
, , , , , , , , , ,

Pruning Nearest Neighbor Cluster Trees

Samory Kpotufe
Max Planck Institute for Intelligent Systems

Tuebingen, Germany

Joint work with Ulrike von Luxburg



, , , , , , , , , ,

We’ll discuss:

• An interesting notion of “clusters” (Hartigan 1982):
Clusters are regions of high density of the data distribution µ.

• The richness of k-NN graphs Gn:
Subgraphs of Gn encode the underlying cluster structure of µ.

• How to identify false cluster structures:
A simple pruning procedure with strong guarantees (a first).
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General motivation

More understanding of clustering

• Density yields intuitive (and clean) notion of clusters.

• Clusters take any shape =⇒ reveals complexity of clustering?

• Popular approches (e.g. DBscan, single linkage) are
density-based methods.

More understanding of k-NN graphs

These appear everywhere in various forms!
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Outline
• Density-based clustering
• Richness of k-NN graphs

• Guaranteed removal of false clusters



, , , , , , , , , ,

Density based clustering

Given: data from some unknown distribution.
Goal: discover “true” high density regions.

Resolution matters!
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Density based clustering

The cluster tree of f is the infinite hierarchy {G(λ)}λ≥0.
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Formal estimation problem:

Given: n i.i.d. samples X = {xi}i∈[n] from dist. with density f .

Clustering outputs: A hierarchy {Gn(λ)}λ≥0 of subsets of X.

We at least want consistency, i.e. for any λ > 0

P
(
Disjoint A,A′ ∈ G(λ) are in disjoint empirical clusters

)
→ 1.
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Consistency!

Every level should be recovered for sufficiently large n.

Finite sample behavior:

• Fast discovery of real clusters.

• “No false clusters !!!”
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Earlier example is sampled from a bi-modal mixture of Gaussians!!!

My visual procedure yields false clusters at low resolution. §
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What we’ll show:

k-NN graphs guarantees

• Finite sample: Salient clusters recovered as subgraphs.

• Consistency: All clusters eventually recovered.

Generic pruning guarantees:

• Finite sample: No false clusters + salient clusters remain.

• Consistency: Pruned tree remains a consistent estimator.
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Wasserman, Tsybakov, Wishart, Rinaldo, Nugent, Stueltze,
Rigollet, Wong, Lane, Dasgupta, Chauduri, Maeir, von Luxburg,
Steinwart ...
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What was known:

Consistency

• (fn → f) =⇒ (cluster tree of fn → cluster tree of f). ©
No known practical estimators. §

• Various practical estimators of a single level set.
Can these be extended to all levels at once?

• Recent: First consistent practical estimator (Ch. and Das).

A generalization of single linkage (by Wishart)©
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Consisted of removing small clusters!
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Outline
• Ground-truth: Density-based clustering

• Richness of k-NN graphs
• Guaranteed removal of false clusters
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Richness of k-NN graphs

k-NN density estimate: fn(x)
.
= k/n · vol(Bk,n(x)).

Procedure: Remove Xi from Gn in increasing order of fn(Xi).

Level λ of the tree: Gn(λ) ≡ subgraph with Xi s.t. fn(Xi) ≥ λ.
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Sample from 2-modes mixture of gaussians
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Theorem I:

Let log n . k . n1/O(d):

A A′

& 1/
√
k

S

λ

&
(
k
nλ

)1/d
All such A ∩X and A′ ∩X belong to disjoint CCs of

Gn(λ−O(1/
√
k)).

Assumptions: f(x) ≤ F and ∀x, x′, |f(x)− f(x′)| ≤ L ‖x− x′‖α.
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Note on key quantities:

• 1/
√
k & (density estimation error on samples Xi).

• (k/nλ)1/d & (k-NN distances of Xi in Lλ).

A A′
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√
k

S

λ
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(
k
nλ

)1/d
Consistency: both quantities → 0, so eventually An ∩A′n = ∅.
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Main technicality:
Showing that A ∩X remains connected in

Gn(λ−O(1/
√
k)).

Cover high density path with balls {Bt}
• Bt’s have to be large so they contain points.

• Bt’s have to be small so points are connected.

So let Bt have mass about k/n!
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Guaranteed removal of false clusters

Sample from 2-modes mixture of gaussians
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What are false clusters?

Intuitively:

An and A′n in X should be in one (empirical) cluster if they are in
the same (true) cluster at every level containing An ∪A′n.
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Pruning Intuition:
key connecting points are missing!!!

Sample from 2-modes mixture of gaussians

Pruning: Connect Gn(0).
Re-connect An, A′n in Gn(λn) if they are connected in Gn(λn− ε̃).

How do we set ε̃?
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Theorem II:

Suppose ε̃ & 1/
√
k.

• An and A′n belong to disjoint A and A′ in some G(λ).

• A ∩X and A′ ∩X belong to disjoint An and A′n of
Gn(λ−O(1/

√
k)).

• (ε̃, k, n)-salient modes map 1-1 to leaves of empirical tree.
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Consistency even after pruning:
We just require ε̃→ 0 as n→∞.
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Some last technical points:

[Ch. and Das. 2010] seem to be first to allow any cluster shape
besides mild requirements on envelopes of clusters.

We allow any cluster shape up to smoothness of f and can
explicitely relate empirical clusters to true clusters!



, , , , , , , , , ,

Some last technical points:

[Ch. and Das. 2010] seem to be first to allow any cluster shape
besides mild requirements on envelopes of clusters.

We allow any cluster shape up to smoothness of f and can
explicitely relate empirical clusters to true clusters!



, , , , , , , , , ,

Some last technical points:

[Ch. and Das. 2010] seem to be first to allow any cluster shape
besides mild requirements on envelopes of clusters.

We allow any cluster shape up to smoothness of f and can
explicitely relate empirical clusters to true clusters!



, , , , , , , , , ,

We have thus discussed:

• Density based clustering - Hartigan 1982).

• The richness of k-NN graphs Gn.
Subgraphs of Gn consistently recover cluster tree of µ.

• Guaranteed pruning of false clusters.
While discovering salient clusters and maintaining consistency!
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Thank you! ©
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