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We'll discuss:

e An interesting notion of “clusters” (Hartigan 1982):

Clusters are regions of high density of the data distribution p.
e The richness of k-NN graphs G,:

Subgraphs of GG, encode the underlying cluster structure of p.

e How to identify false cluster structures:
A simple pruning procedure with strong guarantees (a first).
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density-based methods.
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More understanding of clustering
e Density yields intuitive (and clean) notion of clusters.
o Clusters take any shape = reveals complexity of clustering?

e Popular approches (e.g. DBscan, single linkage) are
density-based methods.

More understanding of k-NN graphs
These appear everywhere in various forms!
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« Density-based clustering
e Richness of k-NN graphs

e Guaranteed removal of false clusters
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Density based clustering

Given: data from some unknown distribution.
Goal: discover “true” high density regions.

Resolution matters!
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Clusters are G(A) = CCs of L) = {x: f(x) > A}




Density based clustering

The cluster tree of f is the infinite hierarchy {G/(A)} .
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Formal estimation problem:

Given: n i.i.d. samples X = {xi}ie[n] from dist. with density f. J

Clustering outputs: A hierarchy {G,,(\)},5 of subsets of X. J

We at least want consistency, i.e. for any A > 0

PP (Disjoint A, A" € G()) are in disjoint empirical clusters ) — 1.
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A good procedure should satisfy:

Consistency!

Every level should be recovered for sufficiently large n.

Finite sample behavior:
e Fast discovery of real clusters.
¢ “No false clusters !!!”




Earlier example is sampled from a bi-modal mixture of Gaussians!!!

My visual procedure yields false clusters at low resolution. @
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What we’ll show:

k-NN graphs guarantees
¢ Finite sample: Salient clusters recovered as subgraphs.

e Consistency: All clusters eventually recovered.

Generic pruning guarantees:
¢ Finite sample: No false clusters + salient clusters remain.

e Consistency: Pruned tree remains a consistent estimator.
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People you might look up:

Wasserman, Tsybakov, Wishart, Rinaldo, Nugent, Stueltze,
Rigollet, Wong, Lane, Dasgupta, Chauduri, Maeir, von Luxburg,
Steinwart ...
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Consistency

e (fn = f) = (cluster tree of f,, — cluster tree of f). @
No known practical estimators. @

e Various practical estimators of a single level set.
Can these be extended to all levels at once?

¢ Recent: First consistent practical estimator (Ch. and Das).

A generalization of single linkage (by Wishart)
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Empirical tree contains good clusters ... but which? @

We need pruning guarantees!
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e Richness of £-NN graphs

e Guaranteed removal of false clusters
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Richness of k-NN graphs

k-NN density estimate: f,(x) = k/n - vol(By,(z)).

J

Procedure: Remove X; from G,, in increasing order of f,(X;). |
Level X\ of the tree: GG,,()\) = subgraph with X s.t. f,,(X;) > A




modes mixture of gaussians

Sample from 2
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Theorem I:

Let logn < k < n!/0@);

A/

nA

A
—

All such AN X and A’ N X belong to disjoint CCs of
Gn(A — O(1/VE)).

Assumptions: f(z) < F and Va, 2/, |f(z) — f(2/)| < L ||z — 2||“.
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Note on key quantities:
e 1/\/k > (density estimation error on samples X;).
o (k/nA\)"/% > (k-NN distances of X; in £)).

Consistency: both quantities — 0, so eventually A, N A/, = 0. ]
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Mawn technicality:
Showing that AN X remains connected in

Gn(A = O(1/VE)).

Cover high density path with balls {B;}
e B;'s have to be large so they contain points.

e B;'s have to be small so points are connected.

So let B; have mass about k/n!
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Sample from 2-modes mixture of gaussians



What are false clusters?

oo 000
Intuitively:

A, and A, in X should be in one (empirical) cluster if they are in
the same (true) cluster at every level containing A4, U A),.
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Pruning Intuition:
key connecting points are missing!!!

Sample from 2-modes mixture of gaussians

Pruning: Connect G,,(0).

Re-connect A,, A} in G,()\,) if they are connected in G,,(\,

How do we set €7

— 9.
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Theorem II:

Suppose € > 1/Vk.

e A, and A}, belong to disjoint A and A" in some G(\).
e AnX and A’ N X belong to disjoint A,, and A/, of
Gn(X—O(1/VE)).

e (& k,n)-salient modes map 1-1 to leaves of empirical tree.



Consistency even after pruning:
We just require € = 0 as n — 0.
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Some last technical points:

[Ch. and Das. 2010] seem to be first to allow any cluster shape
besides mild requirements on envelopes of clusters.
We allow any cluster shape up to smoothness of f and can
explicitely relate empirical clusters to true clusters!
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We have thus discussed:

e Density based clustering - Hartigan 1982).

e The richness of k-NN graphs G,,.
Subgraphs of GG, consistently recover cluster tree of .

e Guaranteed pruning of false clusters.
While discovering salient clusters and maintaining consistency!



Thank you! ©
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