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Abstract
This work addresses various open questions in the theory of active learning for nonparametric
classification. Our contributions are both statistical and algorithmic:

• We establish new minimax-rates for active learning under common noise conditions. These rates dis-
play interesting transitions – due to the interaction between noise smoothness and margin – not present
in the passive setting. Some such transitions were previously conjectured, but remained unconfirmed.

• We present a generic algorithmic strategy for adaptivity to unknown noise smoothness and margin;
our strategy achieves optimal rates in many general situations; furthermore, unlike in previous work,
we avoid the need for adaptive confidence sets, resulting in strictly milder distributional requirements.

Keywords: Active learning, Nonparametric classification, Noise conditions, Adaptivity.

1. Introduction

The nonparametric setting in classification allows for a generality which has so far provided re-
markable insights on how the interaction between distributional parameters controls learning rates.
In particular the interaction between feature X 2 Rd and label Y 2 {0, 1} can be parametrized
into label-noise regimes that clearly interpolate between hard and easy problems. This theory is
now well developed for passive learning, i.e., under i.i.d. sampling, however for active learning
– where the learner actively chooses informative samples – the theory is still evolving. Our goals
in this work are both statistical and algorithmic, the common thrust being to better understand how
label-noise regimes control the active setting and induce performance gains over the passive setting.

An initial nonparametric result of Castro and Nowak (2008) considers situations where the
Bayes decision boundary {x : E[Y |X = x] = 1/2} is given by a smooth curve which bisects
the X space. The work yields nontrivial early insights into nonparametric active learning by for-
malizing a situation where active rates are significantly faster than their passive counterpart.

More recently, Minsker (2012a) considered a different nonparametric setting, also of interest
here. Namely, rather than assuming a smooth boundary between the classes, the joint distribu-
tion of the data P

X,Y

is characterized in terms of the smoothness ↵ of the regression function
⌘(x)

.
= E[Y |X = x]; this setting has the appeal of allowing more general decision boundaries.
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Furthermore, following Audibert and Tsybakov (2007), the noise level in Y , i.e., the likelihood
that ⌘(X) is close to 1/2, is captured by a margin parameter �. Restricting attention to the case
↵  1 (Hölder continuity) and ↵�  d, Minsker (2012a) shows striking improvements in the active
rates over passive rates, including an interesting phenomenon for the active rate at the perimeter
↵� = d. More precisely, under certain technical conditions, the minimax rate (excess error over
the Bayes classifier) is of the form n�↵(�+1)/(2↵+d�↵�), where n is the number of samples re-
quested. In contrast, the passive rate is n�↵(�+1)/(2↵+d), i.e., the dependence on dimension d is
greatly reduced with large ↵�, down to (nearly) no dependence1 on d when ↵� = d. For the case
↵ > 1, quite interestingly, later work Minsker (2012b) obtains a different upper-bound of the form
n�↵(�+1)/(2↵+d��), i.e., the dependence on d is now only reduced by the noise term � rather than by
↵� as when ↵  1. While there was no matching lower-bound, both Minsker (2012a,b) conjecture
that this rate is tight, i.e., that there might indeed be a phase transition at ↵ � 1. Nevertheless, the
evolving picture is one where the interaction between ↵,� and d seems essential in active learning.

Thus, many natural questions remain open in the present setting (of Audibert and Tsybakov
(2007) and Minsker (2012a)). First, statistical rates remain unclear in various regimes: when Hölder
smoothness ↵ > 1, when ↵� > d, or when the marginal distribution P

X

is far from being uniform
on [0, 1]d (this is required in Minsker (2012a) and in the earlier setting of Castro and Nowak (2008)).
Furthermore, a nontrivial algorithmic problem remains: a natural active strategy is to query Y at x
only when we lack confidence in the label estimate at x, i.e., when ⌘(x)

.
= E[Y |x] is deemed close

to 1/2; this seemingly requires tight assessments of the confidence in estimates of ⌘(x), however,
such confidence assessment is challenging without a priori knowledge of distributional parameters
such as the smoothness ↵ of ⌘. In fact, this is a challenge in any nonparametric setting, and Castro
and Nowak (2008) for instance simply assume knowledge of relevant parameters. In our particular
setting, the only known procedures of Minsker (2012a,b) have to resort to restrictive conditions 2

outside of which adaptive and honest3 confidence sets do not exist (see negative results of Robins
et al. (2006); Cai et al. (2006); Genovese and Wasserman (2008); Hoffmann and Nickl (2011); Bull
and Nickl (2013); Carpentier (2013)). We present a simple strategy that bypasses adaptive and
honest confidence sets, and therefore avoids ensuing restrictive conditions.

Statistical results. The present work expands on the existing theory of nonparametric active learn-
ing in many directions, and confirms new interesting transitions in achievable rates induced by
regimes of interaction between distributional parameters ↵,�, d and the marginal P

X

. We outline
some noteworthy such transitions below. We assume as in prior work that supp (P

X

) ⇢ [0, 1]d:

• For ↵ > 1, P
X

nearly uniform, Minsker (2012a) conjectured that the minimax rates for active
learning changes to n�↵(�+1)/(2↵+[d��]

+

), i.e., [d� �]
+

should appear in the denominator rather
than by [d � ↵�]

+

. We show that this rate is indeed tight in relevant cases: the upper-bound
n�↵(�+1)/(2↵+[d��]

+

) is attained by our algorithm for any ↵ � 1,� � 0, while we establish a
matching lower-bound when � = 1; in other words, a better upper-bound is impossible without
additional assumptions on �. This however leaves open the possibility of a much richer set of
transitions characterized by �. We note that no such transition at ↵ > 1 is known in the passive

1. In a large sample sense, since rates are obtained for n > N
0

, where N
0

itself might depend on d.
2. So-called self-similarity conditions (roughly upper and lower-bounds of similar order on smoothness), which can

be rather unnatural. Similarly restrictive, the earlier result Minsker (2012a) required the equivalence of L
2,PX and

L1,PX distances between ⌘ and certain piecewise approximations to ⌘ (see Assumption 2 therein).
3. A set of high confidence level (honesty) and of optimal size in terms of the unknown smoothness ↵ (adaptivity).
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case where the rate remains n�↵(�+1)/(2↵+d). Our lower-bound analysis suggests that [d � (↵ ^
1)�]

+

plays the role of degrees of freedom in active learning - this is the case when ↵  1,� � 0

and in the case ↵ � 1,� = 1.

• For unrestricted P
X

, i.e., without the near uniform assumption, we prove that the minimax rate is
of the form n�↵(�+1)/(2↵+d), showing a sharp difference between the regimes of uniform P

X

and
unrestricted P

X

. This difference mirrors the case of passive learning where the unrestricted P
X

rate is of order n�↵(�+1)/(2↵+d+↵�). Again the key quantity in the rate-reduction from passive to
active is the interaction term ↵�.

In the case ↵ < 1 and P
X

nearly uniform, we recover the rate n�↵(�+1)/(2↵+[d�↵�]

+

) of Minsker
(2012a,b) - but while avoiding the restrictive assumptions that are necessary therein to ensure that
adaptive and honest confidence sets exist.
Algorithmic results. We present a generic strategy that avoids the need for honest confidence sets
but is able to adapt in an efficient way to the unknown parameters ↵,� of the problem, simulta-
neously for all statistical regimes discussed above. Indeed our algorithm does not take the oracle
values of ↵,� as parameters and yet achieves the oracle rate, over a large range of values of ↵,�
(converging to any range of ↵ with sufficiently large n). The main insight is a reduction to the case
where ↵ is known: iterating over ↵ ⇡ 0 to higher values, the procedure aggregates the estimates of
a non-adaptive subroutine taking ↵ as a parameter. This reduction is made possible by the nested
structure of Hölder classes indexed by ↵: that is, ⌘ is ↵0-Hölder for any ↵0 smaller than the true
unknown ↵. Note that such nested class structure is also harnessed for adaptation in the passive
setting as in Lepski and Spokoiny (1997), using techniques suited to passive sampling.

This reduction in active learning is perhaps of independent interest as it likely extends to any
hierarchy of model classes. The reduction takes care of adaptivity to unknown ↵. What remains is
to show that, for known ↵, there exists an efficient subroutine that adapts to unknown noise level �;
fortunately, adaptivity to � comes for free once we have proper control of the bias and variance of
local estimates of ⌘(x) (over a hierarchical partition of the feature space). Such control is easiest
for ↵  1 and yields useful intuition towards handling the harder case ↵ > 1. Our final solution
is a subroutine which, given ↵, actively labels the X space while requesting few Y values over a
hierarchical space partition; it is computationally efficient and easy to implement.

Paper outline. We start in Section 2 with a detailed discussion of related work. We give the formal
statistical setup in Section 3, followed by the main results and discussion in Sections 4 (main results,
i.e., adaptive upper bounds and lower bounds). These results build on technical non-adaptive results
presented in Sections 5. Section A contains all detailed proofs.

2. Related Work in Active Learning

Much of the theory in active learning covers a range of distributional assumptions which unfortu-
nately are not always compatible or easy to compare with the present setting. We give an overview
below of the current theory, and compare rates at the intersection of assumptions whenever feasible.

Parametric settings. Much of the current theory in active classification deals with the parametric
setting. Such work is concerned with performance w.r.t. the best classifier over a fixed class F ⌘
{f : Rd 7! {0, 1}} of small complexity, e.g., bounded VC dimension. It is well known that the
passive rates in this case are of the form n�1/2, i.e., have no dependence on d in the exponent; this
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is due to the relative small complexity of such F , and corresponds4 roughly to infinite smoothness
in our case (indeed n�1/2 is the limit of the nonparametric rates n�↵/(2↵+d) as ↵ ! 1 and � = 0,
i.e., no margin assumption).

The parametric theory has developed relatively fast, yielding much insight as to the relevant
interaction between F and P

X,Y

. In particular, works such as Hanneke (2007); Dasgupta et al.
(2007); Balcan et al. (2008, 2009); Beygelzimer et al. (2009) show that significant savings are pos-
sible over passive learning, provided the pair (F ,P

X,Y

) has bounded Alexander capacity (a.k.a.
disagreement-coefficient, see Alexander (1987)). To be precise, the active rates are of the form5

⌫ · n�1/2

+ exp(�n1/2

) where ⌫
.
= inf

f2F err(f); in other words the active rates behave like
exp(�n1/2

) when ⌫ ⇡ 0 (low noise), but otherwise are O(n�1/2

) as in the passive case. More
recently, Zhang and Chaudhuri (2014) shows similar rate regimes without requiring bounded dis-
agreement coefficient.

Such rates are tight as shown by matching lower-bounds of Kääriäinen (2006), and Raginsky
and Rakhlin (2011). This suggests that a refined parametrization of the noise regimes is needed to
better capture the gains in active learning. The task is undertaken in the works of Hanneke (2009);
Koltchinskii (2010) where the active rates are of the form n�(�+1)/2, in terms of noise margin6 �,
and clearly show gains over known passive rates of the form n�(�+1)/(�+2). While this parametric
setting is inherently different from ours, interestingly, our rates coincide at the intersection where
P
X

is unrestricted and we let ↵ ! 1 (check that lim
↵!1 n�↵(�+1)/(2↵+d)

= n�(�+1)/2).

Nonparametric settings. Further results in Hanneke (2009) and Koltchinskii (2010) concern a
setting where the class F is of larger complexity encoded in terms of metric entropy. The active
rates in this case are of the form n�(�+1)/(2+⇢�), where ⇢ captures the complexity of F . These rates
are again better than the corresponding passive rate of n�(�+1)/(2+�+⇢�) shown earlier in Tsybakov
(2004), but are only valid for classes with a bounded disagreement coefficient.

The complexity term ⇢ can be viewed as describing the richness of the Bayes decision boundary.
This term becomes clear in the setting where the decision boundary is given by a (d�1)-dimensional
curve of smoothness ↵0 (to be interpreted as the graph of an ↵0-Hölder function Rd�1 7! R), in
which case ⇢ = (d � 1)/↵0 (as shown in Tsybakov (2004)). While it has been shown in Wang
(2011) that under these assumptions the disagreement coefficient is unbounded and disagreement-
based strategies lead to suboptimal rates, the earlier work of Castro and Nowak (2008) shows that
active rates of the form n�(�+1)/(2+⇢�) are indeed tight in this nonparametric setting. Notice that
the earlier parametric rates above correspond to ⇢ = 0, i.e., ↵0 ! 1.

Unfortunately such active rates are hard to compare across settings, since boundary assumptions
are inherently incompatible with smoothness assumptions on ⌘: it is not hard to see that smooth
⌘ does not preclude complex boundary, neither does smooth boundary preclude complex ⌘ (as
discussed in Audibert and Tsybakov (2007)). However, smoothness assumptions on ⌘ seem to be a
richer setting that displays a variety of noise-regimes with different statistical rates, as shown here.

As discussed in the introduction, the closest work to ours is that of Minsker (2012a,b), as both
works consider procedures that are efficient (unlike that of Koltchinskii (2010)7) and adaptive (un-
like that of Castro and Nowak (2008)). However, our distinct algorithmic strategy yields interesting
new insights on the effect of noise parameters under strictly broader statistical conditions.

4. To compare across settings, we view F as the set of classifiers I{⌘ � 1/2}, where ⌘ is ↵-smooth.
5. Omitting constants depending on the disagreement-coefficient.
6. The rates are given in terms of a noise parameter  = (� + 1)/� (see relation in Prop. 1 of Tsybakov (2004)).
7. The procedure requires inefficient book-keeping over F as it discards functions with large error.
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Other lines of work in Machine Learning are of a nonparametric nature given the estimators
employed. The statistical aims are however different from ours. In particular Dasgupta and Hsu
(2008); Urner et al. (2013); Kpotufe et al. (2015) are primarily concerned with the rates at which
a fixed sample {X

i

}n
1

might be labeled, rather than in excess risk over the Bayes classifier. In-
terestingly, notions of smoothness and noise-margin (parametrized differently) also play important
roles in such problems. In Kontorovich et al. (2016) on the other hand, the main concern is that
of sample-dependent rates, i.e., rates that are given in terms of noise-characteristics of a random
sample, rather than of the distribution as studied here.

It is important to note that, a recent procedure of Hanneke (2017), which is yet unpublished,
concerns the same setting as ours, for the special case ↵  1,↵�  d and uniform P

X

, and achieves
the minimax active rate of n�↵(�+1)/(2↵+d�↵�) without requiring adaptive honest confidence sets;
instead the procedure follows insights similar to techniques presented in Kontorovich et al. (2016).

Finally, we remark that active learning is believed to be related to other sequential learning
problems such as bandits, and stochastic optimization, and recent works such as Ramdas and Singh
(2013) show that insights on noise regimes in active learning can cross over to such problems.

3. Preliminaries

3.1. The active learning setting

Let the feature-label pair (X,Y ) have joint-distribution P
X,Y

, where the marginal distribution ac-
cording to variable X is noted P

X

and is supported on [0, 1]d, and where the random variable Y
belongs to {0, 1}. The conditional distribution of Y knowing X = x, which we denote P

Y |X=x

, is
then fully characterized by the regression function

⌘(x)
.
= E[Y |X = x], 8x 2 [0, 1]d.

gWe extend the definition of ⌘ on Rd arbitrarily, so that we have ⌘ : Rd 7! [0, 1] (although we
are primarily concerned about its behavior on [0, 1]d). It is well known that the Bayes classifier
f⇤

(x) = 1{⌘(x) � 1/2} minimizes the 0-1 risk R(f) = P
X,Y

(Y 6= f(X)) over all possible
f : [0, 1]d 7! {0, 1}. The aim of the learner is to return a classifier f with small excess error

E(f) .
= EPX,Y (f)

.
= R(f)�R(f⇤

) =

Z

x2[0,1]d:f(x) 6=f

⇤
(x)

|1� 2⌘(x)|dP
X

(x). (1)

Active sampling. At any point in time, the active learner can sample a label Y at any x 2
Rd according to a Bernoulli random variable of parameter ⌘(x), i.e. according to the marginal
distribution P

Y |X=x

if x 2 [0, 1]d. The learner can request at most n 2 N⇤ samples (i.e. its budget
is n), and then returns a classifier bf

n

: [0, 1]d 7! {0, 1}.
Our goal is therefore to design a sampling strategy that outputs a classifier bf

n

whose excess risk
E( bf

n

) is as small as possible, with high probability over the samples requested.

3.2. Assumptions and Definitions

We first define a hierarchical partitioning of [0, 1]d. This will come in handy in our subroutines.

Definition 1 [Dyadic grid G
l

, cells C, center x
C

, and diameter r
l

] We write G
l

for the regular
dyadic grid on the unit cube of mesh size 2

�l. It defines naturally a partition of the unit cube in 2

ld

5
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smaller cubes, or cells C 2 G
l

. They have volume 2

�ld and their edges are of length 2

�l. We have
[0, 1]d =

S

C2Gl
C and C \ C 0

= ; if C 6= C 0, with C,C 0 2 G2

l

. We define x
C

as the center of
C 2 G

l

, i.e. the barycenter of C.
The diameter of the cell C is written :

r
l

.
= max

x,y2C
|x� y|

2

=

p
d2�l, (2)

where |z|
2

is the Euclidean norm of z.

We now state the following assumption on P
X

.

Assumption 1 (Strong density) There exists c
1

> 0 such that for all l � 0 and any cell C of G
l

satisfying P
X

(C
l

) > 0, we have:
P
X

(C
l

) � c
1

2

�ld.

This assumption allows us to lower bound the measure of a cell of the grid, and holds for in-
stance when P

X

is uniform or approximately so. This assumption is slightly weaker than the one
in Minsker (2012a). We obtain results for both when Assumption 1 holds, and when it does not.

Definition 2 (Hölder smoothness) For ↵ > 0 and � > 0, we denote the Hölder class ⌃(�,↵) of
functions g : Rd ! [0, 1] that are b↵c times continuously differentiable, that are such that for any
j 2 N, j  ↵

sup

x2Rd

X

s:|s|=j

|Dsg(x)|  �, and, sup

x,y2Rd

X

s:|s|=b↵c

|Dsg(x)�Dsg(y)|
|x� y|↵�b↵c

2

 �,

where Dsf is the classical mixed partial derivative with parameter s. Note that for ↵  1 and
� � 1, we simply require sup

x,y2Rd
|g(y)�g(x)|

|y�x|↵
2

 �.

If a function is ↵-Hölder, then it is smooth and well approximated by polynoms of degree b↵c, but
also by other approximation means, as e.g. Kernels.

Assumption 2 (Hölder smoothness of ⌘) ⌘ belongs to ⌃(�,↵) with ↵ > 0 and � � 1.

We finally state our last assumption, which upper bounds the measure of the space where it is
not easy to determine which class is best fitted.

Assumption 3 (Margin condition) There exists nonnegative c
3

,�
0

, and � such that 8� > 0:

P
X

(|⌘(X)� 1/2| < �

0

) = 0, and, P
X

(|⌘(X)� 1/2|  �

0

+�)  c
3

�

� .

These parameters cover many interesting cases, including �

0

= 0,� > 0 (Tsybakov’s noise con-
dition) and �

0

> 0,� = 0 (Massart’s margin condition), which are common in the literature. This
assumption allows us to bound the measure of regions close to the decision boundary (i.e. where
⌘ is close to 1/2). The case �

0

> 0 is linked to the cluster assumption in the semi-supervised
learning literature (see e.g. Chapelle et al. (2003); Rigollet (2007)), and can model situations where
supp(P

X

) breaks up into components each admitting one dominant class (i.e. |⌘ � 1/2| � �

0

on
each such component and ⌘ does not cross 1/2 on supp(P

X

)).
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Definition 3 We denote by P(↵,�,�
0

)

.
= P(↵,�,�

0

;�, c
3

) the set of classification problems
P
X,Y

characterized by (⌘,P
X

) that are such that Assumptions 2 and 3 are satisfied with parameters
↵ > 0,� � 0,�

0

� 0, and some fixed � � 1, c
3

> 0. Moreover, we denote P⇤
(↵,�,�

0

) the
subset of P(↵,�,�

0

) such that P
X

satisfies Assumption 1 (strong density).

We fix in the rest of the paper c
3

> 0 and � � 1. These parameters will be discussed in Section 4.2.

4. Adaptive Results

We start with a detailed presentation of our main adaptive strategy, Algorithm 1.

Algorithm 1 Adapting to unknown smoothness ↵
Input: n, �, �, and a black-box Subroutine
Initialization: s0

0

= s1
0

= ;
for i = 1, ..., blog(n)c3 do

Let n
0

=

n

blog(n)c3 , �
0

=

�

blog(n)c3 , and ↵
i

=

i

blog(n)c2
Run Subroutine with parameters (n

0

, �
0

,↵
i

,�) and receive S0

i

, S1

i

For y 2 {0, 1}, set sy
i

= sy
i�1

[ (Sy

i

\ s1�y

i�1

)

end for
Output: S0

= s0blog(n)c3 , S
1

= s1blog(n)c3 and classifier ˆf
n

= 1{S1}

Algorithm 1 aggregates the label estimates of a black-box (non-adaptive) Subroutine over in-
creasing guesses ↵

i

of the unknown smoothness parameter ↵. Algorithm 1 takes as parameters n, �,
�, and the black-box Subroutine, and outputs a classifier ˆf

n

. Here n is the sampling budget, � is the
desired level of confidence of the algorithm, � is such that ⌘ is (�,↵)-Hölder for some unknown ↵;
in practice � is also unknown, but any upper-bound is sufficient, e.g. log n for n sufficiently large.

In each phase i 2 {1, 2, . . . , blog(n)c3}, the black-box Subroutine takes four parameters: a
sampling budget n

0

, a confidence level �
0

, and smoothness parameters ↵
i

, �. It then returns two
disjoint subsets of [0, 1]d, Sy

i

, y 2 {0, 1}. The set S0

i

corresponds to all x 2 [0, 1]d that are labeled
0 by the Subroutine (in phase i), and S1

i

corresponds to the label 1. The remaining space [0, 1]d \
S1

i

[ S0

i

corresponds to a region that the Subroutine could not confidently label.
Algorithm 1 calls the Subroutine blog(n)c3 times, for increasing values of ↵

i

on the grid
{blog(n)c�2, 2blog(n)c�2, ..., blog(n)c}), and collects the sets Sy

i

that it aggregates into sy
i

. For
n sufficiently large, this grid contains the unknown ↵ parameter to be adapted to.

The main intuition behind the procedure relies on the nestedness of Hölder classes: if ⌘ is ↵-
Hölder for some unknown ↵, then it is ↵

i

-Hölder for ↵
i

 ↵. Thus, suppose the Subroutine returns
correct labels Sy

i

whenever ⌘ is ↵
i

-Hölder; then for any ↵
i

 ↵ the aggregated labels remain correct.
When ↵

i

> ↵, the error cannot be higher than the error in earlier phases since the aggregation never
overwrites correct labels. In other words, the excess risk of Algorithm 1 is at most the error due to
the highest phase s.t. ↵

i

 ↵. We therefore just need the Subroutine to be correct in an optimal way
formalized below.

Definition 4 ((�,�, n)-correct algorithm) Consider a procedure which returns disjoint measur-
able sets S0, S1 ⇢ [0, 1]d. Let 0 < � < 1, and � � 0. We call such a procedure weakly

7
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(�,�, n)-correct for a classification problem P
X,Y

(characterized by (⌘,P
X

)) if, with probability
larger than 1� 8� over at most n label requests:

n

x 2 [0, 1]d : ⌘(x)� 1/2 > �

o

⇢ S1, and
n

x 2 [0, 1]d : 1/2� ⌘(x) > �

o

⇢ S0.

If in addition, under the same probability event over at most n label requests, we have

S1 ⇢
n

x 2 [0, 1]d : ⌘(x)� 1/2 > 0

o

, and S0 ⇢
n

x 2 [0, 1]d : ⌘(x)� 1/2 < 0

o

,

then such a procedure is simply called (�,�, n)-correct for P
X,Y

.

4.1. Main Results

We now present our main results, which are high-probability bounds on the risk of the classifier
output by Algorithm 1, under different noise regimes. Our upper-bounds build on the following
simple proposition, the intuition of which was detailed above.

Proposition 1 (Correctness of aggregation) Let n 2 N⇤ and 1 > � > 0. Let �
0

= �/(blog(n)c3)
and n

0

= n/(blog(n)c3) as in Algorithm 1. Fix � � 0, �
0

� 0. Suppose that, for any ↵ > 0,
the Subroutine in Algorithm 1 is (�

0

,�
↵

, n
0

)-correct for any P
X,Y

2 P⇤
(↵,�,�

0

), where 0  �

↵

depends on n, � and the class P⇤
(↵,�,�

0

).
Fix ↵ 2 [blog(n)c�2, blog(n)c], and let ↵

i

= i/blog(n)c2 for i 2 {1, . . . , blog(n)c3}. Then
Algorithm 1 is weakly (�

0

,�
↵i , n0

)-correct for any P
X,Y

2 P⇤
(↵,�,�

0

) for the largest i such
that ↵

i

 ↵.
The same holds true for P(↵,�,�

0

) in place of P⇤
(↵,�,�

0

).

Remark 4.1 To see why the proposition is useful, suppose for instance that our problem belongs
to P⇤

(↵,�, 0), and Algorithm 1 happens to be weakly (�
0

,�, n
0

)-correct on this problem for some
�

.
= �(n

0

, �
0

,↵,�). Then, by definition of correctness, the returned classifier ˆf
n

agrees with the
Bayes classifier f on the set {x : |⌘(x) � 1/2| > �}; that is, its excess error only happens on the
set {x : |⌘(x)� 1/2|  �}. Therefore by Equation (1), with probability larger than 1� �

0

E( ˆf
n

)  2� · P
X

({x : |⌘(x)� 1/2|  �})  2c
3

�

1+� .

In other words, we just need to show the existence of a Subroutine which is (�
0

,�, n
0

)-correct
for any class P⇤

(↵,�,�
0

) (or respectively P(↵,�,�
0

)) with �

.
= �(n

0

, �
0

,↵,�,�
0

) of appro-
priate order over ranges of ↵,�,�

0

. The adaptive results on the next sections are derived in this
manner. In particular, we will show that Algorithm 2 of Section 5 is a correct such Subroutine.

Our results show that the excess risk rates in the active setting are strictly faster than in the
passive setting (except for � = 0, i.e., no noise condition), in both cases i.e. when P

X

is nearly
uniform on its support (Assumption 1), and when it is fully unrestricted. These two cases are
presented in the next two sections.
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4.1.1. ADAPTIVE RATES FOR P⇤
(↵,�,�

0

)

We start with results for the class P⇤
(↵,�,�

0

), i.e. under the strong density condition which
encodes the usual assumption in previous work that the marginal P

X

is nearly uniform.

Theorem 1 (Adaptive upper-bounds) Let n 2 N⇤ and 1 > � > 0. Assume that P
X,Y

2
P⇤

(↵,�,�
0

) with
�

3d

log(n)

�

1/3  ↵  blog(n)c.

Algorithm 1, with input parameters (n, �,�, Algorithm 2), outputs a classifier bf
n

satisfying the
following, with probability at least 1� 8�:

• For any �

0

� 0,

E( bf
n

)  C

 

�(

d
↵^1

_�)
log

3

(n) log(�n
�

)

n

!

↵(�+1)

2↵+[d�(↵^1)�]
+

,

where the constant C > 0 does not depend on n, �,�.

• If �
0

> 0, then E( bf
n

) = 0 whenever the budget satisfies

n

blog(n)c3 > C log

��n

�

�

·
 

�(

d
↵^1

_�)

�

0

!

2↵+[d�(↵^1)�]
+

↵

where C > 0 does not depend on n, �,�.

The above theorem is proved, following Remark 4.1, by showing that Algorithm 3 is correct
for problems in P⇤

(↵,�,�
0

) with some � = O(n�↵/(2↵+[d�(↵^1)�]
+

); for �
0

> 0, correctness is
obtained for �  �

0

, provided sufficiently large budget n. See Theorem 6.
The rate of Theorem 1 matches (up to logarithmic factors) the minimax lower-bound for this

class of problems with ↵ > 0,� � 0 such that ↵�  d obtained in Minsker (2012a), which we
recall hereunder for completeness.

Theorem 2 (Lower-bound: Theorem 7 in Minsker (2012a)) Let ↵ > 0,� � 0 such that ↵�  d
and assume that c

3

,� are large enough. For n large enough, any (possibly active) strategy that
samples at most n labels and returns a classifier bf

n

satisfies :

sup

PX,Y 2P⇤
(↵,�,0)

EPX,Y [EPX,Y (
bf
n

)] � Cn
� 2↵

2↵+d�↵� ,

where C > 0 does not depend on n.

However, the above lower-bound turns out not to be tight for ↵ > 1. We now present a novel
minimax lower-bound that complements the above, and which is always tighter for ↵ > 1,� = 1.
To the best of our knowledge, it is the first lower bound that highlights the phase transition in the
active learning setting for ↵ > 1 which was conjectured in Minsker (2012a).
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Theorem 3 (Lower-bound) Let ↵ > 0, � = 1, and assume that c
3

, � are large enough. For n
large enough, any (possibly active) strategy that samples at most n labels and returns a classifier
bf
n

satisfies:
sup

PX,Y 2P⇤
(↵,1,0)

EPX,Y [EPX,Y (
bf
n

)] � Cn� 2↵
2↵+d�1 ,

where C > 0 does not depend on n.

The proof of this new lower-bound is given in Section A.3 of the Appendix.

Remark 4.2 Under the strong density assumption, the rate is improved from n�↵(�+1)/(2↵+d) to
n�↵(�+1)/(2↵+[d�(↵^1)�]

+

). This implies that fast rates (i.e. faster than n�1/2) are reachable for
↵� > d/(2 + (↵ ^ 1)

�1

), improving from ↵� > d/2 in the passive learning setting. This rate
matches (up to logarithmic factors) the lower-bound in Minsker (2012a) for ↵  1.

It also improves on the results in Minsker (2012a), as we require strictly weaker assumptions
(see Assumption 2 in Minsker (2012a), which in light of the examples given is rather strong). In the
important case ↵ > 1, our results match the rate conjectured in Minsker (2012a), up to logarithmic
factors. The conjectured rates of Minsker (2012a) turns out to be tight, as our lower-bound shows
for the case � = 1, i.e. no better upper-bound is possible over all �. This highlights that there is
indeed a phase transition happening (at least when � = 1) when we go from the case ↵  1 to the
case ↵ � 1. Our lower-bound leaves open the possibility of even richer transitions over regimes of
the � parameter.

Our lower-bound analysis of Section A.3 shows that, at least for � = 1, the quantity d� � acts
like the degrees of freedom of the problem: we can make ⌘ change fast in at least d� � directions,
and this is sufficient to make the problem difficult.

4.1.2. ADAPTIVE RATES FOR P(↵,�,�
0

)

We now exhibit a theorem very similar to Theorem 1, but that holds for more general classes, as we
do not impose regularity assumptions on the marginal P

X

, which is thus unrestricted.

Theorem 4 (Upper-bound) Let n 2 N⇤ and 1 > � > 0. Assume that P
X,Y

2 P(↵,�,�
0

) with
1

blog(n)c  ↵  blog(n)c.

Algorithm 1, with input parameters (n, �,�, Algorithm 2), outputs a classifier bf
n

satisfying the
following, with probability at least 1� 8�:

• For any �

0

:

E( bf
n

)  C�
d(�+1)

2↵+d

⇣

log

3

(n) log(�n
�

)

n

⌘

↵(�+1)

2↵+d
,

where C > 0 does not depend on n, �,�.

• If �
0

> 0, then E( bf
n

) = 0 whenever the budget satisfies

n

blog3(n)c
> C�d/↵

log

��n

�

�

⇣

1

�

0

⌘

2↵+d
↵

where C > 0 does not depend on n, �,�.
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The above theorem is proved, following Remark 4.1, by showing that Algorithm 3 is correct
for problems in P(↵,�,�

0

) with some � = O(n�↵/(2↵+d)

); for �
0

> 0, correctness is obtained
for �  �

0

, provided sufficiently large budget n. See Theorem 7.
We complement this result with a novel lower-bound for this class of problems, which shows

that the result in Theorem 4 is tight up to logarithmic factors.

Theorem 5 (Lower-bound) Let ↵ > 0,� � 0 and assume that c
3

, � are large enough. For n
large enough, any (possibly active) strategy that samples at most n labels and returns a classifier
bf
n

satisfies:
sup

PX,Y 2P(↵,�,0)

EPX,Y [EPX,Y (
bf
n

)] � Cn�↵(1+�)
2↵+d ,

where C > 0 does not depend on n, �.

The proof of this last theorem is given in Section A.4 of the Appendix.

Remark 4.4 The unrestricted P
X

case treated in this section is analogous to the mild density as-
sumptions studied in Audibert and Tsybakov (2007) in the passive setting. Our results imply that
even under these weaker assumptions, the active setting brings an improvement in the rate - from
n�↵(�+1)/(2↵+d+↵�) to n�↵(�+1)/(2↵+d). The rate improvement is possible since an active proce-
dure can save in labels by focusing all samplings to regions where ⌘ is close to 1/2. However, this
might not be possible in passive learning since the density in such regions can be arbitrarily low
and thus yield too few training samples. To better appreciate the improvement in rates, notice that
the passive rates are never faster than n�1, while in the active setting, we can reach super fast rates
(i.e. faster than n�1) as soon as ↵� > d. In fact, this rate is similar to the minimax optimal rate in
the passive setting under the strong density assumption: in some sense the active setting mirrors the
strong density assumption, given the ability of the learner to sample everywhere.

4.2. General Remarks

Adaptivity to the unknown parameters. An important feature of Algorithm 1 is that it is adap-
tive to the parameters ↵,�,�

0

from Assumptions 2 and 3 - i.e. it does not take these parameters
as inputs and yet has smaller excess risk than the minimax optimal excess risk rate over all classes
P(↵,�,�

0

) (respectively P⇤
(↵,�,�

0

) if Assumption 1 holds) to which the problem belongs to. A
key point in the construction of Algorithm 1 is that it makes use of the nested nature of the models.
A different strategy could have been to use a cross-validation scheme to select one of the classifiers
output by the different runs of Algorithm 2, however such a strategy would not allow fast rates, as
the cross-validation error might dominate the rate. Instead, taking advantage of the nested smooth-
ness classes, we can aggregate our classifiers such that the resulting classifier is in agreement with
all the classifiers that are optimal for bigger classes - this idea is related to the construction in the to-
tally different passive setting Lepski and Spokoiny (1997). This aggregation method is an important
feature of our algorithm, as it bypasses the calculation of disagreement sets or other quantities that
can be computationally intractable, such as optimizing over entire sets of functions as in Hanneke
(2009); Koltchinskii (2010). It also allows us to remove a key restriction on the class of problems
in Minsker (2012a) - see Assumption 2 therein required for the construction of honest and adaptive
confidence sets. Our algorithm moreover adapts to the parameter c

3

of Assumptions 3, but takes as
parameter � of Assumption 2. However, it is possible to use in the algorithm an upper bound on the

11
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parameter � - as e.g. log(n) for n large enough - and to only worsen the excess risk bound by a � at
a bounded power - e.g. poly log(n).

Extended Settings. Note that our results can readily be extended to the multi-class setting
(see Dinh et al. (2015) for the multi-class analogous of Audibert and Tsybakov (2007) in the passive
setting) through a small but necessary refinement of the aggregation method (one has to keep track
of eliminated classes i.e. classes deemed impossible for a certain region of the space by bigger
models). It is also possible to modify Assumption 1 such that the box-counting dimension of the
support of P

X

is d0 < d (if for example P
X

is supported on a manifold of dimension d0 embedded
in [0, 1]d), and we would obtain similar results where d is replaced by d0, effectively adapting to that
smaller dimension.

5. Non-Adaptive Subroutine

In this section, we construct an algorithm that is optimal over a given smoothness class ⌃(�,↵)
- and that uses the knowledge of �,↵. This algorithm is non-adaptive, as is often the case in the
continuum-armed bandit literature that assumes knowledge of a semi-metric in order to optimize
(i.e. maximize or minimize) the sum of rewards gathered by an agent receiving noisy observations
of a function (Auer et al. (2007), Kleinberg et al. (2008), Cope (2009), Bubeck et al. (2011)).

5.1. Description of the Subroutine

Algorithm 2 Non-adaptive Subroutine
Input: n, �, ↵, �
Initialisation: t = 2

dt
1,↵^1, l = 1, A

1

.
= G

1

(active space), 8l0 > 1,A
l

0
.
= ;, S0

= S1

.
= ;

while t+ |A
l

| · t
l,↵

 n do
for each active cell C 2 A

l

do
Request t

l,↵^1 samples ( ˜Y
C,i

)

itl,↵^1

at the center x
C

of C

if
n

|b⌘(x
C

)� 1/2|  B
l,↵

o

then
A

l+1

= A
l+1

[ {C 0 2 G
l+1

: C 0 ⇢ C} // keep all children C 0 of C active
else

Let y .
= 1{b⌘(x

C

) � 1/2}
Sy

= Sy [ C // label the cell as class y
end if

end for
Increase depth to l = l + 1, and set t .

= t+ |A
l

| · t
l,↵^1

end while
Set L = l � 1

if ↵ > 1 then
Run Algorithm 3 on last partition A

L

end if
Output: Sy for y 2 {0, 1}, and ˆf

n,↵

= 1{S1}

12



ADAPTIVITY TO NOISE PARAMETERS IN NONPARAMETRIC ACTIVE LEARNING

We first introduce an algorithm that takes �,↵ as parameters, and refines its exploration of the
space to focus on zones where the classification problem is the most difficult (i.e. where ⌘ is close
to the 1/2 level set). It does so by iteratively refining a partition of the space (based on a dyadic
tree), and using a simple plug-in rule to label cells. At a given depth l, the algorithm samples the
center x

C

of the active cells C 2 A
l

a fixed number of times t
l,↵^1 with:

t
l,↵

=

8

<

:

log(1/�l,↵)

2b

2

l,↵
if ↵  1

4

2d+1

(↵+ 1)

2d

log(1/�l,↵)

b

2

l,↵
if ↵ > 1,

where b
l,↵

= �d(↵^1)/22�l↵ and �
l,↵

= �2�l(d+1)(↵_1), and collects the labels ( ˜Y
C,i

)

itl,↵^1

. The
algorithm then compares an estimate b⌘(x

C

) of ⌘(x
C

) with 1/2. The estimate is simply the sample-
average of Y -values at x

C

, i.e.:

b⌘(x
C

) = t�1

l,↵^1

tl,↵^1

X

i=1

˜Y
C,i

.

If |b⌘(x
C

)� 1/2| is sufficiently large with respect to

B
l,↵

= 2

h

s

log(1/�
l,↵^1)

2t
l,↵^1

+ b
l,↵^1

i

,

which is the sum of a bias and a deviation term, the cell is labeled (i.e. added to S1 or S0) as the
best empirical class, i.e. as

1{b⌘(x
C

) � 1/2},
and we refer to that process as labeling. If the gap is too small then the partition needs to be refined,
and the cell is split into smaller cubes. All these cells are then the active cells at depth l + 1. The
algorithm stops refining the partition of the space when a given constraint on the used budget is
saturated, namely when the used budget t plus t

l,↵

.|A
l

| is larger than n - this happens at depth L.
If ↵ � 1, we need to consider higher order estimators in active cells - we make use of smoothing

Kernels to take advantage of the higher smoothness to estimate ⌘ more precisely. This last step is
described in Algorithm 3. For any l � 1 and any cell C 2 G

l

, we write ˜C for the inflated cell C,
such that

˜C = {x 2 Rd

: inf

z2C
sup

id

|x(i) � z(i)|  2

�l},

where x(i), z(i) are the ith coordinates of respectively x, z.
A number t

L,↵

of samples (X
C,i

, Y
C,i

)

C2AL,itL,↵ is collected uniformly at random in each in-
flated cell ˜C corresponding to any C 2 A

L

. For any ↵ > 0, let ˜k
↵

the one-dimensional convolution
Kernel of order b↵c + 1 based on the Legendre polynomial, defined in the proof of Proposition
4.1.6 in Giné and Nickl (2015). Consider the d-dimensional corresponding isotropic product Kernel
defined for any z 2 Rd as :

K
↵

(z) =
d

Y

i=1

˜k
↵

(z(i)).

The Subroutine then updates S0 and S1 in the active regions of A
L

using the Kernel estimator

⌘̂
C

(x) =
1

t
l,↵

X

itl,↵

K
↵

((x�X
C,i

)2

l

)Y
C,i

.
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Finally (both when ↵  1 and ↵ > 1) the algorithm returns the sets S0, S1 of labeled cells
in classes respectively 0 or 1 and uses them to build the classifier ˆf

n

- the cells that are still active
receive an arbitrary label (here 0).

Algorithm 3 Procedure for smoothness ↵ > 1

for each cell C 2 A
L

do
Sample uniformly t

L,↵

points (X
C,i

, Y
C,i

)

itL,↵ on ˜C
for each cell C 0 2 GbL↵c such that C 0 ⇢ C do

Set
b⌘
C

(x
C

0
) =

1

t
L,↵

X

itL,↵

K
↵

((x
C

0 �X
C,i

)2

L

)Y
C,i

.

Set S0

= S0 [ C 0, if b⌘
C

(x
C

0
)� 1/2 < 4

d+1�2�↵L

Set S1

= S1 [ C 0, if b⌘
C

(x
C

0
)� 1/2 > 4

d+1�2�↵L

end for
end for

5.2. Non-Adaptive Results

The first result is for the class P⇤
(�,↵,�,�

0

), in particular under the strong density assumption.

Theorem 6 Algorithm 2 run on a problem in P⇤
(�,↵,�,�

0

) with input parameters n, �,↵,� is
(�,�⇤

n,�,↵,�

, n)�correct, with

�

⇤
n,�,↵,�

=

8

>

<

>

:

12

p
d
⇣

c

7

�

(

d
↵_�)

log

�

2d�2n
�

�

(2↵+[d�↵�]

+

)↵ n

⌘

↵
2↵+[d�↵�]

+ for ↵  1

4

d+2

2

↵

⇣

c

8

�

(d_�)
log(

2d�2n
� )

n

⌘

↵
2↵+[d��]

+ otherwise,

with c
7

= 2(d + 1)c
5

, c
8

= 4

2d+1

(↵ + 1)

2↵

(d + 1)c
5

and c
5

= 2

(↵^1)�
max(

c

3

c

1

8

� , 1), where
c
1

and c
3

are the constants involved in Assumption 1 and 3 respectively.

The proof of this theorem is in Section A.1 of the Appendix.
An important case to consider is that if �

0

> 0, then the excess risk of the classifier output by Al-
gorithm 2 is nil with probability 1� 8� as soon as �⇤

n,�,↵,�

< �

0

. Inverting the bound on �

⇤
n,�,↵,�

for n yields a sufficient condition on the budget, that we made clear in Theorem 1.

We now exhibit another theorem, very similar to Theorem 6, but that holds for more general
classes, as we do not impose regularity assumptions on the density.

Theorem 7 Algorithm 2 run on a problem in P(�,↵,�,�
0

) with input parameters n, �,↵,� is
(�,�

n,�,↵,�

, n)�correct, with

�

n,�,↵,�

=

8

>

<

>

:

12

p
d�d/(2↵+d)

⇣

2(d+1) log

�

2d�2n
�

�

(2↵+d)↵ n

⌘

↵
2↵+d for ↵  1

4

d+2

2

↵�d/(2↵+d)

⇣

4

2d+1

(↵+1)

2d
(d+1) log(

2d�2n
� )

n

⌘

↵
2↵+d otherwise.
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The proof of this theorem is in Section A.1 of the Appendix.

These results show that Algorithm 2 can be used by Algorithm 1 for any problem P
X,Y

2
P⇤

(↵,�,�
0

) (respectively P
X,Y

2 P(↵,�,�
0

)), as it is (�,�⇤
n,�,↵,�

, n)�correct (respectively
(�,�

n,�,↵,�

, n)�correct).

5.3. Remarks on Non-Adaptive Procedures

Optimism in front of uncertainty. The main principle behind our algorithm is that of optimism
in face of uncertainty, as we label regions thanks to an optimistic lower-bound on the gap between
⌘ and its 1/2 level set, borrowing from well understood ideas in the bandit literature (see Auer et al.
(2002), Bubeck et al. (2012)), which translate naturally to the continuous-armed bandit problem
(see Auer et al. (2007); Kleinberg et al. (2008)). This allows the algorithm to prune regions of the
space for which it is confident that they do not intersect the 1/2 level set, in order to focus on regions
harder to classify (w.r.t. 1/2), naturally adapting to the margin conditions.

Hierarchical partitioning. Our algorithm proceeds by keeping a hierarchical partition of the
space, zooming in on regions that are not yet classified with respect to 1/2. This kind of con-
struction is related to the ones in Bubeck et al. (2011); Munos (2011) that target the very different
setting of optimization of a function. It is also related to the strategies exposed in Perchet et al.
(2013), which tackles the contextual bandit problem in the setting where ↵  1 - in this setting the
learner does not actively explore the space but receives random features.

Conclusion

In this work, we presented a new active strategy that is adaptive to various regimes of noise con-
ditions. Our results capture interesting rate transitions under more general conditions than pre-
viously known. Some interesting open questions remain, including the possibility of even richer
rate-transitions under a more refined parametrization of the problem.

Acknowledgement The work of A. Carpentier and A. Locatelli is supported by the DFG’s Emmy
Noether grant MuSyAD (CA 1488/1-1).
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Appendix A. Proofs of the theoretical results

A.1. Proof of Theorem 6 and Theorem 7

A.1.1. PROOF OF THEOREM 6

Let us write in this proof in order to simplify the notations

t
l

= t
l,↵^1, b

l

= b
l,↵^1, �

l

= �
l,↵_1, B

l

= B
l,↵^1 and N

l

= |A
l

|.

We will now show that on a certain event, the algorithm makes no mistake up to a certain depth
L, and that the error is controlled beyond that depth.
Step 1: A favorable event.
Consider a cell C of depth l. We define the event:

⇠
C,l

=

n

|t�1

l

tl
X

u=1

1( ˜Y
C,i

= 1)� ⌘(x
C

)| 

s

log(1/�
l

)

2t
l

o

,

where the (

˜Y
C,i

)

itl are samples collected in C at point x
C

if C if the algorithm samples in cell C.
We remind that

b⌘(x
C

) = t�1

l

tl
X

i=1

1( ˜Y
C,i

= 1).

We consider the following event ⇠:

⇠ =

n

\

l2N⇤
,C2Gl

⇠
C,l

o

.

Lemma 1 We have
P(⇠) � 1� 4�.

Moreover on ⇠
|b⌘(x

C

)� ⌘(x
C

)|  b
l

. (3)

Step 2: No mistakes on labeled cells.
For l 2 N⇤, let C 2 G

l

and write

bk⇤
C

= 1{b⌘
(

x
C

) � 1/2} and let us write, k⇤
C

.
= 1{⌘(x

C

) � 1/2}.

Lemma 2 We have that on ⇠,

8y 2 {0, 1}, 8C 2 Sy, 8x 2 C, 1{⌘(x) � 1/2} = y. (4)

This implies that:

S1 ⇢ {x : ⌘(x)� 1/2 > 0} and, S0 ⇢ {x : ⌘(x)� 1/2 < 0}. (5)
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Step 3: Maximum gap with respect to 1/2 for all active cells.

Now we will consider a cell C that is split and added to A
l+1

at depth l 2 N⇤ by the algorithm.
As C is split and added to A

l+1

, we have by definition of the algorithm and on ⇠ using Equation (3)

|⌘(x
C

)� 1/2|� b
l

 |b⌘(x
C

)� 1/2|  4b
l

,

which implies |⌘(x
C

)� 1/2|  5b
l

. Using Equation (13), this implies that on ⇠ for any C that will
be split and added to A

l+1

and for any x 2 C

|⌘(x)� 1/2|  6b
l

.
= �

l

. (6)

Step 4: Bound on the number of active cells.

Set for � � 0

⌦

�

=

n

x 2 [0, 1]d : |⌘(x)� 1/2|  �

o

,

and let for l 2 N⇤, N
l

(�) be the number of cells C 2 G
l

such that C ⇢ ⌦

�

.

Lemma 3 We have on ⇠

N
l+1

 c
3

c
1

[�

l

��

0

]

�

+

r�d

l+1

 c
5

��r
�[d�(↵^1)�]

+

l+1

1
�l>�

0

, (7)

Step 5: A minimum depth.

Lemma 4 We have on ⇠ the following results on L.

• Case a) : If ↵  1 : It holds that

L � 1

2↵+ [d� ↵�]
+

log

2

⇣

(2↵+ [d� ↵�]
+

)2↵n

c
7

���2

log

�

2d�

2

n

�

�

⌘

� 1, (8)

with c
7

= 2c
5

(d+ 1), or the algorithm stops before reaching depth L and E( bf
n

) = 0.

• Case b) : If ↵ > 1 :

L � 1

2↵+ [d� �]
+

log

2

� n

c
8

���2

log(

2d�

2

n

�

)

�

� 1, (9)

where c
8

= c
5

4

2d+1

(↵ + 1)

2d

(d + 1), or the algorithm stops before reaching depth L and
E( bf

n

) = 0.

Step 6 : Conclusion.
From this point on, we write S0, S1 for the sets that Algorithm 2 outputs at the end (so the sets at
the end of the algorithm).

We write the following lemma.
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Lemma 5 If S1 \ S0

= ; and if for some � � 0 we have on some event ⇠0

{x 2 [0, 1]d : ⌘(x)��

L

� 1/2} ⇢ S1, and {x 2 [0, 1]d : ⌘(x) +�

L

 1/2} ⇢ S0,

then on ⇠0 it holds that

sup

x2[0,1]d: bfn,↵ 6=f

⇤
(x)

|⌘(x)� 1/2|  �

L

, and P
X

(

ˆf
n,↵

6= f⇤
)  c

3

�

�

L

1{� � �

0

},

and

E( bf
n,↵

)  c
3

�

1+�

L

1{�
L

� �

0

}.

Proof The first conclusion is a direct consequence of the lemma’s assumption, the second conclu-
sions follows directly from the lemma’s assumption and Assumption 3, and the third conclusion
follows as

E( bf
n,↵

)  P
X

(

ˆf
n,↵

) 6= f⇤
) sup

x2[0,1]d
| ˆf

n,↵

(x)� f⇤
(x)|.

CASE a) : ↵  1.

Note first that S1 \ S0

= ; by definition of the algorithm. By Equation (6) and Equation (4),
we know that on ⇠ (and so with probability larger than 1� 4�)

{x 2 [0, 1]d : ⌘(x)��

L

� 1/2} ⇢ S1, and, {x 2 [0, 1]d : ⌘(x) +�

L

 1/2} ⇢ S0, (10)

where

�

L

 6�d↵/22↵
⇣ c

7

���2

log

�

2d�

2

n

�

�

(2↵+ [d� ↵�]
+

)2↵n

⌘

↵/(2↵+[d�↵�]

+

)

 12�d↵/2
⇣ c

7

���2

log

�

2d�

2

n

�

�

(2↵+ [d� ↵�]
+

)2↵n

⌘

↵/(2↵+[d�↵�]

+

)

 12

p
d
⇣ c

7

�(

d
↵_�)

log

�

2d�

2

n

�

�

(2↵+ [d� ↵�]
+

)2↵n

⌘

↵/(2↵+[d�↵�]

+

)

by Equation (8). This implies the first part of Theorem 6 for ↵  1.
So by Lemma 5, we have on ⇠ (and so with probability larger than 1� 4�)

sup

x2[0,1]d: bfn,↵ 6=f

⇤
(x)

|⌘(x)� 1/2|  �

L

 12

p
d
⇣ c

7

�(

d
↵_�)

log

�

2d�

2

n

�

�

(2↵+ [d� ↵�]
+

)2↵n

⌘

↵/(2↵+[d�↵�]

+

)

,

and also

P
X

(

ˆf
n,↵

6= f⇤
(x))  c

3

�

�

L

1(�
L

� �

0

)

 c
3

12

�

p
d
⇣ c

7

�(

d
↵_�)

log

�

2d�

2

n

�

�

(2↵+ [d� ↵�]
+

)2↵n

⌘

↵�/(2↵+[d�↵�]

+

)
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and also that

E( bf
n,↵

)  c
3

�

�+1

L

1(�
L

� �

0

)

 c
3

12

�+1

p
d
⇣ c

7

�(

d
↵_�)

log

�

2d�

2

n

�

�

(2↵+ [d� ↵�]
+

)2↵n

⌘

↵(�+1)/(2↵+[d�↵�]

+

)

.

CASE b) : ↵ > 1.
Denote b⌘

C

the estimator built in the second phase of the algorithm, described in Lemma 6.
Let us write (X

C,i

, Y
C,i

)

utl,↵ for the (not necessarily observed) samples that would be collected
in ˜C if cell C 2 A

L

. For any x 2 C and any cell C, we write

b⌘
C

(x) =
1

t
l,↵

X

itl,↵

K
↵

((x�X
C,i

)2

l

)Y
C,i

.

Note that ⌘̂
C

is computed by the algorithm for any C 2 A
L

(and ⌘̂ is 1/2 everywhere else).
The following proposition holds.

Proposition 2 Let l > 0, C 2 G
l

and assume that ⌘ 2 ⌃(�,↵). It holds for x 2 C that with
probability larger than 1� �

|b⌘
C

(x)� ⌘(x)|  4

d�2�l↵

+ 2

d+2

(2↵+ 2)

d

s

log(1/�)

t
l,↵

.

Let
⇠0 =

n

8l � 1, 8C 2 Gbl↵c, |b⌘C(xC)� ⌘(x
C

)|  �
p
d2�l↵

o

.

Since �
l,↵

= �2�l↵(d+1), it holds by Proposition 2 and an union bound that this event holds with
probability at least 1� 4�. By a union bound, the event (⇠ \ ⇠0) thus holds with probability at least
1� 8�.

By Proposition 2, and proceeding as in Step 3, we can bound on ⇠0 the maximum gap of the
cells that are not classified i.e. cells C such that C \ (S0 [ S1

) = ;. Recall that if ↵ > 1 then by
Assumption 2, ⌘ is �-Lipschitz. For cells of side length 2

�bL↵c, this yields for any x 2 C such that
|b⌘

C

(x
C

)� 1/2|  4

d+1�2�L↵:

|⌘(x)� 1/2|  (4

d+3/2

+ 3

p
d)�2�L↵

 4

d+2�2�L↵

On the other hand, for x 2 C such that |b⌘(x
C

)� 1/2| > 4

d+1�2�L↵, we have:

|⌘(x)� 1/2| > 4

d�2�L↵, (11)

which implies that:

{x 2 [0, 1]d : ⌘(x)��

L

� 1/2} ⇢ S1 ⇢ {x : ⌘(x)� 1/2 > 0}
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and
{x 2 [0, 1]d : ⌘(x) +�

L

 1/2} ⇢ S0 ⇢ {x : ⌘(x)� 1/2 < 0}.

with:

�

L

 4

d+2

2

↵

�c
8

�(d_�)
log(

2d�

2

n

�

)

n

�

↵/(2↵+[d��]

+

)

, (12)

where we lower bound L using Equation (19). We conclude the proof by using Lemma 5 as in the
case ↵  1, and the result holds with probability at least 1� 8�.

A.1.2. PROOF OF THEOREM 7

The proof of this result only differs from the proof of Theorem 6 in Step 4, Equation (7), where we
can no longer use the lower bound on the density to upper bound the number of active cells, and
instead we have to use the naive bound 2

�ld at depth l such that all cells can potentially be active.
The rest of the technical derivations is similar to the case � = 0 in the proof of Theorem 6.

A.1.3. PROOFS OF THE TECHNICAL LEMMAS AND PROPOSITIONS STATED IN THE PROOF OF
THEOREM 6 AND 7

Proof [Proof of Lemma 1] From Hoeffding’s inequality, we know that P(⇠
C,l

) � 1� 2�
l

.

We now consider
⇠ =

n

\

l2N⇤
,C2Gl

⇠
C,l

o

,

the intersection of events such that for all depths l and any cell C 2 G
l

, the previous event holds true.
Note that at depth l there are 2

ld such events. A simple union bound yields P(⇠) � 1�
P

l

2

ld�
l

�
1� 4� as we have set �

l

= �2�l(d+1).
We define b

l

= �d(↵^1)/22�l(↵^1) for any l 2 N⇤. By Assumption 2, it is such that for any
x, y 2 C, where C 2 G

l

, we have:
|⌘(x)� ⌘(y)|  b

l

. (13)

On the event ⇠, for any l 2 N⇤, as we have set t
l

=

log(1/�l)

2b

2

l
, plugging this in the bound yields that

at time t
l

, we have for each cell C 2 G
l

:

|b⌘(x
C

)� ⌘(x
C

)|  b
l

.

Proof [Proof of Lemma 2] Using Equations (13) and (3), we have:

4b
l

< b⌘b
k

⇤
C
(x

C

)� 1/2 < ⌘b
k

⇤
C
(x

C

) + b
l

� 1/2,

which implies that ⌘b
k

⇤
C
(x

C

)�1/2 > 3b
l

> 0. So necessarily by definition of k⇤
C

, we have k⇤
C

=

bk⇤
C

.
Now using the smoothness assumption, we have for any x 2 C :

|⌘(x)� ⌘(x
C

)|  �d(↵^1)/2|x� x
C

|↵^1
2

 b
l

.
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Assume now without loss of generality that bk⇤
C

= 1. We have by the previous paragraph that
bk⇤
C

= k⇤
C

= 1 and that ⌘(x
C

) � 1/2 > 2b
l

. So for x 2 C, ⌘
k

⇤
C
(x) � 1/2 > 0, so k⇤

C

is the best
class in the entire cell C and the labeling bk⇤

C

= k⇤
C

is in agreement with that of the Bayes classifier
on the entire cell, bringing no excess risk on the cell. In summary we have that on ⇠,

8y 2 {0, 1}, 8C 2 Sy, 8x 2 C, 1{⌘(x) � 1/2} = y.

This implies that:

S1 ⇢ {x : ⌘(x)� 1/2 > 0} and, S0 ⇢ {x : ⌘(x)� 1/2 < 0}.

Proof [Proof of Lemma 3] Since by Assumption 3 we have P
X

(⌦)  c
3

(� ��

0

)

�1{� � �

0

},
we have by Assumption 1 that

N
l

(�)  c
3

c
1

(���

0

)

�r�d

l

1{� � �

0

}. (14)

Let us write L for the depth of the active cells at the end of the algorithm. The previous equation
implies with Equation (6) that on ⇠, for l  L, the number of cells in A

l

is bounded as Equation (14)
brings

N
l+1

 N
l+1

(�

l

)  c
3

c
1

[�

l

��

0

]

�

+

r�d

l+1

 c
3

c
1

8

���

2

(↵^1)�r(↵^1)��d

l+1

1
�l>�

0

 c
5

��r
�[d�(↵^1)�]

+

l+1

1
�l>�

0

,

where N
l+1

is the number of active cells at the beginning of the round of depth (l + 1) and
[a]

+

= max(0, a) and c
5

= 2

(↵^1)�
max(

c

3

c

1

8

� , 1). This formula is valid for L � 1 � l � 0.

Proof [Proof of Lemma 4]
CASE a): ↵  1.
At each depth 1  l  L, we sample these active cells t

l

=

log(1/�l)

2b

2

l
times. Let us first consider the

case �

0

= 0. We will upper-bound the total number of samples required by the algorithm to reach
depth L. We know by Equation (7) that on ⇠:

L

X

l=1

N
l

t
l

+N
L

t
L

 2

L

X

l=1

(c
5

��r
�[d�↵�]

+

l

)

log(1/�
l

)

2�2r2↵
l

 2c
5

���2

log(1/�
L

)

L

X

l=1

r
�(2↵+[d�↵�]

+

)

l

 2c
5

d�(2↵+d�↵�)/2���2

log(1/�
L

)

2

L(2↵+[d�↵�]

+

)

2

2↵+[d�↵�]

+ � 1

 4c
5

d(2↵+d�↵�)/2

���2

log(1/�
L

)

2

L(2↵+[d�↵�]

+

)

2↵+ [d� ↵�]
+

,
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as 2a � 1 � a/2 for any a 2 R+. This implies that on ⇠

L

X

l=1

N
l

t
l

+N
L

t
L

 4c
5

���2

log(1/�
L

)

2

L(2↵+[d�↵�]

+

)

2↵+ [d� ↵�]
+

. (15)

We will now bound L by above naively, as t
L

itself has to be smaller than n (otherwise, if there
is a single active cell - which is the minimum number of active cells - the budget is not sufficient).
This yields:

log(1/�
L

)

2�2r2↵
L

 n,

which yields immediately, using �
L

< �  e

�1:

L  1

2↵
log

2

�

2d�2n
�

.

We can now bound log(1/�
L

):

log(1/�
L

) = log(2

L(d+1)/�))  d+ 1

2↵
log

�

2d�2n
�

+ log(1/�)

 d+ 1

2↵
log

�

2d�2n

�

�

. (16)

Combining equations (16) and (15), this implies that on ⇠ the budget is sufficient to reach the
depth

L �
j

1

2↵+ [d� ↵�]
+

log

2

⇣

(2↵+ [d� ↵�]
+

)2↵n

c
7

���2

log

�

2d�

2

n

�

�

⌘k

,

with c
7

= 2c
5

(d + 1), or the algorithm stops before reaching the depth L with S1 [ S0

= [0, 1]d,
and the excess risk is 0.

CASE b): ↵ > 1.
We will proceed similarly as in the previous case. We have set t

l,↵

= 4

2(d+1)

(↵ + 1)

2d

log(1/�l,↵)

b

2

l,↵

with b
l,↵

= �
p
d2�l↵ and �

l,↵

= �2�l↵(d+1). By construction of the algorithm, L is the biggest
integer such that

P

L

l=1

N
l

t
l

+N
L

t
L,↵

 n. We now bound this sum by above:

L

X

l=1

N
l

t
l

+N
L

t
L,↵


L

X

l=1

(c
5

��r
�[d��]

+

l

)

log(1/�
l

)

2�2r2
l

+ (4

2d+1

(↵+ 1)

2dc
5

��r
�[d��]

+

L

)

log(1/�
L,↵

)

�2d22L↵

 c
5

���2d�
2+[d��]

+

2

(log(1/�
L

)2

L(2+[d��]

+

)

+ 4

2d+1

(↵+ 1)

2d

log(1/�
L,↵

)2

L(2↵+[d��]

+

)

 2c
5

���2

4

2d+1

(↵+ 1)

2d

log(1/�
L,↵

)2

L(2↵+[d��]

+

) (17)

As in the previous case, we can upper bound L by remarking that t
L,↵

has to be smaller than the
total budget n, which yields:

L  1

2↵
log

2

(2d�2n).
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In turn, this allows to bound log(1/�
L,↵

):

log(1/�
L,↵

) = log(2

↵L(d+1)/�)  d+ 1

2

log

�

2d�2n

�

�

(18)

Now combining Equations (17) and (18), it follows that on ⇠, the budget is sufficient to reach a
depth L such that:

L �
j

1

2↵+ [d� �]
+

log

2

� n

c
8

���2

log(

2d�

2

n

�

)

�

k

,

where c
8

= c
5

4

2d+1

(↵ + 1)

2d

(d + 1), or this depth is not reached as the algorithm stops with
S1 [ S0

= [0, 1]d and the excess risk is 0.

Proof [Proof of Proposition 2]
The following Lemma holds regarding approximation properties of the Kernel we defined,

see Giné and Nickl (2015).

Lemma 6 (Properties of the Legendre polynomial product Kernel K) It holds that :

• K
↵

is non-zero only on [�1, 1]d.

• K
↵

is bounded in absolute value by (2↵+ 2)

d

• For any h > 0 and any P
X

-measurable f : Rd ! [0, 1],

sup

x2Rd

|K
↵,h

(f)(x)� f(x)|  4

d�h↵, where K
↵,h

(f)(x) =
1

hd

Z

u2Rd
K

↵

(

x� u

h
)f(u)du.

Proof The first and second properties follow immediately by definition of the Legendre polyno-
mial Kernel ˜k

↵

(see the proof of Proposition 4.1.6 from Giné and Nickl (2015)). The last property
follows from the second result in Proposition 4.3.33 in Giné and Nickl (2015), which applies as
Condition 4.1.4 in Giné and Nickl (2015) holds for ˜k

↵

(see Proposition 4.1.6 from Giné and Nickl
(2015) and its proof).

We bound separately the bias and stochastic deviations of our estimator.
Bias : We first have for any x 2 x

C

+ [�h, h]d

E⌘̂
C

(x) = E
h

2

dK((x�X
i

)2

l

)⌘(X
i

)|X
i

uniform on ˜C
i

= 2

ld

Z

K((x� u)2l)⌘(u)du,

since X
i

is uniform on ˜C, and x 2 C, and K(

x�.

h

) is 0 everywhere outside
Q

i

[x
i

� 2

�l, x
i

+ 2

�l

]

(by Lemma 6). So by Lemma 6 we know that

|K
2

�l(⌘
C

)(x)� ⌘(x)|  4

d�2�l↵.
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Deviation : Consider Z
i

= K((x �X
i

)2

l

)Y
i

= K((x �X
i

)2

l

)f(X
i

) +K((x �X
i

)2

l

)✏
i

. Since
by Lemma 6 |K|  (2↵ + 2)

d, sup
x

|⌘(x)|  1 and |✏
i

|  1, we have by Hoeffding’s inequality
that with probability larger than 1� �:

|E⌘̂
C

(x)� ⌘̂
C

(x)|  2

d+2

(2↵+ 2)

d

s

log(1/�)

t
l,↵

.

This concludes the proof by summing the two terms.

A.2. Proof of Proposition 1, Theorem 1 and 4

Set
n
0

=

n

blog(n)c3 , �
0

=

�

blog(n)c3 , and ↵
i

=

i

blog(n)c2 .

A.2.1. PROOF OF PROPOSITION 1

In Algorithm 1, the Subroutine is launched blog(n)c3 times on blog(n)c3 independent subsamples
of size n

0

. We index each launch by i, which corresponds to the launch with smoothness parameter
↵
i

. Let i⇤ be the largest integer 1  i  blog(n)c3 such that ↵
i

 ↵.
Since the Subroutine is strongly (�

0

,�
↵

, n
0

)-correct for any ↵ 2 [blog(n)c�2, blog(n)c], it
holds by Definition 4 that for any i  i⇤, with probability larger than 1� �

0

n

x 2 [0, 1]d : ⌘(x)� 1/2 � �

↵i

o

⇢ S1

i

⇢
n

x 2 [0, 1]d : ⌘(x)� 1/2 > 0

o

and
n

x 2 [0, 1]d : ⌘(x)� 1/2  ��

↵i

o

⇢ S0

i

⇢
n

x 2 [0, 1]d : ⌘(x)� 1/2 < 0

o

.

So by an union bound we know that with probability larger than 1�blog(n)c3�
0

= 1��, the above
equations hold jointly for any i  i⇤.

This implies that with probability larger than 1 � �, we have for any i0  i  i⇤, and for any
y 2 {0, 1}, that

Sy

i

\ s1�y

i

0 = ;,
i.e. the labeled regions of [0, 1]d are not in disagreement for any two runs of the algorithm that are
indexed with parameters smaller than i⇤. So we know that just after iteration i⇤ of Algorithm 1, we
have with probability larger than 1� �, that for any y 2 {0, 1}

[

ii

⇤

Sy

i

⇢ sy
i

⇤ .

Since the sets sy
i

are strictly growing but disjoint with the iterations i by definition of Algorithm 1
(i.e. sk

i

⇢ sk
i+1

and sk
i

\ s1�k

i

= ;), it holds in particular that with probability larger than 1� � and
for any y 2 {0, 1}

[

ii

⇤

Sy

i

⇢ syblog(n)c3 and syblog(n)c3 \ s1�y

blog(n)c3 = ;.

This finishes the proof of Proposition 1.
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A.2.2. PROOF OF THEOREM 1, 4

The previous equation and Theorem 6 imply that with probability larger than 1� 8�

Sy

i

⇤ ⇢ syblog(n)c3 and syblog(n)c3 \ s1�y

blog(n)c3 = ;.

So from Theorem 6, and Lemma 5, we have that with probability larger than 1� 8�

E( bf
n

)  c
3

�

�+1

↵i⇤
1(�

↵i⇤ � �

0

).

By definition of ↵
i

⇤ , we know that it is such that:

↵� 1

log

2

(n)
 ↵

i

⇤  ↵. (19)

In the setting of Theorem 1 for ↵  1 and ↵ > max(

q

d

2 log(n)

,
�

3d

log(n)

�

1/3

), this yields for the
exponent if ↵

i

⇤�  d:

� ↵
i

⇤
(1 + �)

2↵
i

⇤
+ d� ↵

i

⇤�
 � ↵(1 + �)

2↵+ [d� ↵�]
+

+

(1 + �)(2↵+ d)

log

2

(n)(2↵+ [d� ↵�]
+

)

2

.

The result follows by remarking that:

n
(1+�)(2↵+d)

log

2

(n)(2↵+d�↵�)2
= exp

⇣

(1 + �)(2↵+ d)

log(n)(2↵+ [d� ↵�]
+

)

2

⌘

,

and thus the extra additional term in the rate only brings at most a constant multiplicative factor, as
the choice of ↵ >

�

3d

log(n)

�

1/3 allows us to upper-bound the quantity inside the exponential, using
↵� log

�3

(n) > ↵/2:

(1 + �)(2↵+ d)

log(n)(2↵+ [d� ↵�]
+

)

2

 3d

log(n)↵3

 1.

In the case ↵ > 1 and � < d, first notice that ↵
i

⇤ � 1, as ↵blog(n)c2 = 1 < ↵. Thus, the rate can
be rewritten:

� ↵
i

⇤
(1 + �)

2↵
i

⇤
+ [d� �]

+

 � ↵(1 + �)

2↵+ [d� �]
+

+

1 + �

log

2

(n)(2↵+ [d� �]
+

)

,

and the result follows.

In the case (↵
i

⇤ ^ 1)� > d, we immediately get �1+�

2

, which is the desired rate.

For Theorem 4, we have instead:

�↵
i

⇤
(1 + �)

2↵
i

⇤
+ d

 �↵
i

⇤
(1 + �)

2↵+ d
 �↵(1 + �)

2↵+ d
+

1 + �

log

2

(n)(2↵+ d)
,

which yields the desired rate.

The second part of the theorems is obtained by inverting the condition �

↵i⇤ < �

0

for �
0

> 0.
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Figure 1: Lower-bound construction of ⌘(x)
illustrated for d = 2. The function changes
slowly (linearly) in one direction, but can
change fast – at most ↵ smooth, in d�� direc-
tions (changes at 2�1/↵ intervals, for appro-
priate �). The learner has to identify such fast
changes, otherwise incurs a pointwise error
roughly determined by the margin of ⌘ away
from 1/2; this margin is O(�) (more precisely
C�,↵ ·�). The slower linear change in one di-
rection ensures that such margin occurs on a
sufficiently large mass of points.

A.3. Proof of Theorem 3

Proof The proof follows information theoretic arguments from Audibert and Tsybakov (2007),
adapted to the active learning setting by Castro and Nowak (2008), and to our specific problem
by Minsker (2012a). The general idea of the construction is to create a family of functions that are
↵-Hölder, and cross the level set of interest 1/2 linearly along one of the dimensions. First, we
recall Theorem 3.5 in Tsybakov (2009).

Theorem 8 (Tsybakov) Let H be a class of models, d : H ⇥ H ! R+ a pseudo-metric, and
{P

�

,� 2 H} a collection of probability measures associated with H. Assume there exists a subset
{⌘

0

, ..., ⌘
M

} of H such that:

1. d(⌘
i

, ⌘
j

) � 2s > 0 for all 0  i < j  M

2. P
⌘i is absolutely continuous with respect to P

⌘

0

for every 0 < i  M

3. 1

M

P

M

i=1

KL(P
⌘i , P⌘

0

)  ↵ log(M), for 0 < ↵ < 1

8

then

inf

⌘̂

sup

⌘2H
P
⌘

�

d(⌘̂, ⌘) � s
�

�
p
M

1 +

p
M

⇣

1� 2↵�
s

2↵

log(M)

⌘

,

where the infimum is taken over all possible estimators of ⌘ based on a sample from P
⌘

.

Let ↵ > 0 and d 2 N, d > 1. For x 2 Rd, we write x = (x(1), · · · , x(d)) and x(i) denotes the
value of the i-th coordinate of x.

Consider the grid of [0, 1]d�1 of step size 2�

1/↵, � > 0. There are

K = 2

1�d

�

(1�d)/↵,

disjoint hypercubes in this grid, and we write them (H 0
k

)

kK

. For k  K, let x
k

be the barycenter
of H 0

k

.
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We now define the partition of [0, 1]d :

[0, 1]d =

K

[

k=1

H
k

=

K

[

k=1

(H 0
k

⇥ [0, 1]),

where H
k

= (H 0
k

⇥ [0, 1]) is an hyper-rectangle corresponding to H 0
k

- these are hyper-rectangles
of side 2�

1/↵ along the first (d� 1) dimensions, and side 1 along the last dimension.

We define f for any z 2 [0, 1] as

f(z) =
z

2

+

1

4

,

We also define g for any z 2 [

1

2

�

1/↵,�1/↵

] as

g(z) =

8

<

:

C
�,↵

4

↵�1

⇣

�

1/↵ � z
⌘

↵

, if 3

4

�

1/↵ < z  �1/↵

C
�,↵

⇣

�

2

� 4

↵�1

�

z � 1

2

�

1/↵

�

↵

⌘

, if 1

2

�

1/↵  z  3

4

�

1/↵,

where C
�,↵

> 0 is a small constant that depends only on ↵,�.
For s 2 {�1, 1} and k  K, and for any x 2 H

k

, we write

 

k,s

(x) =

8

>

<

>

:

f(x(d)) + s
C�,↵�

2

, if |x̃� x̃
k

|
2

 �

1/↵

2

f(x(d)), if |x̃� x̃
k

|
2

� �1/↵

f(x(d)) + sg(|x̃� x̃
k

|), otherwise.

g is such that g(1
2

�

1/↵

)) =

C�,↵�

2

, and g(�1/↵

) = 0. Moreover, it is �/↵d,↵ Hölder on
[

1

2

�

1/↵,�1/↵

] (in the sense of the one dimensional definition of Definition 2) for C
�,↵

small enough
(depending only on ↵,�), and such that all its derivatives are 0 in 1

2

�

1/↵,�1/↵. Since by definition
of 

k,s

all derivatives in x are maximized in absolute value in the direction (x̃� x̃
k

, 1), it holds that
 

k,s

is in ⌃(�,↵) restricted to H
k

.
For � 2 {�1, 1}K , we define for any x 2 [0, 1]d the function

⌘
�

(x) =
X

kK

 

k,�k
1{x 2 H

k

}.

Such ⌘
�

is illustrated in Figure 1. Note that since each  
k,s

is in ⌃(�,↵) restricted to H
k

, and by
definition of  

k,s

at the borders of each H
k

, it holds that ⌘
�

is in ⌃(�,↵) on [0, 1]d (and as such
it can be extended as a function ⌃(�,↵) on Rd). Finally note that anywhere on [0, 1]d, ⌘

�

takes
value in [1/5, 4/5] for �, C

�,↵

small enough. So Assumption 2 is satisfied with �,↵, and ⌘
�

is an
admissible regression function.

Finally, for any � 2 {�1,+1}K , we define P
�

as the measure of the data in our setting when
P
X

is uniform on [0, 1]d and where the regression function ⌘ providing the distribution of the labels
is ⌘

�

. We write
H = {P

�

: � 2 {�1,+1}K}.

All elements of H satisfy Assumption 1.
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Let � 2 {�1, 1}d. By definition of P
�

it holds for any k  K and any ✏ 2 [0, 1/2] that

P
�

⇣

X 2 H
k

, and |⌘
�

(X)� 1/2|  ✏
⌘

 (4� 2C
�,↵

)✏2d�1

�

(d�1)/↵.

As K = 2

1�d

�

(1�d)/↵, it follows by an union over all k  K that

P
�

⇣

X : |⌘
�

(X)� 1/2|  ✏
⌘

=

K

[

k=1

P
�

⇣

X 2 H
k

, and |⌘
�

(x)� 1/2|  ✏
⌘

 (4� 2C
�,↵

)✏,

and so Assumption 3 is satisfied with � = 1, �
0

= 0 and c
3

= (4� 2C
�,↵

).

Proposition 3 (Gilbert-Varshamov) For K � 8 there exists a subset {�
0

, ...,�
M

} ⇢ {�1, 1}K
such that �

0

= {1, ..., 1}, ⇢(�
i

,�
j

) � K

8

for any 0  i < j  M and M � 2

K/8, where ⇢ stands
for the Hamming distance between two sets of length K.

We denote H0 .
= {P

�

0

, · · · , P
�M } a subset of H of cardinality M � 2

K/8 with K � 8 such that
for any 1  k < j  M , we have ⇢(�

k

,�
j

) � K/8. We know such a subset exists by Proposition 3.

Proposition 4 (Castro and Nowak) For any � 2 H such that � 6= �
0

and � small enough such
that ⌘

�

, ⌘
�

0

take values only in [1/5, 4/5], we have:

KL(P
�,n

||P
�

0

,n

)  7n max

x2[0,1]d
(⌘

�

(x)� ⌘
�

0

(x))2.

where KL(.||.) is the Kullback-Leibler divergence between two-distributions, and P
�,n

stands for
the joint distribution (X

i

, Y
i

)

n

i=1

of samples collected by any (possibly active) algorithm under P
�

.

This proposition is a consequence of the analysis in Castro and Nowak (2008) (Theorem 1 and 3,
and Lemma 1). A proof can be found in Minsker (2012a) page 10.

By Definition of the ⌘
�

, we know that max

x2[0,1]d |⌘�(x) � ⌘
�

0

(x)|  C
�,↵

� (as for any
x, x0 2 [0, 1]d, ⌘

�

(x)�x(d)/2+1/4 2 [�C�,↵�

2

;

C�,↵�

2

]), and so Proposition 4 implies that for any
� 2 H0:

KL(P
�,n

||P
�

0

,n

)  7n max

x2[0,1]d
(⌘

�

(x)� ⌘
�

0

(x))2

 7nC2

�,↵

�

2.

So we have :
1

M

X

�2H0

KL(P
�,n

||P
�

0

,n

)  7nC2

�,↵

�

2 <
K

8

2

 log(|H0|)
8

,

for n larger than a large enough constant that depends only on ↵,�, and setting

� = C
2

n�↵/(2↵+d�1),

as K = c
3

�

(d�1)/↵. This implies that for this choice of �, Assumption 3 in Theorem 8 is satisfied.
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Consider �,�0 2 H0 such that � 6= �0. Let us write the pseudo-metric:

D(P
�

, P
�

0
) = P

X

(sign(⌘
�

(x)� 1/2) 6= sign(⌘
�

0
(x)� 1/2)),

where sign(x) for x 2 R is the sign of x.
Since for any x 2 H

k

, we have that ⌘
�

(x) = f(x(d)) + �(k)

C�,↵�

2

if |x̃ � x̃
k

|
2

 �

1/↵/2, it
holds that if �(k) 6= (�0

)

(k) for some k  K

P
X

(X 2 H
k

and sign(⌘
�

(x)� 1/2) 6= sign(⌘
�

0
(x)� 1/2)) � C

4

�

(d�1)/↵

�.

By construction of H0 we have ⇢(�,�0
) � K/8, and it follows that:

D(P
�

, P
�

0
) � P

X

(X 2 H
k

and sign(⌘
�

(x)� 1/2) 6= sign(⌘
�

0
(x)� 1/2))⇢(�,�0

)

� K

8

C
4

�

(d�1)/↵

�

� C
5

�

� C
6

n�↵/(2↵+d�1).

And so all assumptions in Theorem 8 are satisfied and the lower bound follows , as we conclude
by using the following proposition from kol (see Lemma 5.2), where we have � = 1 the Tsybakov
noise exponent.

Proposition 5 For any estimator b⌘ of ⌘ such that ⌘ 2 P⇤
(↵,�, 0) we have:

R(b⌘)�R(⌘) � CP
X

�

sign(⌘̂(x)� 1/2) 6= sign(⌘(x)� 1/2)
�

1+�
� ,

for some constant C > 0.

In the case d = 1, the bound does not depend on ↵, and the previous information theoretic
arguments can easily be adapted by only considering f(z) - the problem reduces to distinguishing
between two Bernoulli distributions of parameters p� �

2

and p+ �

2

for p 2 [1/4, 3/4].

A.4. Proof of Theorem 5

Proof The proof is very similar to the proof of Theorem 3, and thus we only make the construction
explicit. Let ↵ > 0 and � 2 R+.

Consider the grid of [0, 1/2]d of step size 2�

1/↵, � > 0. There are

K = 4

�d

�

(�d)/↵,

disjoint hypercubes in this grid, and we write them (H
k

)

kK

. They form a partition of [0, 1/2]d

that is [0, 1/2]d =

S

kK

H
k

. Let x
k

be the barycenter of H
k

.
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We also define g for any z 2 [

1

2

�

1/↵,�1/↵

] as

g(z) =

8

<

:

C
�,↵

4

↵�1

⇣

�

1/↵ � z
⌘

↵

, if 3

4

�

1/↵ < z  �1/↵

C
�,↵

⇣

�

2

� 4

↵�1

�

z � 1

2

�

1/↵

�

↵

⌘

, if 1

2

�

1/↵  z  3

4

�

1/↵,

where C
�,↵

> 0 is a small constant that depends only on ↵,�.
For s 2 {�1, 1} and k  K, and for any x 2 H

k

, we write

 

k,s

(x) =

8

>

<

>

:

1

2

+ s
C�,↵�

2

, if |x� x
k

|
2

 �

1/↵

2

1

2

, if |x� x
k

|
2

� �1/↵

1

2

+ sg(|x� x
k

|), otherwise.

Note that g is such that g(1
2

�

1/↵

)) =

C�,↵�

2

, and g(�1/↵

) = 0, and C
�,↵

is chosen such that  
k,s

is in ⌃(�,↵) restricted to H
k

.
Denote X

1

= (1, ..., 1) the d-dimensional vector with all coordinates equal to 1. For � 2
{�1, 1}K , we define for any x 2 [0, 1]d the function

⌘
�

(x) =
X

kK

 

k,�k
1{x 2 H

k

}+ 1{x = X
1

}.

Note that since each  
k,s

is in ⌃(�,↵) restricted to H
k

, and by definition of  
k,s

at the borders of
each H

k

, it holds that ⌘
�

is in ⌃(�,↵) on [0, 1/2]d (and as such it can be extended as a function
⌃(�,↵) on Rd with ⌘(X

1

) = 1). So Assumption 2 is satisfied with �,↵, and ⌘
�

is an admissible
regression function.

We now define the marginal distribution P
X

of X . We define p
k

for x 2 Rd, where we recall
that x

k

is the barycenter of hypercube H
k

:

p
k

(x) =

8

<

:

w

KVol

�

B(xk,
�

1/↵

2

)

� if |x� x
k

|
2

 �

1/↵

2

0 otherwise,

where Vol

�

B(x
k

, �
1/↵

2

)

�

denotes the volume of the d-ball of radius �

1/↵

2

centered in x
k

. This
allows us to define the density:

p(x) =
K

X

k=1

p
k

(x) + (1� w)�
x

(X
1

),

where �
x

(X
1

) is the Dirac measure in X
1

. Note that
R

x2[0,1]d dp(x) =
R

x2[0,1/2]d dp(x)+1�w = 1

as we have by construction
R

x2[0,1/2]d dp(x) = w.
Finally, for any � 2 {�1,+1}K , we define P

�

as the measure of the data in our setting when
the density of P

X

is p as defined previously and where the regression function ⌘ providing the
distribution of the labels is ⌘

�

. We write

H
K

= {P
�

: � 2 {�1,+1}K}.
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All elements of H satisfy Assumption 1. Note that the marginal of X under P
�

does not depend on
�.

Let � 2 {�1, 1}d. By definition of P
�

it holds that for any C
�,↵

�

2

 ✏ < 1:

P
�

⇣

X : |⌘
�

(X)� 1/2|  ✏
⌘

=

K

[

k=1

P
�

⇣

X 2 H
k

, and |⌘
�

(x)� 1/2|  ✏
⌘

 w.

and for any ✏ < C
�,↵

�

2

:

P
�

⇣

X : |⌘
�

(X)� 1/2|  ✏
⌘

= 0.

Thus, in order to satisfy Assumption 3, it suffices to set w appropriately i.e. w = O(�

�

). The rest
of the proof is similar to that of Theorem 3, where we proceed with K = O(�

�d/↵

), n�2 < O(K)

which brings � = O(n�↵/(2↵+d)

) and D(�,�0
) � O(w) = O(n�↵�/(2↵+d)

) with �,�0 belonging
to an appropriate subset of H.
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