discussed to make ICA
estimation simpler and reduce the complexity of the problem.

4.3.4 Centering

Typical ICA algorithms use centering as preprocessing step to simplify the implementation. To center x,
subtract its mean vector m = E{x} to create a zero mean variable. Centering x implies that s is zero mean
vector as well, as can be seen by taking the expected value on both sides of Eq. (7).

4.3.5 Whitening

After centering the data, another useful preprocessing technique is whitening. In whitening, the vector x is
linearly transformed to obtain a new vector x̃ where its components are uncorrelated and their variances equal
unity, i.e. the covariance matrix of x̃ equals the identity matrix:

E{x̃x̃T } = I (16)



4.4 FastICA Algorithm

4.4.1 Single-unit version

The following is a one-unit version of FastICA. ”one unit” refers to a single computational unit. The FastICA
essentially finds a unit vector w such taht the projection wTw maximizes nongaussianity as measured by the
approximation of negentropy J(wTw) given in (14). The basic form of the FastICA algorithm is as follows:

1. Choose an initial(e.g.random) weight vector w

2. Let w+ = E{xg(wTx)} − E{g′(wTx)}w

3. Let w = w+

‖w+‖

4. If not converged, go back to 2.

Convergence means that the dot product of the old and new w is almost equal to 1. g corresponds to the
derivatives of the nonquadratic functions used in (15). The derivatives are:

g1(u) = tanh(a1u), g2(u) = u exp
−u2

2
(17)

4.4.2 Multiple-units version

The one-unit FastICA algorithm needs to be run using several units with weight vectors w1, ...wn. Vectors
need to be prevented from converging to the same maxima, so we must decorrelate the outputs wT

1 x, ...,w
T
nx

after every iteration.

It may be desired to use a symmetric decorrelation in some applications, thus the following algorithm assures
that no vectors are privileged over others12 by the classical method involving matrix square roots:

Let W = (WWT )−
1
2 W (18)

Another simple way of achieving decorrelation is with the following iterative algorithm:10

1. Let W =
W√
‖WWT ‖

Repeat 2. until convergence:

2. Let W =
3

2
W − 1

2
WWTW

(19)

4.5 Examples

Two images are selected from a “see-through” data set.1 The problem at hand consists of separating two
images from two mixed images. Imagine two pictures have been printed on opposite sides of a very thin sheet
paper. When the images are scanned, the image in printed in the back shows due to the transparency of the
paper. This problem is suitable for ICA because from the mixed pictures, we would like to obtain each original
image separately. The data used is from a severe case of this problem, in which the paper used was ”onion skin”
(i.e. semi-transparent paper often used in professional drawing).

As seen in Figure 4, images (e) and (f) were successfully separated from the mixed images (c) and (d). The
extracted images are not quite as perfect as the originals, but compared to the mixed images, the distinction
between the two independent images is quite clear. At first, only one of the independent pictures was clear after
the ICA algorithm was applied. The other seemed to be a negative image(i.e. lightest areas appear darkest and
the darkest areas appear lightest). After readjusting and scaling the picture, the picture became clear. ICA does
not guarantee that the separated signals will be of the right scale (even the signs might be changed).10



(a) (b)

(c) (d)

(e) (f)

Figure 4: Original images (a) and (b). Mixed images (c) and (d). ICA was used to separate the individual
images (e) and (f) from the mixed images.



Algorithm 2 Dimensionality Reduction by LLE

Input: Data X ∈ Rm×n, d (m = No. of data points, n = No. of dimensions, d = No. of dimensions to reduce
to), K = No. of neighbors
Output: Y ∈ Rm×d
1. Compute the K neighbors of each data point, Xi.
2. Compute the weights Wij that best reconstructs each data point Xi from its K neighbors, minimizing the
cost in Eq. (20) by constrained linear fits.
3. Compute the vectors Yi best reconstructed by the weights Wij , minimizing the quadratic formula in
Eq. (21) by its bottom nonzero eigenvectors.

5. LOCALLY LINEAR EMBEDDING

5.1 Overview

Locally Linear Embedding (LLE) is a nonlinear, unsupervised learning algorithm that takes advantage of
local symmetries of linear reconstruction to embed high-dimensional data into a lower dimensional space while
preserving local properties of the data. Although the data itself is assumed to lie on a nonlinear manifold, LLE
assumes that each point and its k nearest neighbors lie on or close to a linear manifold at a local level. Since
LLE preserves similarities at a local level, it is less sensitive to outliers than other nonlinear algorithms17 because
only a small amount of local properties are affected by outliers. The simplified idea is that LLE reconstructs
each data point from a linear combination of its k nearest neighbors.

5.2 Procedure

The reconstruction errors are measured by the cost function:

E(W) =
∑
i

∣∣∣xi −∑
j
Wijxj

∣∣∣2 (20)

Where the weights Wij correspond to the contribution of the jth data point xj , to the ith transformed point
xi. There are two constraints to finding the weights Wij : the weight for a particular data point can only be
calculated using that point’s k nearest neighbors (i.e. wij = 0 if xj is not a neighbor or xi); and second, the
sum of the rows of the weight matrix equal one (i.e.

∑
j wij = 1). A key point in LLE is that the reconstruction

weights wij are invariant to transformations such as translation, rotation and scaling. This is important because
we can then expect the weights Wij that reconstruct the data in a high-dimensional space, to also maintain the
transformation in a mapping to a lower dimensional space. By minimizing the embedding cost function:

Φ(Y) =
∑
i

∣∣∣yi −∑
j
Wijyj

∣∣∣2, (21)

the d-dimensional coordinates yi are chosen. Here, the weights Wij are held fixed while the coordinates
yi are optimized. Roweis and Saul showed17 that by computing the smallest d nonzero eigenvalues of the
inproduct (I−W)T (I−W), the low-dimensional representations Yj can be found efficiently giving substantial
computational savings for large values of N , where N is the number of data points in the data and I is the
N ×N identity matrix.

5.3 Examples

Image processing is an area where LLE seems to produce promising results. For example, consider a dataset
that contains images from a video of a subject making different facial expressions. Each image has 40 x 53 pixels
which can be represented as a vector of 2120 pixel values. LLE was applied, using k = 7, revealing an interesting
underlying structure on a 3-dimensional space. It is expected that data points close to each other in the lower
space should have similar characteristics in the feature space. As seen in Figure 5, the green and red path on



the graph are close to each other and correspond to the green and red facial frames. In other words, both red
and green color-coded frames represent the movement of the head to the left. Since both facial movements are
very similar to each other, it would be expected that corresponding frames would be mapped close to each other
on the low dimensional space.

Figure 5: LLE (K = 7) applied to 950 frames of varying facial expressions of 2120 (40 x 53) pixels.

LLE has been found to lack in certain areas like in biomedical datasets.14 One explanation for this might be
that LLE does not do a good job when the manifold on the feature space is broken17 (i.e. with holes, like the
broken swiss-roll), thus giving an inaccurate mapping on the lower-dimensional space. One area in which LLE
might have potential is in the facial expression recognition area.

6. KERNEL PRINCIPAL COMPONENT ANALYSIS

6.1 Overview

Kernel Principal Component Analysis (KPCA) is an nonlinear dimensionality reduction (NLDR) technique
that extends Principal Component Analysis (PCA) using kernel functions. The kernel function is used to
nonlinearly map the data into a higher-dimensional feature space F with a mapping Φ. Standard linear PCA is
then performed on the data in the higher-dimensional feature space.18 Instead of performing eigendecomposition
on the covariance matrix and finding its principal eigenvectors, as in PCA, KPCA decomposes the kernel matrix
and finds its principal eigenvectors.

Mapping the data nonlinearly to a higher-dimensional space allows the linear method of PCA to perform
nonlinear mappings of the data.23 Actually computing the mapping Φ can be difficult or even impossible because
of the possibly high dimensionality of the kernel space. But in order for PCA to do the eigendecomposition of
the data mapped by Φ to F , all we need are the dot products of pairs of mapped data points (Φ(x) ·Φ(y)), and
for certain kernel functions k(x, y) and mappings Φ it has been shown that k(x, y) = (Φ(x) · Φ(y)).1819

KPCA with a linear kernel makes it equivalent to traditional PCA; other possible kernels include Gaussian
and polynomial.23 Determination of the best kernel function for a particular problem is an open question.

6.2 Procedure

Assume we have a dataset X, an m×n matrix where rows represent data points and columns represent vari-
ables/features. Using a chosen kernel function k(x, y), e.g.the Gaussian kernel k(x, y) = exp(−‖x− y‖2 /2σ2),
we compute the m×m kernel matrix K:18

Kij = k(xi, xj) (22)



Before proceeding to the decomposition of K, we need to center the data, but since it lies in the feature space
F this is not as straightforward as in PCA since we do not have the explicit form of the data. However, it can
be done by performing

kij = −1

2
(kij −

1

n

∑
l

kil −
1

n

∑
l

kjl +
1

n2

∑
lm

klm) (23)

for all entries kij in K, where n is the number of data points.23 We then calculate the eigenvector decompo-
sition of K similarly to PCA:

K = Φ∆Φ−1 (24)

where Φ is a square n × n matrix whose columns contain the eigenvectors vi of the modified K, and ∆ is
a diagonal matrix containing the eigenvalues λi corresponding to each eigenvector. The eigenvectors ai of the
covariance matrix in the feature space F can be computed from the vis:

23

ai =
1√
λi
vi (25)

Finally, to compute the reduced version yi of each original data point xi from X, we project the xis on to
the eigenvectors ai of the covariance matrix:23

yi =

[ n∑
j=1

a
(j)
1 k(xj , xi)

n∑
j=1

a
(j)
2 k(xj , xi) · · ·

n∑
j=1

a
(j)
d k(xj , xi)

]
(26)

where al is the lth eigenvector of the covariance matrix and a
(j)
l is the jth element of that eigenvector.

7. DIFFUSION MAPS

7.1 Overview

Diffusion Maps (DM) is a recently developed technique of nonlinear dimensionality reduction.3 It attempts to
discover the underlying structure of the data by finding the “diffusion distances” between points, and transform
data points from their original high-dimensional space into a lower-dimensional space based on their diffusion
distances. The underlying idea is that even if two points do not lie nearby according to Euclidean distance in
their original high-dimensional data space, they may lie nearby along the surface of a low-dimensional manifold
embedded in the high-dimensional space. If so, then if we take a random walk starting at the first point and
successively jumping to nearby points, the probability that our path will lead along the surface of the manifold
from the first point to the other is relatively high. The diffusion distance between two points is calculated based
on the probability of random walks taking these paths connecting the two points. We consider all possible paths
of a certain length and the probability of each of those paths occurring to determine the diffusion distance.

Take the Swiss Roll example shown previously (Figure 2), and consider three points: one of the dark red
points, one of the orange points, and one of the light blue pointa. The Euclidean distance between the dark red
point and the orange point is high, and the Euclidean distance between the dark red point and the light blue
point is low. But along the surface of the manifold, the orange point is much closer to the red point than the
light blue point is. DM attempts to discover this kind of relationship by considering paths that run from point
to point along the surface of the manifold, connecting the red points to the orange points, then the green points,
then the blue points, in that order. Although the distance between the red point and the blue point is small,



Algorithm 3 Dimensionality Reduction by KPCA

Input: Data X ∈ Rm×n, d (m = No. of data points, n = No. of dimensions, d = No. of dimensions to reduce
to), k(x, y) (kernel function)
Output: Y ∈ Rm×d
1. Initialize m×m kernel matrix K
2. For all rows xi in X:
3. For all rows xj in X:
4. Kij ← k(xi, xj)
5. End For
6. End For
7. For all entries kij in K:
8. kij ← − 1

2 (kij − 1
n

∑
l

kil − 1
n

∑
l

kjl + 1
n2

∑
lm

klm)

9. Calculate eigendecomposition of K: K = Φ∆Φ−1 (eigenvectors vi in Φ, eigenvalues λi on diagonal of ∆)
10. For all columns vi of Φ:
11. ai ← 1√

λi
vi

12. End For
13. Initialize m× d reduced data matrix Y
14. For all rows yi of Y:

15. yi ←
[ n∑
j=1

a
(j)
1 k(xj , xi)

n∑
j=1

a
(j)
2 k(xj , xi) · · ·

n∑
j=1

a
(j)
d k(xj , xi)

]
16. End For

the distance from the red point to another red point is much smaller, and the probability of a single jump from
a red point to another red point is much higher than the probability of a jump from the red point to the blue
point. By considering random walks made up of a series of these jumps from point to nearby point, DM can
evaluate the structure of the manifold and determine that in the new representation, the orange point should be
placed closer than the blue point to the red point.

Assume we have a dataset represented by X, an m×n matrix where rows represent data points and columns
represent variables/features. First we normalize the data by subtracting the minimum entry fromX and dividing
by the maximum entry, so values range from 0 to 1. Then we calculate the connectivities between points.

7.1.1 Connectivity

The probability of making any jump from one point to another in a single step of the random walk is called
the connectivity of the two points. Determining the connectivity between each pair of points is the first step in
calculating the diffusion distance. The connectivity between two points x and y is calculated based on a kernel
function k(x,y). There are many possible kernel functions, some of which are based on Euclidean distance. As
with KPCA, the choice of kernel function can significantly affect the quality of the results, but how to determine
the best kernel function for a particular type of data remains an open question.1811 A few are presented below,
based on those used by:11

Gaussian kernel: k(x,y) = exp(−‖x− y‖2 /2σ2) (27)

Laplacian kernel: k(x,y) =
exp(|‖x− y‖ − µ| /b)

2b
(28)

Rayleigh kernel: k(x,y) =
‖x− y‖2 exp(−(‖x− y‖2)2/2σ2)

σ2
(29)

Polynomial kernel: k(x,y) = (1 + 〈x,y〉)d (30)

x and y represent data points (rows) of the original m × n data matrix X. All of these kernels satisfy the
necessary conditions of symmetry and positivity preservation. The results of the kernel function applied to each



pair of points is stored in an m×m kernel matrix K such that Kij = k(xi,xj). The actual connectivity between
a pair of points, p(x,y), represents a probability, so the output of the kernel function must be normalized by the
sum of all the outputs for each data point:

p(x,y) =
1

dx
k(x,y) (31)

where dx is the sum of the row of K containing point x. These probabilities are stored in the m×m matrix
P .

7.1.2 Diffusion Process

P is a Markov matrix containing the probabilities for a single transition from xi to xj . We want to consider
random walks consisting of multiple transitions, or timesteps. If t is the number of timesteps, then P t is the
Markov matrix containing the probabilities pt(xi,xj) of a transition from xi to xj in a random walk of length
t. Larger values of t allow us to consider larger neighborhoods of data points. By increasing the number of steps
in the random walk, the probability of going from xi to xj increases if there are many high-probability paths
from xi to xj along the surface of the manifold on which the data lies.

7.1.3 Diffusion Distance

The diffusion distance is a metric to measure the similarity of two points, defined based on the Markov matrix
P . It is defined such that if there are many high-probability paths of t steps between point x and point y, the
diffusion distance between them will be small, reflecting that they are “nearby” according to this metric.5

Dt(x,y)2 =
∑
u∈X

|pt(Xi, u)− pt(Xj , u)|2 (32)

=
∑
k

∣∣P t
ik − P

t
kj

∣∣2 (33)

7.1.4 Diffusion Map

We would now like to transform our dataset according to the diffusion distances between points such that
the Euclidean distance between two points is equal to their diffusion distance. The way we defined diffusion
distance allows us to simply use the probability matrix P t for this. Consider the ith row of P , which contains
the mapped point x′

i corresponding to the original point xi from X:

P t
i = x′

i =
[
pt(xi,x1) pt(xi,x2) · · · pt(xi,xm)

]
(34)

and similarly the jth row of P , which contains the mapped point x′
j corresponding to the original point xj .

The Euclidean distance between x′
i and x′

j is:

∥∥∥x′
i − x

′
j

∥∥∥2
E

=
∑
u∈X

|pt(xi,u)− pt(xj ,u)|2 (35)

=
∑
k

∣∣P t
ik − P

t
kj

∣∣2 (36)

= Dt(xi,xj) (37)

Looking back to Eq. (32), we can see that this is the diffusion distance between xi and xj . P has m
dimensions.



7.1.5 Reduction

Dimensionality reduction is now possible by neglecting some dimensions of the diffusion space. By performing
an eigendecomposition of P , we can calculate a lower-dimensional representation of the data that preserves the
diffusion distances between points as well as possible. If we sort the eigenvectors φ and eigenvalues λ of P
by eigenvalue (ignoring the trivial first eigenvector, whose eigenvalue will be 1), the mapped point x′

j can be
expressed in reduced form as x′′

i by the first d eigenvectors and eigenvalues:

x′′
i =

[
λt1φ1

(i) λt2φ2
(i) · · · λtdφd

(i)
]

(38)

where φj is the jth eigenvector of P and φj
(i) is the ith element of that eigenvector. This also allows us

to avoid calculating the full diffusion matrix P t, which would be computationally expensive. Instead, we just
decompose P and raise its eigenvalues to t.

7.2 Procedure

Assume we have a dataset represented by X, an m×n matrix where rows represent data points and columns
represent variables/features. The first step is to normalize X by subtracting by the minimum entry and dividing
by the maximum entry, so entries now vary between 0 and 1. We then create the kernel matrix K by applying
the chosen kernel function to each pair of data points (xi,xj) and storing the result in Kij . We normalize K so
the rows sum to 1 by dividing each row by its sum to arrive at the probability matrix P . We then calculate the
eigendecomposition of P (for a more detailed proof of why P can always be eigendecomposed and how to find
its eigenvectors and eigenvectors, see section 8 of5) and store the eigenvectors in Φ and the eigenvalues in ∆. As
in PCA, we sort the eigenvectors in Φ by their corresponding eigenvalues, then take only the first d eigenvectors
and eigenvalues and discard the rest. We calculate the rows of the reduced dataset in the diffusion space, Y ,
with Eq. (39):

Y =
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λt1φ
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1 λt2φ
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2 · · · λtdφ
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...
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...
...

λt1φ
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1 λt2φ

(m)
2 · · · λtdφ

(m)
d

 (39)

7.3 Examples

DM was applied to the same data set that was used in LLE. The data set consists of images from a video
of a subject making different facial expressions. Each image has 40 x 53 pixels which can be represented as a
vector of 2120 pixel values. DM was applied, using σ = 6 and t = 2, and reduced to 3 dimensions. Although
DM mapping seemed to produce a different structure from that of LLE, the characteristics on the embedding
space seem to remain the same (i.e.points close together in the embedded space correspond to similar facial
expressions). In the case of DM (Figure 6), the green and red path correspond to the head of the subject turning
in opposite directions.

Another data set that was used to test DM consists of 500 discs (Figure 7), of 255 x 255 pixels each which
can be represented as a vector of 65025 pixel values, rotated at different angles. DM was applied to this data set
using σ = 5 and t = 15 and reduced to 2 dimensions. As seen in Figure 8, discs with similar rotation angles are
mapped close to each other in the reduced diffusion space.



Figure 6: DM (σ = 6, t = 2) applied to 950 frames of varying facial expressions of 2120 (40 x 53) pixels.

(a) (b)

(c)

(d) (e)

(f)

Figure 7: A few discs from the data set rotated at different angles.



Algorithm 4 Dimensionality Reduction by DM

Input: Data X ∈ Rm×n, d (m = No. of data points, n = No. of dimensions, d = No. of dimensions to reduce
to), k(x,y) (kernel function)
Output: Y ∈ Rm×d
1. min← smallest entry in X
2. max← largest entry in X
3. For all entries xij in X:
4. xij ← (xij −min)/max
5. End For
6. Initialize m×m kernel matrix K
7. For all rows xi in X:
8. For all rows xj in X:
9. Kij ← k(xi,xj)
10. End For
11. End For
12. rowsums← sum of each row in K
13. Initialize m×m probability matrix P
14. For all rows pi in P
15. pi ← pi − rowsumsi
16. End For
17. Φ← eigenvectors of P (as column vectors), sorted by magnitude of corresponding eigenvalue
18. λ← eigenvalues of P sorted by magnitude
19. Φ← first d columns of Φ
20. λ← first d entries of Λ
21. Initialize m× d reduced data matrix Y
21. For all entries yij of Y :
22. yij = λtj ∗Φij

23. End For

8. ANALYSIS OF DIAGNOSTIC BREAST CANCER DATA

The Wisconsin Diagnostic Breast Cancer (WDBC) dataset consists of 569 data points classified as either
malignant or benign. Data was computed from a digitized image of a fine needle aspirate (FNA) of a breast
mass.25 Each instance contains 30 features describing different characteristics of the cell nuclei present in the
image. The characteristics of the nucleus described are:25

• radius (mean of distances from center to points on the perimeter)

• texture (standard deviation of gray-scale values)

• perimeter

• area

• smoothness (local variation in radius lengths)

• concave points (number of concave portions of the contour)

• symmetry

• concavity (severity of concave portions of the contour)

• fractal dimension (“coastline approximation” - 1)

• compactness (perimeter2/area− 1.0)



Figure 8: DM (σ = 15, t = 5) applied to 500 images of discs rotated at different angles. Images contain 65025
(255 x 255) pixels. This data was reduced to 2 dimensions.

For each of the above ten characteristics, the mean, standard error, and worst (largest) value is included,
resulting in 30 features for every data point.

8.1 Results

We tested the classification accuracy of k-nearest neighbors (KNN) classification on the original data and the
data after reducing it to 3-D, 2-D, and 1-D with diffusion maps.

Dimensions Accuracy Sensitivity Specificity
30 (original) 0.933 0.874 0.968

30 to 3 0.928 0.852 0.973
30 to 2 0.913 0.837 0.959
30 to 1 0.908 0.835 0.952

Table 1: Classification accuracy, sensitivity, and specificity of KNN applied to original 30-dimensional WDBC
data and WDBC data reduced with DM to 3, 2, and 1 dimensions.



Figure 9: Data reduced to 3-D using DM with t=3, σ=1

Figure 10: Data reduced to 2-D using DM with t=3, σ=1



Figure 11: Data reduced to 1-D using DM with t=3, σ=1

8.2 Approaches and Conclusions

KNN was used to classify the data before and after applying DM. Before reducing the dimensionality of
the data, KNN produced an accuracy of around 93%. As can be noted in Table 1, the accuracy drops as the
number of dimensions reduced to decreases. One explanation could be that as the features are transformed,
some instrinsic valued is lost in the mapping process. Therefore, it can be concluded that there is some tradeoff
between accuracy and the amount of space and computation required to process the data at hand. In other
words, by reducing the dimensionality of the data with DM, the accuracy of KNN decreases, but the amount of
space required to process the data is fewer (recall the curse of dimensionality8).

9. ANALYSIS OF KIDNEY PROTEOMIC DATA

The prevalence of Renal Disease in the USA exceeds 7 million people who suffer from stages 3-5 of Chronic
Kidney Disease (CKD)4 in the US. CKD is a progressive loss in renal function over a period of months or years.
The severity of CKD is classified in five stages, with stage 1 being the mildest with usually few symptoms, to
stage 5 being a severe illness with poor life expectancy. There is a high incidence of kidney disease in African
Americans with hypertension.

We studied a dataset from the African American Study of Kidney Disease and Hypertension (AASK), con-
sisting of 116 instances of 5251 features (courtesy: Dr. M. Lipkowitz of Georgetown University Hospital and Dr.
M. Subasi of Florida Institue of Technology). Features correspond to serum proteomic levels (peaks extracted
from raw SELDI-tof mass spectrometry data). All patients in the dataset suffer from CKD and are classified
as either slow or fast progressors. The classification of slow and fast progressors (see Figure 12) is based on the
rate of decline of Glomerular Filtration Rate (GFR), a measurement of kidney function.

9.1 Approaches

Compared to the WDBC dataset, this dataset was of much higher dimensionality and considerably more
difficult to classify using standard methods. Standard KNN (k = 3) on the raw data produced a classification
accuracy of about 57.8%, with sensitivity 55.1% and specificity 61.6%. We hoped to find a method of dimen-
sionality reduction that would reduce the data to a more manageable size while also improving the performance
of classification methods. We tried several reduction algorithms, including PCA, KPCA, LLE, and DM.



Figure 12: Characteristics of the AASK patients data set

9.2 Results

Of the methods we applied, only PCA and DM were able to successfully reduce this very high-dimensional
data; the algorithms we used for LLE and KPCA did not produce reliable results. The LLE algorithm returned
fewer data points than were supplied; we found that the results returned by the KPCA method were strongly
influenced by the order in which the data points were supplied, which we speculate may have been caused by
the compounding of rounding error or other imprecisions in calculation. Between DM and PCA, classification
with KNN on data reduced by {DM produced superior results, achieving accuracy up to approximately 64%
depending on the dimension reduced to as well as the chosen kernel function and parameters. KNN after PCA
achieved accuracy up to 58.4%, only marginally higher than KNN on the unreduced data. Tables showing results
from DM using various kernels and parameters are shown below. Although the Gaussian kernel is commonly
used for DM, we found that it was consistently outperformed by the Laplacian kernel for this dataset, at least
for the parameters we tested. We were only able to test a few values for each parameter because of limited
time and computational power; we believe, given more time, it would be possible to improve on these results by
fine-tuning the parameters.



9.2.1 All Kernels

Dimensions Gaussian Laplacian Polynomial
t = 10, σ = 1 t = 10, µ = 10, b = 2 t = 6, d = 10

5251 to 2 Acc: 0.454 Acc: 0.635 Acc: 0.502
Se: 0.468 Se: 0.648 Se: 0.505
Sp: 0.457 Sp: 0.632 Sp: 0.514

5251 to 3 Acc: 0.528 Acc: 0.564 Acc: 0.508
Se: 0.557 Se: 0.544 Se: 0.534
Sp: 0.512 Sp: 0.595 Sp: 0.497

5251 to 4 Acc: 0.570 Acc: 0.591 Acc: 0.536
Se: 0.593 Se: 0.572 Se: 0.520
Sp: 0.558 Sp: 0.623 Sp: 0.561

5251 to 5 Acc: 0.533 Acc: 0.576 Acc: 0.580
Se: 0.556 Se: 0.523 Se: 0.559
Sp: 0.522 Sp: 0.640 Sp: 0.611

5251 to 6 Acc: 0.526 Acc: 0.523 Acc: 0.584
Se: 0.586 Se: 0.476 Se: 0.547
Sp: 0.479 Sp: 0.581 Sp: 0.634

5251 to 7 Acc: 0.451 Acc: 0.534 Acc: 0.597
Se: 0.485 Se: 0.514 Se: 0.586
Sp: 0.431 Sp: 0.567 Sp: 0.617

5251 to 8 Acc: 0.468 Acc: 0.570 Acc: 0.606
Se: 0.501 Se: 0.547 Se: 0.614
Sp: 0.448 Sp: 0.606 Sp: 0.610

Table 2: Classification accuracy, sensitivity, and specificity of KNN applied to AASK data reduced by DM with
various kernels. Each kernel is shown with the parameters that produce the best classification accuracy in any
dimension, and the best results achieved by each kernel are bolded.



9.2.2 Gaussian Kernel

Dimensions σ = 0.1 σ = 0.5 σ = 1 σ = 5
5251 to 2 Acc: 0.512 Acc: 0.490 Acc: 0.530 Acc: 0.454

Se: 0.495 Se: 0.464 Se: 0.512 Se: 0.468
Sp: 0.540 Sp: 0.530 Sp: 0.561 Sp: 0.457

5251 to 3 Acc: 0.505 Acc: 0.438 Acc: 0.481 Acc: 0.528
Se: 0.484 Se: 0.429 Se: 0.481 Se: 0.557
Sp: 0.537 Sp: 0.463 Sp: 0.497 Sp: 0.512

5251 to 4 Acc: 0.524 Acc: 0.506 Acc: 0.549 Acc: 0.570
Se: 0.517 Se: 0.498 Se: 0.564 Se: 0.593
Sp: 0.542 Sp: 0.529 Sp: 0.549 Sp: 0.558

5251 to 5 Acc: 0.502 Acc: 0.494 Acc: 0.491 Acc: 0.533
Se: 0.498 Se: 0.477 Se: 0.503 Se: 0.556
Sp: 0.520 Sp: 0.523 Sp: 0.490 Sp: 0.522

5251 to 6 Acc: 0.505 Acc: 0.506 Acc: 0.491 Acc: 0.526
Se: 0.501 Se: 0.496 Se: 0.477 Se: 0.586
Sp: 0.520 Sp: 0.529 Sp: 0.516 Sp: 0.479

5251 to 7 Acc: 0.496 Acc: 0.496 Acc: 0.501 Acc: 0.451
Se: 0.504 Se: 0.517 Se: 0.504 Se: 0.485
Sp: 0.499 Sp: 0.482 Sp: 0.509 Sp: 0.431

5251 to 8 Acc: 0.494 Acc: 0.568 Acc: 0.512 Acc: 0.468
Se: 0.491 Se: 0.569 Se: 0.529 Se: 0.501
Sp: 0.508 Sp: 0.581 Sp: 0.510 Sp: 0.448

Table 3: Classification accuracy, sensitivity, and specificity of KNN applied to AASK data reduced by DM with
the Gaussian kernel for t = 10 and various values of the parameter σ.



9.2.3 Laplacian Kernel

Dimensions µ = 0.1, b = 0.5 µ = 0.1, b = 2 µ = 0.1, b = 8
5251 to 2 Acc: 0.427 Acc: 0.569 Acc: 0.534

Se: 0.441 Se: 0.608 Se: 0.539
Sp: 0.428 Sp: 0.541 Sp: 0.540

5251 to 3 Acc: 0.446 Acc: 0.578 Acc: 0.580
Se: 0.476 Se: 0.624 Se: 0.570
Sp: 0.429 Sp: 0.545 Sp: 0.603

5251 to 4 Acc: 0.528 Acc: 0.537 Acc: 0.561
Se: 0.588 Se: 0.565 Se: 0.565
Sp: 0.482 Sp: 0.523 Sp: 0.569

5251 to 5 Acc: 0.561 Acc: 0.492 Acc: 0.560
Se: 0.602 Se: 0.550 Se: 0.564
Sp: 0.532 Sp: 0.450 Sp: 0.565

5251 to 6 Acc: 0.571 Acc: 0.516 Acc: 0.611
Se: 0.621 Se: 0.585 Se: 0.637
Sp: 0.531 Sp: 0.459 Sp: 0.596

5251 to 7 Acc: 0.532 Acc: 0.544 Acc: 0.549
Se: 0.487 Se: 0.538 Se: 0.558
Sp: 0.588 Sp: 0.560 Sp: 0.554

5251 to 8 Acc: 0.468 Acc: 0.506 Acc: 0.512
Se: 0.546 Se: 0.554 Se: 0.537
Sp: 0.406 Sp: 0.470 Sp: 0.502

Table 4: Classification accuracy, sensitivity, and specificity of KNN applied to AASK data reduced by DM with
the Laplacian kernel for t = 10, µ = 0.1 and various values of the parameter b.



Dimensions µ = 0.5, b = 0.5 µ = 0.5, b = 2 µ = 0.5, b = 8
5251 to 2 Acc: 0.474 Acc: 0.574 Acc: 0.466

Se: 0.458 Se: 0.579 Se: 0.518
Sp: 0.502 Sp: 0.579 Sp: 0.426

5251 to 3 Acc: 0.530 Acc: 0.580 Acc: 0.509
Se: 0.556 Se: 0.645 Se: 0.515
Sp: 0.518 Sp: 0.526 Sp: 0.516

5251 to 4 Acc: 0.553 Acc: 0.530 Acc: 0.543
Se: 0.542 Se: 0.562 Se: 0.544
Sp: 0.575 Sp: 0.511 Sp: 0.556

5251 to 5 Acc: 0.553 Acc: 0.509 Acc: 0.527
Se: 0.614 Se: 0.552 Se: 0.535
Sp: 0.507 Sp: 0.478 Sp: 0.532

5251 to 6 Acc: 0.505 Acc: 0.511 Acc: 0.508
Se: 0.520 Se: 0.549 Se: 0.498
Sp: 0.504 Sp: 0.483 Sp: 0.530

5251 to 7 Acc: 0.561 Acc: 0.585 Acc: 0.507
Se: 0.540 Se: 0.570 Se: 0.526
Sp: 0.592 Sp: 0.610 Sp: 0.504

5251 to 8 Acc: 0.474 Acc: 0.563 Acc: 0.482
Se: 0.556 Se: 0.599 Se: 0.455
Sp: 0.407 Sp: 0.539 Sp: 0.524

Table 5: Classification accuracy, sensitivity, and specificity of KNN applied to AASK data reduced by DM with
the Laplacian kernel for t = 10, µ = 0.5 and various values of the parameter b.

Dimensions µ = 1, b = 0.5 µ = 1, b = 2 µ = 1, b = 8
5251 to 2 Acc: 0.445 Acc: 0.547 Acc: 0.515

Se: 0.428 Se: 0.608 Se: 0.547
Sp: 0.477 Sp: 0.500 Sp: 0.498

5251 to 3 Acc: 0.529 Acc: 0.513 Acc: 0.467
Se: 0.509 Se: 0.550 Se: 0.446
Sp: 0.560 Sp: 0.486 Sp: 0.500

5251 to 4 Acc: 0.555 Acc: 0.551 Acc: 0.470
Se: 0.543 Se: 0.571 Se: 0.441
Sp: 0.575 Sp: 0.544 Sp: 0.510

5251 to 5 Acc: 0.508 Acc: 0.506 Acc: 0.518
Se: 0.519 Se: 0.526 Se: 0.486
Sp: 0.510 Sp: 0.497 Sp: 0.561

5251 to 6 Acc: 0.496 Acc: 0.532 Acc: 0.540
Se: 0.552 Se: 0.545 Se: 0.508
Sp: 0.457 Sp: 0.532 Sp: 0.582

5251 to 7 Acc: 0.515 Acc: 0.573 Acc: 0.556
Se: 0.558 Se: 0.562 Se: 0.529
Sp: 0.482 Sp: 0.598 Sp: 0.592

5251 to 8 Acc: 0.501 Acc: 0.577 Acc: 0.543
Se: 0.492 Se: 0.563 Se: 0.506
Sp: 0.518 Sp: 0.603 Sp: 0.595

Table 6: Classification accuracy, sensitivity, and specificity of KNN applied to AASK data reduced by DM with
the Laplacian kernel for t = 10, µ = 1 and various values of the parameter b.



Dimensions µ = 10, b = 0.5 µ = 10, b = 2 µ = 10, b = 8
5251 to 2 Acc: 0.515 Acc: 0.635 Acc: 0.569

Se: 0.523 Se: 0.648 Se: 0.562
Sp: 0.521 Sp: 0.632 Sp: 0.588

5251 to 3 Acc: 0.602 Acc: 0.564 Acc: 0.542
Se: 0.569 Se: 0.544 Se: 0.518
Sp: 0.645 Sp: 0.595 Sp: 0.573

5251 to 4 Acc: 0.485 Acc: 0.591 Acc: 0.558
Se: 0.465 Se: 0.572 Se: 0.519
Sp: 0.515 Sp: 0.623 Sp: 0.608

5251 to 5 Acc: 0.471 Acc: 0.576 Acc: 0.538
Se: 0.499 Se: 0.523 Se: 0.562
Sp: 0.455 Sp: 0.640 Sp: 0.525

5251 to 6 Acc: 0.542 Acc: 0.523 Acc: 0.511
Se: 0.532 Se: 0.476 Se: 0.543
Sp: 0.566 Sp: 0.581 Sp: 0.492

5251 to 7 Acc: 0.515 Acc: 0.534 Acc: 0.532
Se: 0.574 Se: 0.514 Se: 0.535
Sp: 0.470 Sp: 0.567 Sp: 0.542

5251 to 8 Acc: 0.469 Acc: 0.570 Acc: 0.575
Se: 0.522 Se: 0.547 Se: 0.572
Sp: 0.430 Sp: 0.606 Sp: 0.591

Table 7: Classification accuracy, sensitivity, and specificity of KNN applied to AASK data reduced by DM with
the Laplacian kernel for t = 10, µ = 10 and various values of the parameter b.



9.2.4 Polynomial Kernel

Dimensions d = 1 d = 2 d = 5 d = 10
5251 to 2 Acc: 0.555 Acc: 0.513 Acc: 0.540 Acc: 0.502

Se: 0.548 Se: 0.533 Se: 0.615 Se: 0.505
Sp: 0.577 Sp: 0.507 Sp: 0.477 Sp: 0.514

5251 to 3 Acc: 0.473 Acc: 0.480 Acc: 0.494 Acc: 0.508
Se: 0.471 Se: 0.486 Se: 0.495 Se: 0.534
Sp: 0.488 Sp: 0.489 Sp: 0.507 Sp: 0.497

5251 to 4 Acc: 0.532 Acc: 0.544 Acc: 0.538 Acc: 0.536
Se: 0.570 Se: 0.575 Se: 0.529 Se: 0.520
Sp: 0.508 Sp: 0.530 Sp: 0.558 Sp: 0.561

5251 to 5 Acc: 0.509 Acc: 0.540 Acc: 0.561 Acc: 0.580
Se: 0.533 Se: 0.563 Se: 0.578 Se: 0.559
Sp: 0.500 Sp: 0.532 Sp: 0.558 Sp: 0.611

5251 to 6 Acc: 0.531 Acc: 0.555 Acc: 0.547 Acc: 0.584
Se: 0.562 Se: 0.576 Se: 0.553 Se: 0.547
Sp: 0.512 Sp: 0.546 Sp: 0.551 Sp: 0.634

5251 to 7 Acc: 0.565 Acc: 0.586 Acc: 0.585 Acc: 0.597
Se: 0.581 Se: 0.601 Se: 0.577 Se: 0.586
Sp: 0.560 Sp: 0.585 Sp: 0.608 Sp: 0.617

5251 to 8 Acc: 0.579 Acc: 0.583 Acc: 0.582 Acc: 0.606
Se: 0.648 Se: 0.596 Se: 0.578 Se: 0.614
Sp: 0.525 Sp: 0.581 Sp: 0.597 Sp: 0.610

Table 8: Classification accuracy, sensitivity, and specificity of KNN applied to AASK data reduced by DM with
the Polynomial kernel for t = 6 and various values of the parameter d.



10. CONCLUSIONS

NLDR techniques such as DM can effectively transform highdimensional medical data to as few as one di-
mension while maintaining its important characteristics, allowing us to classify data points with similar accuracy
as on the raw data. This saves computational time and space.

DR methods involve feature transformation. Therefore, in most cases an interpretation of the reduced data
may not be possible in terms of the original features. However, certain important biomarkers could be devised
based on the reduced data.

Classification of certain data can be complicated due to its intrinsic features. DR methods can improve
results of classification algorithms.

Future work: study the DR methods on kidney datasets to evolve suitable biomarkers.
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