Pruning Nearest Neighbor Cluster Trees

Samory Kpotufe

Max Planck Institute for Intelligent Systems
Tuebingen, Germany

Joint work with Ulrike von Luxburg

- An interesting notion of "clusters" (Hartigan 1982): Clusters are regions of high density of the data distribution μ .
- The richness of k-NN graphs G_n : Subgraphs of G_n encode the underlying cluster structure of μ
- How to identify false cluster structures:
 A simple pruning procedure with strong guarantees (a first).

- An interesting notion of "clusters" (Hartigan 1982): Clusters are regions of high density of the data distribution μ .
- The richness of k-NN graphs G_n : Subgraphs of G_n encode the underlying cluster structure of μ
- How to identify false cluster structures:
 A simple pruning procedure with strong guarantees (a first).

- An interesting notion of "clusters" (Hartigan 1982): Clusters are regions of high density of the data distribution μ .
- The richness of k-NN graphs G_n : Subgraphs of G_n encode the underlying cluster structure of μ
- How to identify false cluster structures:
 A simple pruning procedure with strong guarantees (a first)

- An interesting notion of "clusters" (Hartigan 1982): Clusters are regions of high density of the data distribution μ .
- The richness of k-NN graphs G_n : Subgraphs of G_n encode the underlying cluster structure of μ
- How to identify false cluster structures:
 A simple pruning procedure with strong guarantees (a first)

- An interesting notion of "clusters" (Hartigan 1982): Clusters are regions of high density of the data distribution μ .
- The richness of k-NN graphs G_n : Subgraphs of G_n encode the underlying cluster structure of μ .
- How to identify false cluster structures:
 A simple pruning procedure with strong guarantees (a first).

- An interesting notion of "clusters" (Hartigan 1982): Clusters are regions of high density of the data distribution μ .
- The richness of k-NN graphs G_n : Subgraphs of G_n encode the underlying cluster structure of μ .
- How to identify false cluster structures:
 A simple pruning procedure with strong guarantees (a first).

- An interesting notion of "clusters" (Hartigan 1982): Clusters are regions of high density of the data distribution μ .
- The richness of k-NN graphs G_n : Subgraphs of G_n encode the underlying cluster structure of μ .
- How to identify false cluster structures:
 A simple pruning procedure with strong guarantees (a first).

General motivation

More understanding of clustering

- Density yields intuitive (and clean) notion of clusters.
- Clusters take any shape

 reveals complexity of clustering?
- Popular approches (e.g. DBscan, single linkage) are density-based methods.

More understanding of k-NN graphs

These appear everywhere in various forms

General motivation

More understanding of clustering

- Density yields intuitive (and clean) notion of clusters.
- Clusters take any shape

 reveals complexity of clustering?
- Popular approches (e.g. DBscan, single linkage) are density-based methods.

More understanding of k-NN graphs

These appear everywhere in various forms!

Outline

- Density-based clustering
- Richness of k-NN graphs
- Guaranteed removal of false clusters

Given: data from some unknown distribution. **Goal:** discover "true" high density regions.

Given: data from some unknown distribution. **Goal:** discover "true" high density regions.

Given: data from some unknown distribution. **Goal:** discover "true" high density regions.

Given: data from some unknown distribution. **Goal:** discover "true" high density regions.

Given: data from some unknown distribution. **Goal:** discover "true" high density regions.

Given: data from some unknown distribution. **Goal:** discover "true" high density regions.

Clusters are $G(\lambda) \equiv \text{CCs of } \mathcal{L}_{\lambda} \doteq \{x : f(x) \geq \lambda\}.$

Clusters are $G(\lambda) \equiv \text{CCs of } \mathcal{L}_{\lambda} \doteq \{x : f(x) \geq \lambda\}.$

Clusters are $G(\lambda) \equiv \text{CCs of } \mathcal{L}_{\lambda} \doteq \{x : f(x) \geq \lambda\}.$

The cluster tree of f is the infinite hierarchy $\{G(\lambda)\}_{\lambda>0}.$

Given: n i.i.d. samples $\mathbf{X} = \{x_i\}_{i \in [n]}$ from dist. with density f.

Clustering outputs: A hierarchy $\{G_n(\lambda)\}_{\lambda>0}$ of subsets of X.

We at least want consistency, i.e. for any $\lambda > 0$

 $\mathbb{P}\left(\mathsf{Disjoint}\ A, A' \in G(\lambda)\ \mathsf{are\ in\ disjoint\ empirical\ clusters}\ \right) o 1.$

Given: n i.i.d. samples $\mathbf{X} = \{x_i\}_{i \in [n]}$ from dist. with density f.

Clustering outputs: A hierarchy $\{G_n(\lambda)\}_{\lambda>0}$ of subsets of **X**.

We at least want consistency, i.e. for any $\lambda > 0$

 $\mathbb{P}\left(\mathsf{Disjoint}\ A, A' \in G(\lambda)\ \mathsf{are\ in\ disjoint\ empirical\ clusters}\ \right) \to 1.$

Given: n i.i.d. samples $\mathbf{X} = \{x_i\}_{i \in [n]}$ from dist. with density f.

Clustering outputs: A hierarchy $\{G_n(\lambda)\}_{\lambda>0}$ of subsets of **X**.

We at least want consistency, i.e. for any $\lambda > 0$

 $\mathbb{P}\left(\mathsf{Disjoint}\ A, A' \in G(\lambda)\ \mathsf{are\ in\ disjoint\ empirical\ clusters}\ \right) \to 1.$

Given: n i.i.d. samples $\mathbf{X} = \{x_i\}_{i \in [n]}$ from dist. with density f.

Clustering outputs: A hierarchy $\{G_n(\lambda)\}_{\lambda>0}$ of subsets of **X**.

We at least want consistency, i.e. for any $\lambda > 0$

 $\mathbb{P}\left(\mathsf{Disjoint}\ A, A' \in G(\lambda)\ \mathsf{are}\ \mathsf{in}\ \mathsf{disjoint}\ \mathsf{empirical}\ \mathsf{clusters}\ \right) \to 1.$

A good procedure should satisfy:

Consistency!

Every level should be recovered for sufficiently large n.

Finite sample behavior:

- Fast discovery of real clusters.
- "No false clusters !!!"

A good procedure should satisfy:

Consistency!

Every level should be recovered for sufficiently large n.

Finite sample behavior:

- Fast discovery of real clusters.
- "No false clusters !!!"

A good procedure should satisfy:

Consistency!

Every level should be recovered for sufficiently large n.

Finite sample behavior:

- Fast discovery of real clusters.
- "No false clusters !!!"

Earlier example is sampled from a bi-modal mixture of Gaussians!!!

My visual procedure yields false clusters at low resolution.

k-NN graphs quarantees

- Finite sample: Salient clusters recovered as subgraphs.
- Consistency: All clusters eventually recovered.

- Finite sample: No false clusters + salient clusters remain.
- Consistency: Pruned tree remains a consistent estimator.

k-NN graphs guarantees

- Finite sample: Salient clusters recovered as subgraphs.
- Consistency: All clusters eventually recovered.

- Finite sample: No false clusters + salient clusters remain.
- Consistency: Pruned tree remains a consistent estimator.

k-NN graphs guarantees

- Finite sample: Salient clusters recovered as subgraphs.
- Consistency: All clusters eventually recovered.

- Finite sample: No false clusters + salient clusters remain.
- Consistency: Pruned tree remains a consistent estimator.

k-NN graphs guarantees

- Finite sample: Salient clusters recovered as subgraphs.
- Consistency: All clusters eventually recovered.

- Finite sample: No false clusters + salient clusters remain.
- Consistency: Pruned tree remains a consistent estimator.

k-NN graphs guarantees

- Finite sample: Salient clusters recovered as subgraphs.
- Consistency: All clusters eventually recovered.

- Finite sample: No false clusters + salient clusters remain.
- Consistency: Pruned tree remains a consistent estimator.

What was known:

People you might look up:

Wasserman, Tsybakov, Wishart, Rinaldo, Nugent, Stueltze, Rigollet, Wong, Lane, Dasgupta, Chauduri, Maeir, von Luxburg Steinwart ...

What was known:

People you might look up:

Wasserman, Tsybakov, Wishart, Rinaldo, Nugent, Stueltze, Rigollet, Wong, Lane, Dasgupta, Chauduri, Maeir, von Luxburg, Steinwart ...

- $(f_n \to f) \implies$ (cluster tree of $f_n \to$ cluster tree of f). \bigcirc No known practical estimators. \bigcirc
- Various practical estimators of a single level set
 Can these be extended to all levels at once?
- Recent: First consistent practical estimator (Ch. and Das)

 A generalization of single linkage (by Wishart)

- $(f_n \to f) \implies$ (cluster tree of $f_n \to$ cluster tree of f). \bigcirc No known practical estimators. \bigcirc
- Various practical estimators of a single level set.
 Can these be extended to all levels at once?
- Recent: First consistent practical estimator (Ch. and Das).
 A generalization of single linkage (by Wishart)

- $(f_n \to f) \implies$ (cluster tree of $f_n \to$ cluster tree of f). \bigcirc No known practical estimators. \bigcirc
- Various practical estimators of a single level set.
 Can these be extended to all levels at once?
- Recent: First consistent practical estimator (Ch. and Das).
 A generalization of single linkage (by Wishart)

- $(f_n \to f) \implies$ (cluster tree of $f_n \to$ cluster tree of f). \bigcirc No known practical estimators. \bigcirc
- Various practical estimators of a single level set.
 Can these be extended to all levels at once?
- Recent: First consistent practical estimator (Ch. and Das).
 A generalization of single linkage (by Wishart)

- $(f_n \to f) \implies$ (cluster tree of $f_n \to$ cluster tree of f). \bigcirc No known practical estimators. \bigcirc
- Various practical estimators of a single level set.
 Can these be extended to all levels at once?
- **Recent:** First consistent practical estimator (Ch. and Das). A generalization of single linkage (by Wishart)

Empirical tree contains good clusters ... but which?

Empirical tree contains good clusters ... but which?

We need pruning guarantees!

Pruning

Consisted of removing **small** clusters!

Problem: Not all false clusters are "small"!

Pruning

Consisted of removing small clusters!

Problem: Not all false clusters are "small"!!

Pruning

Consisted of removing small clusters!

Problem: Not all false clusters are "small"!!

Pruning

Consisted of removing **small** clusters!

Problem: Not all false clusters are "small"!!

Pruning

Consisted of removing **small** clusters!

Problem: Not all false clusters are "small"!!

Outline

- Ground-truth: Density-based clustering
- Richness of k-NN graphs
- Guaranteed removal of false clusters

$Richness\ of\ k$ - $NN\ graphs$

k-NN density estimate: $f_n(x) \doteq k/n \cdot \text{vol}(B_{k,n}(x))$.

Procedure: Remove X_i from G_n in increasing order of $f_n(X_i)$.

Richness of k-NN graphs

k-NN density estimate: $f_n(x) \doteq k/n \cdot \text{vol}(B_{k,n}(x))$.

Procedure: Remove X_i from G_n in increasing order of $f_n(X_i)$.

$Richness\ of\ k$ - $NN\ graphs$

k-NN density estimate: $f_n(x) \doteq k/n \cdot \text{vol}(B_{k,n}(x))$.

Procedure: Remove X_i from G_n in increasing order of $f_n(X_i)$.

Richness of k-NN graphs

k-NN density estimate: $f_n(x) \doteq k/n \cdot \text{vol}(B_{k,n}(x))$.

Procedure: Remove X_i from G_n in increasing order of $f_n(X_i)$.

Sample from 2-modes mixture of gaussians

Theorem 1:

Let $\log n \lesssim k \lesssim n^{1/O(d)}$:

All such $A \cap \mathbf{X}$ and $A' \cap \mathbf{X}$ belong to disjoint CCs of $G_n(\lambda - O(1/\sqrt{k}))$.

Assumptions: $f(x) \leq F$ and $\forall x, x', |f(x) - f(x')| \leq L ||x - x'||^{\alpha}$.

Theorem I:

Let $\log n \lesssim k \lesssim n^{1/O(d)}$:

All such $A \cap \mathbf{X}$ and $A' \cap \mathbf{X}$ belong to disjoint CCs of $G_n(\lambda - O(1/\sqrt{k}))$.

Assumptions: $f(x) \leq F$ and $\forall x, x', |f(x) - f(x')| \leq L ||x - x'||^{\alpha}$.

Theorem 1:

Let $\log n \lesssim k \lesssim n^{1/O(d)}$:

All such $A \cap \mathbf{X}$ and $A' \cap \mathbf{X}$ belong to disjoint CCs of $G_n(\lambda - O(1/\sqrt{k}))$.

Assumptions: $f(x) \leq F$ and $\forall x, x', |f(x) - f(x')| \leq L ||x - x'||^{\alpha}$.

Note on key quantities:

- $1/\sqrt{k} \gtrsim$ (density estimation error on samples X_i).
- $(k/n\lambda)^{1/d} \gtrsim (k\text{-NN distances of } X_i \text{ in } \mathcal{L}_{\lambda})$

Consistency: both quantities $\to 0$, so eventually $A_n \cap A'_n = \emptyset$.

Note on key quantities:

- $1/\sqrt{k} \gtrsim$ (density estimation error on samples X_i).
- $(k/n\lambda)^{1/d} \gtrsim (k\text{-NN distances of } X_i \text{ in } \mathcal{L}_{\lambda}).$

Consistency: both quantities $\to 0$, so eventually $A_n \cap A'_n = \emptyset$.

Note on key quantities:

- $1/\sqrt{k} \gtrsim$ (density estimation error on samples X_i).
- $(k/n\lambda)^{1/d} \gtrsim (k\text{-NN distances of } X_i \text{ in } \mathcal{L}_{\lambda}).$

Consistency: both quantities $\to 0$, so eventually $A_n \cap A'_n = \emptyset$.

Showing that $A \cap \mathbf{X}$ remains connected in $G_n(\lambda - O(1/\sqrt{k}))$.

Cover high density path with balls $\{B_t\}$

- B_t 's have to be large so they contain points
- B_t 's have to be small so points are connected.

So let B_t have mass about k/n

Showing that $A \cap \mathbf{X}$ remains connected in $G_n(\lambda - O(1/\sqrt{k}))$.

Cover high density path with balls $\{B_t\}$

- B_t 's have to be large so they contain points.
- B_t 's have to be small so points are connected.

So let B_t have mass about k/n!

Showing that $A \cap \mathbf{X}$ remains connected in $G_n(\lambda - O(1/\sqrt{k}))$.

Cover high density path with balls $\{B_t\}$

- B_t 's have to be large so they contain points.
- B_t 's have to be small so points are connected.

So let B_t have mass about k/n!

Showing that $A \cap \mathbf{X}$ remains connected in $G_n(\lambda - O(1/\sqrt{k}))$.

Cover high density path with balls $\{B_t\}$

- B_t 's have to be large so they contain points.
- B_t 's have to be small so points are connected.

So let B_t have mass about k/n!

Outline

- Ground-truth: Density-based clustering
- Richness of k-NN graphs
- Guaranteed removal of false clusters

Guaranteed removal of false clusters

Sample from 2-modes mixture of gaussians

Guaranteed removal of false clusters

Sample from 2-modes mixture of gaussians

What are false clusters?

Intuitively:

 A_n and A'_n in \mathbf{X} should be in one (empirical) cluster if they are in the same (true) cluster at every level containing $A_n \cup A'_n$.

Sample from 2-modes mixture of gaussians

Pruning: Connect $G_n(0)$. Re-connect A_n , A'_n in $G_n(\lambda_n)$ if they are connected in $G_n(\lambda_n - \tilde{\epsilon})$. How do we set $\tilde{\epsilon}$?

Sample from 2-modes mixture of gaussians

Pruning: Connect $G_n(0)$. Re-connect A_n , A'_n in $G_n(\lambda_n)$ if they are connected in $G_n(\lambda_n - \tilde{\epsilon})$. How do we set $\tilde{\epsilon}$?

Sample from 2-modes mixture of gaussians

Pruning: Connect $G_n(0)$. Re-connect A_n , A'_n in $G_n(\lambda_n)$ if they are connected in $G_n(\lambda_n-\tilde{\epsilon})$. How do we set $\tilde{\epsilon}$?

Sample from 2-modes mixture of gaussians

Pruning: Connect $G_n(0)$. Re-connect A_n , A'_n in $G_n(\lambda_n)$ if they are connected in $G_n(\lambda_n - \tilde{\epsilon})$. How do we set $\tilde{\epsilon}$?

Suppose $\tilde{\epsilon}\gtrsim 1/\sqrt{k}$.

- A_n and A'_n belong to disjoint A and A' in some $G(\lambda)$.
- $A \cap \mathbf{X}$ and $A' \cap \mathbf{X}$ belong to disjoint A_n and A'_n of $G_n(\lambda O(1/\sqrt{k}))$.
- $(\tilde{\epsilon}, k, n)$ -salient modes map 1-1 to leaves of empirical tree

Suppose $\tilde{\epsilon} \gtrsim 1/\sqrt{k}$.

- A_n and A'_n belong to disjoint A and A' in some $G(\lambda)$.
- $A \cap \mathbf{X}$ and $A' \cap \mathbf{X}$ belong to disjoint A_n and A'_n of $G_n(\lambda O(1/\sqrt{k}))$.
- $(\tilde{\epsilon}, k, n)$ -salient modes map 1-1 to leaves of empirical tree.

Suppose $\tilde{\epsilon}\gtrsim 1/\sqrt{k}$.

- A_n and A'_n belong to disjoint A and A' in some $G(\lambda)$.
- $A \cap \mathbf{X}$ and $A' \cap \mathbf{X}$ belong to disjoint A_n and A'_n of $G_n(\lambda O(1/\sqrt{k}))$.
- $(\tilde{\epsilon}, k, n)$ -salient modes map 1-1 to leaves of empirical tree.

Suppose $\tilde{\epsilon}\gtrsim 1/\sqrt{k}$.

- A_n and A'_n belong to disjoint A and A' in some $G(\lambda)$.
- $A \cap \mathbf{X}$ and $A' \cap \mathbf{X}$ belong to disjoint A_n and A'_n of $G_n(\lambda O(1/\sqrt{k}))$.
- $(\tilde{\epsilon}, k, n)$ -salient modes map 1-1 to leaves of empirical tree.

Consistency even after pruning:

We just require $\tilde{\epsilon} \to 0$ as $n \to \infty$.

Some last technical points:

[Ch. and Das. 2010] seem to be first to allow any cluster shape besides mild requirements on envelopes of clusters. We allow any cluster shape up to smoothness of f and can explicitly relate empirical clusters to true clusters!

Some last technical points:

[Ch. and Das. 2010] seem to be first to allow any cluster shape besides mild requirements on envelopes of clusters.

We allow any cluster shape up to smoothness of f and can explicitly relate empirical clusters to true clusters!

Some last technical points:

[Ch. and Das. 2010] seem to be first to allow any cluster shape besides mild requirements on envelopes of clusters.

We allow any cluster shape up to smoothness of f and can explicitly relate empirical clusters to true clusters!

- Density based clustering Hartigan 1982).
- The richness of k-NN graphs G_n . Subgraphs of G_n consistently recover cluster tree of μ .
- Guaranteed pruning of false clusters.
 While discovering salient clusters and maintaining consistency.

- Density based clustering Hartigan 1982).
- The richness of k-NN graphs G_n . Subgraphs of G_n consistently recover cluster tree of μ .
- Guaranteed pruning of false clusters.
 While discovering salient clusters and maintaining consistency.

- Density based clustering Hartigan 1982).
- The richness of k-NN graphs G_n . Subgraphs of G_n consistently recover cluster tree of μ .
- Guaranteed pruning of false clusters.
 While discovering salient clusters and maintaining consistency.

- Density based clustering Hartigan 1982).
- The richness of k-NN graphs G_n . Subgraphs of G_n consistently recover cluster tree of μ .
- Guaranteed pruning of false clusters.
 While discovering salient clusters and maintaining consistency!

Thank you! ©