Understanding thy neighbors: Practical perspectives from modern analysis

Sanjoy Dasgupta and Samory Kpotufe

Key questions

Statistical issues: under what conditions does NN produce good predictions, and how should it be run?

- When is 1-NN enough?
- If using k-NN, what should k be, roughly?
- Is there a curse of dimension?
- Does it adapt to latent structure: clusters, manifolds, etc?

2 Algorithmic issues: how to find nearest neighbors?

- Data structures for fast NN
- Parallelizing NN
- Geometric tasks that build upon nearest neighbors: hierarchical clustering, minimum spanning tree, etc

Outline

1 Statistical properties of nearest neighbor

2 Algorithmic approaches to nearest neighbor search

Nearest neighbor classification

Given:

- training points $(x_1, y_1), \ldots, (x_n, y_n) \in \mathcal{X} \times \{0, 1\}$
- query point x

predict the label of x by looking at its nearest neighbor(s) among the x_i .

- 1-NN returns the label of the nearest neighbor of x amongst the x_i.
- k-NN returns the majority vote of the k nearest neighbors.
- k_n -NN lets k grow with n.

The data space

Data points lie in a space \mathcal{X} with distance function $\rho: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$.

- Most common scenario: $\mathcal{X} = \mathbb{R}^d$ and ρ is Euclidean distance.
- Common more general setting: (*X*, *ρ*) is a *metric space*.
 - ℓ_p distances
 - Metrics obtained from user preferences/feedback
- Also of interest: more general distances.
 - KL divergence
 - Domain-specific dissimilarity measures

Statistical learning theory setup

Training points come from the same source as future queries.

- Underlying measure μ on \mathcal{X} from which all points are generated.
- We call (\mathcal{X}, ρ, μ) a metric measure space.
- Label of x is a coin flip with bias $\eta(x) = \Pr(Y = 1 | X = x)$.

Question: why wouldn't $\eta(x)$ always be either 0 or 1?

A classifier is a rule $h: \mathcal{X} \to \{0, 1\}.$

- Misclassification rate, or risk: $R(h) = Pr(h(X) \neq Y)$.
- The Bayes-optimal classifier

$$h^*(x) = \left\{ egin{array}{cc} 1 & ext{if } \eta(x) > 1/2 \ 0 & ext{otherwise} \end{array}
ight.$$

has minimum risk, $R^* = R(h^*) = \mathbb{E}_X \min(\eta(X), 1 - \eta(X)).$

Statistical questions

Let h_n be a classifier based on *n* labeled data points from the underlying distribution. $R(h_n)$ is a random variable.

- **Consistency**: does $R(h_n)$ converge to R^* ?
 - 1-NN is not consistent. e.g. $\mathcal{X} = \mathbb{R}$ and $\eta \equiv 1/4$.

Statistical questions

Let h_n be a classifier based on *n* labeled data points from the underlying distribution. $R(h_n)$ is a random variable.

- **Consistency**: does $R(h_n)$ converge to R^* ?
 - 1-NN is not consistent. e.g. $\mathcal{X} = \mathbb{R}$ and $\eta \equiv 1/4$.
 - Neither is *k*-NN for fixed *k*.
 - Therefore, take k_n -NN classifier with $k_n \rightarrow \infty$.

What are minimal assumptions for consistency?

Statistical questions

Let h_n be a classifier based on n labeled data points from the underlying distribution. $R(h_n)$ is a random variable.

- **Consistency**: does $R(h_n)$ converge to R^* ?
 - 1-NN is not consistent. e.g. $\mathcal{X} = \mathbb{R}$ and $\eta \equiv 1/4$.
 - Neither is *k*-NN for fixed *k*.
 - Therefore, take k_n -NN classifier with $k_n \rightarrow \infty$.

What are minimal assumptions for consistency?

• Rates of convergence: how fast does convergence occur? Rates depend upon smoothness of $\eta(x) = Pr(Y = 1|X = x)$:

What is a suitable notion of smoothness, and rates?

Consistency results under continuity

Assume $\eta(x) = P(Y = 1 | X = x)$ is continuous. Let h_n be the k_n -classifier, with $k_n \uparrow \infty$ and $k_n/n \downarrow 0$.

- Fix and Hodges (1951): Consistent in \mathbb{R}^d .
- Cover-Hart (1965, 1967, 1968): Consistent in any metric space.

Proof outline: Let x be a query point and let $x_{(1)}, \ldots, x_{(n)}$ denote the training points ordered by increasing distance from x.

- Therefore $x_{(1)}, \ldots, x_{(k_n)}$ lie in a ball centered at x of probability mass $\approx k_n/n$. Since $k_n/n \downarrow 0$, we have $x_{(1)}, \ldots, x_{(k_n)} \to x$.
- By continuity, $\eta(x_{(1)}), \ldots, \eta(x_{(k_n)}) \rightarrow \eta(x)$.
- By law of large numbers, when tossing many coins of bias roughly $\eta(x)$, the fraction of 1s will be approximately $\eta(x)$. Thus the majority vote of their labels will approach $h^*(x)$.

Universal consistency in \mathbb{R}^d

Stone (1977): consistency in \mathbb{R}^d assuming only measurability.

Universal consistency in \mathbb{R}^d

Stone (1977): consistency in \mathbb{R}^d assuming only measurability.

Lusin's thm: for any measurable η , for any $\epsilon > 0$, there is a continuous function that differs from it on at most ϵ fraction of points.

Training points in the red region can cause trouble. What fraction of query points have one of these as their nearest neighbor?

Universal consistency in \mathbb{R}^d

Stone (1977): consistency in \mathbb{R}^d assuming only measurability.

Lusin's thm: for any measurable η , for any $\epsilon > 0$, there is a continuous function that differs from it on at most ϵ fraction of points.

Training points in the red region can cause trouble. What fraction of query points have one of these as their nearest neighbor?

Geometric result: at most a constant number! And this yields consistency.

Pick any *n* points in \mathbb{R}^d . Pick one of these points, *x*. At most how many of the remaining points can have *x* as its nearest neighbor?

Pick any *n* points in \mathbb{R}^d . Pick one of these points, *x*. At most how many of the remaining points can have *x* as its nearest neighbor? At most 5^d [Stone].

Pick any *n* points in \mathbb{R}^d . Pick one of these points, *x*. At most how many of the remaining points can have *x* as its nearest neighbor? At most 5^d [Stone].

Pick any *n* points in \mathbb{R}^d . Pick one of these points, *x*. At most how many of the remaining points can have *x* as its nearest neighbor? At most 5^d [Stone].

But this argument fails in general metric measure spaces (\mathcal{X}, ρ, μ) .

Preiss [80's]: An infinite-dimensional space in which consistency fails Cerou-Guyader '06: Conditions for universal consistency in metric spaces

Preiss [80's]: An infinite-dimensional space in which consistency fails Cerou-Guyader '06: Conditions for universal consistency in metric spaces

Let (\mathcal{X}, d, μ) be a separable metric measure space in which the Lebesgue differentiation property holds: for any bounded measurable f,

$$\lim_{r\downarrow 0} \frac{1}{\mu(B(x,r))} \int_{B(x,r)} f d\mu = f(x)$$

for almost all (μ -a.e.) $x \in \mathcal{X}$.

Preiss [80's]: An infinite-dimensional space in which consistency fails Cerou-Guyader '06: Conditions for universal consistency in metric spaces

Let (\mathcal{X}, d, μ) be a separable metric measure space in which the Lebesgue differentiation property holds: for any bounded measurable f,

$$\lim_{r\downarrow 0} \frac{1}{\mu(B(x,r))} \int_{B(x,r)} f d\mu = f(x)$$

for almost all (μ -a.e.) $x \in \mathcal{X}$.

- If $k_n \to \infty$ and $k_n/n \to 0$, then $R_n \to R^*$ in probability.
- If in addition $k_n/\log n \to \infty$, then $R_n \to R^*$ almost surely.

Preiss [80's]: An infinite-dimensional space in which consistency fails Cerou-Guyader '06: Conditions for universal consistency in metric spaces

Let (\mathcal{X}, d, μ) be a separable metric measure space in which the Lebesgue differentiation property holds: for any bounded measurable f,

$$\lim_{r\downarrow 0} \frac{1}{\mu(B(x,r))} \int_{B(x,r)} f d\mu = f(x)$$

for almost all (μ -a.e.) $x \in \mathcal{X}$.

- If $k_n \to \infty$ and $k_n/n \to 0$, then $R_n \to R^*$ in probability.
- If in addition $k_n/\log n \to \infty$, then $R_n \to R^*$ almost surely.

Examples of such spaces: finite-dimensional normed spaces; doubling metric measure spaces.

Query x; training points by increasing distance from x are $x_{(1)}, \ldots, x_{(n)}$. Since $k_n/n \to 0$, we have $x_{(1)}, \ldots, x_{(k_n)} \to x$.

- **1** Since $k_n/n \to 0$, we have $x_{(1)}, \ldots, x_{(k_n)} \to x$.
- ② Earlier argument using continuity: η(x₍₁₎), ..., η(x_{(kn})) → η(x). In this case, the k_n-NN are coins of roughly the same bias as x.

- **1** Since $k_n/n \to 0$, we have $x_{(1)}, \ldots, x_{(k_n)} \to x$.
- ② Earlier argument using continuity: η(x₍₁₎), ..., η(x_{(kn})) → η(x). In this case, the k_n-NN are coins of roughly the same bias as x.
- **3** It suffices that $\operatorname{average}(\eta(x_{(1)}), \ldots, \eta(x_{(k_n)})) \to \eta(x).$

- **1** Since $k_n/n \to 0$, we have $x_{(1)}, \ldots, x_{(k_n)} \to x$.
- ② Earlier argument using continuity: η(x₍₁₎), ..., η(x_(kn)) → η(x). In this case, the k_n-NN are coins of roughly the same bias as x.
- It suffices that $average(\eta(x_{(1)}), \ldots, \eta(x_{(k_n)})) \rightarrow \eta(x).$
- x₍₁₎,...,x_(k_n) lie in some ball B(x, r).
 For suitable r, they are random draws from µ restricted to B(x, r).

- **1** Since $k_n/n \to 0$, we have $x_{(1)}, \ldots, x_{(k_n)} \to x$.
- ② Earlier argument using continuity: η(x₍₁₎), ..., η(x_(kn)) → η(x). In this case, the k_n-NN are coins of roughly the same bias as x.
- It suffices that $average(\eta(x_{(1)}), \ldots, \eta(x_{(k_n)})) \rightarrow \eta(x).$
- x₍₁₎,...,x_(kn) lie in some ball B(x, r). For suitable r, they are random draws from µ restricted to B(x, r).
 average (x(x -)) = x(x -)) is close to the average x in this ball.
- **6** average $(\eta(x_{(1)}), \ldots, \eta(x_{(k_n)}))$ is close to the average η in this ball:

$$\frac{1}{\mu(B(x,r))}\int_{B(x,r)}\eta \ d\mu$$

Query x; training points by increasing distance from x are $x_{(1)}, \ldots, x_{(n)}$.

- **1** Since $k_n/n \to 0$, we have $x_{(1)}, \ldots, x_{(k_n)} \to x$.
- ② Earlier argument using continuity: η(x₍₁₎), ..., η(x_(kn)) → η(x). In this case, the k_n-NN are coins of roughly the same bias as x.
- **8** It suffices that $average(\eta(x_{(1)}), \ldots, \eta(x_{(k_n)})) \rightarrow \eta(x)$.
- x₍₁₎,..., x_(k_n) lie in some ball B(x, r). For suitable r, they are random draws from μ restricted to B(x, r).
 average(η(x₍₁₎),...,η(x_{(k_n}))) is close to the average η in this ball:

$$\frac{1}{\mu(B(x,r))}\int_{B(x,r)}\eta \ d\mu.$$

(6) As *n* grows, this ball B(x, r) shrinks. Thus it is enough that

$$\lim_{r\downarrow 0}\frac{1}{\mu(B(x,r))}\int_{B(x,r)}\eta \ d\mu = \eta(x).$$

Rates of convergence

Bad news: curse of dimension

Good news: adaptive to

- Intrinsic low dimension (e.g. manifold structure)
- Smoothness of boundary

 The usual smoothness condition in ℝ^d: η is α-Holder continuous if for some constant L, for all x, x',

$$|\eta(x) - \eta(x')| \leq L ||x - x'||^{\alpha}$$

 The usual smoothness condition in ℝ^d: η is α-Holder continuous if for some constant L, for all x, x',

$$|\eta(x) - \eta(x')| \leq L ||x - x'||^{\alpha}$$

 Mammen-Tsybakov β-margin condition: For some constant C, for any t, we have μ({x : |η(x) − 1/2| ≤ t}) ≤ Ct^β.

Width-*t margin* around decision boundary

 The usual smoothness condition in ℝ^d: η is α-Holder continuous if for some constant L, for all x, x',

$$|\eta(x) - \eta(x')| \leq L ||x - x'||^{\alpha}$$

 Mammen-Tsybakov β-margin condition: For some constant C, for any t, we have μ ({x : |η(x) − 1/2| ≤ t}) ≤ Ct^β.

• Audibert-Tsybakov: Suppose these two conditions hold, and that μ is supported on a *regular* set with $0 < \mu_{min} < \mu < \mu_{max}$. Then $\mathbb{E}R_n - R^*$ is $\Omega(n^{-\alpha(\beta+1)/(2\alpha+d)})$.

 The usual smoothness condition in ℝ^d: η is α-Holder continuous if for some constant L, for all x, x',

$$|\eta(x) - \eta(x')| \leq L ||x - x'||^{\alpha}$$

 Mammen-Tsybakov β-margin condition: For some constant C, for any t, we have μ ({x : |η(x) − 1/2| ≤ t}) ≤ Ct^β.

• Audibert-Tsybakov: Suppose these two conditions hold, and that μ is supported on a *regular* set with $0 < \mu_{min} < \mu < \mu_{max}$. Then $\mathbb{E}R_n - R^*$ is $\Omega(n^{-\alpha(\beta+1)/(2\alpha+d)})$.

Under these conditions, for suitable (k_n) , this rate is achieved by k_n -NN.

A better smoothness condition for NN [Chaudhuri-D'14]

- The usual notions relate this to |x x'|.
- For NN: more sensible to relate to $\mu([x, x'])$.

A better smoothness condition for NN [Chaudhuri-D'14]

How much does η change over an interval?

- The usual notions relate this to |x x'|.
- For NN: more sensible to relate to μ([x, x']).

We will say η is α -smooth in metric measure space (\mathcal{X}, ρ, μ) if for some constant L, for all $x \in \mathcal{X}$ and r > 0,

 $|\eta(x) - \eta(B(x,r))| \leq L \mu(B(x,r))^{\alpha},$

where $\eta(B) = \text{average } \eta$ in ball $B = \frac{1}{\mu(B)} \int_B \eta \ d\mu$.

A better smoothness condition for NN [Chaudhuri-D'14]

How much does η change over an interval?

- The usual notions relate this to |x x'|.
- For NN: more sensible to relate to μ([x, x']).

We will say η is α -smooth in metric measure space (\mathcal{X}, ρ, μ) if for some constant L, for all $x \in \mathcal{X}$ and r > 0,

$$|\eta(x) - \eta(B(x,r))| \leq L \mu(B(x,r))^{\alpha}$$

where $\eta(B) = \text{average } \eta \text{ in ball } B = \frac{1}{\mu(B)} \int_B \eta \ d\mu$.

 η is α -Holder continuous in \mathbb{R}^d , μ bounded below $\Rightarrow \eta$ is (α/d) -smooth.
Rates of convergence under smoothness

Let $h_{n,k}$ denote the k-NN classifier based on *n* training points. Let h^* be the Bayes-optimal classifier.

Suppose η is α -smooth in (\mathcal{X}, ρ, μ) . Then for any n, k,

- For any $\delta > 0$, with probability at least 1δ over the training set, $\Pr_X(h_{n,k}(X) \neq h^*(X)) \leq \delta + \mu(\{x : |\eta(x) - \frac{1}{2}| \leq C_1 \sqrt{\frac{1}{k} \ln \frac{1}{\delta}}\})$ under the choice $k \propto n^{2\alpha/(2\alpha+1)}$.
- **2** $\mathbb{E}_n \Pr_X(h_{n,k}(X) \neq h^*(X)) \geq C_2 \mu(\{x : |\eta(x) \frac{1}{2}| \leq C_3 \sqrt{\frac{1}{k}}\}).$

Rates of convergence under smoothness

Let $h_{n,k}$ denote the k-NN classifier based on n training points. Let h^* be the Bayes-optimal classifier.

Suppose η is α -smooth in (\mathcal{X}, ρ, μ) . Then for any n, k,

• For any $\delta > 0$, with probability at least $1 - \delta$ over the training set, $\Pr_X(h_{n,k}(X) \neq h^*(X)) \leq \delta + \mu(\{x : |\eta(x) - \frac{1}{2}| \leq C_1 \sqrt{\frac{1}{k} \ln \frac{1}{\delta}}\})$ under the choice $k \propto n^{2\alpha/(2\alpha+1)}$.

2
$$\mathbb{E}_n \Pr_X(h_{n,k}(X) \neq h^*(X)) \geq C_2 \mu(\{x : |\eta(x) - \frac{1}{2}| \leq C_3 \sqrt{\frac{1}{k}}\}).$$

These upper and lower bounds are qualitatively similar for *all* smooth conditional probability functions:

the probability mass of the width- $\frac{1}{\sqrt{k}}$ margin around the decision boundary.

Variants of nearest neighbor rules

1 Quantization strategies

Ø Subsampling

Pick q's in Q close to x

Pick q's in Q close to x

1 Kpotufe-Verma (2017): pick Q to be an ϵ -net.

Favorable empirical performance: small rise in error rate, significant speedup in query time.

Pick q's in Q close to x

- Kpotufe-Verma (2017): pick Q to be an ε-net.
 Favorable empirical performance: small rise in error rate, significant speedup in query time.
- **2** Kontorovich-Weiss-Sabato (2017): pick Q to be a suitable ϵ -cover. Then: 1-NN using Q is consistent.

Subsampling: reduce data and parallelize

Data: $\{(X_i, Y_i)\}_{i=1}^n, Y \in \{0, 1\}.$

Repeat for $t = 1, 2, \ldots, N$:

• Let S_t be a random subsample of $m \ll n$ points

To classify x: compute 1-NN wrt to each S_t , take majority label.

Subsampling: reduce data and parallelize

Data: $\{(X_i, Y_i)\}_{i=1}^n, Y \in \{0, 1\}.$

Repeat for $t = 1, 2, \ldots, N$:

• Let S_t be a random subsample of $m \ll n$ points

To classify x: compute 1-NN wrt to each S_t , take majority label.

Biau-Cerou-Guyader (2010), Samworth (2010):

- This is consistent.
- In fact, it is weighted k-NN.
 Each of x's k nearest neighbors (in the original data set) will be its 1-NN in some fraction of S_t.
- Asympotically more accurate than k-NN.

Outline

1 Statistical properties of nearest neighbor

2 Algorithmic approaches to nearest neighbor search

The complexity of nearest neighbor search

Given a data set of *n* points in a metric space (\mathcal{X}, ρ) , build a data structure for efficiently answering subsequent nearest neighbor queries *q*.

- Data structure should take space O(n)
- Query time should be o(n)

The complexity of nearest neighbor search

Given a data set of *n* points in a metric space (\mathcal{X}, ρ) , build a data structure for efficiently answering subsequent nearest neighbor queries *q*.

- Data structure should take space O(n)
- Query time should be o(n)

Unproven but common conjecture: either data structure size or query time must be exponential in the dimension of the space. Bad case: for any $0 < \epsilon < 1$,

• Pick $2^{O(\epsilon^2 d)}$ points uniformly from the unit sphere in \mathbb{R}^d

• With high probability, all interpoint distances are $(1\pm\epsilon)\sqrt{2}$

The complexity of nearest neighbor search

Given a data set of *n* points in a metric space (\mathcal{X}, ρ) , build a data structure for efficiently answering subsequent nearest neighbor queries *q*.

- Data structure should take space O(n)
- Query time should be o(n)

Unproven but common conjecture: either data structure size or query time must be exponential in the dimension of the space. Bad case: for any $0 < \epsilon < 1$,

• Pick $2^{O(\epsilon^2 d)}$ points uniformly from the unit sphere in \mathbb{R}^d

• With high probability, all interpoint distances are $(1 \pm \epsilon)\sqrt{2}$

How can this bad case be defeated?

• 1975: The *k*-d tree (Bentley and Friedman). Widely used, but algorithmic guarantees on weak footing.

- 1975: The *k*-d tree (Bentley and Friedman). Widely used, but algorithmic guarantees on weak footing.
- 1980s-1990s: More tree structures (e.g. Clarkson, Mount). Could accommodate general metric spaces.

- 1975: The *k*-d tree (Bentley and Friedman). Widely used, but algorithmic guarantees on weak footing.
- 1980s-1990s: More tree structures (e.g. Clarkson, Mount). Could accommodate general metric spaces.
- 1990s-: It's okay to fail sometimes (e.g. Clarkson, Kleinberg).

- 1975: The *k*-d tree (Bentley and Friedman). Widely used, but algorithmic guarantees on weak footing.
- 1980s-1990s: More tree structures (e.g. Clarkson, Mount). Could accommodate general metric spaces.
- 1990s-: It's okay to fail sometimes (e.g. Clarkson, Kleinberg).
- Late 1990s-: Locality-sensitive hashing (Indyk, Motwani, Andoni). Hashing scheme with some failure probability, widely used.

- 1975: The *k*-d tree (Bentley and Friedman). Widely used, but algorithmic guarantees on weak footing.
- 1980s-1990s: More tree structures (e.g. Clarkson, Mount). Could accommodate general metric spaces.
- 1990s-: It's okay to fail sometimes (e.g. Clarkson, Kleinberg).
- Late 1990s-: Locality-sensitive hashing (Indyk, Motwani, Andoni). Hashing scheme with some failure probability, widely used.
- Recently: binary hashing; resurgence of trees.

The k-d tree [Bentley-Friedman '75]

The k-d tree [Bentley-Friedman '75]

Defeatist search:

- Return NN in query's leaf node; maybe not the actual NN
- Time $O(\log n) + O(\#(\text{points in each leaf}))$

The k-d tree [Bentley-Friedman '75]

Defeatist search:

- Return NN in query's leaf node; maybe not the actual NN
- Time $O(\log n) + O(\#(\text{points in each leaf}))$

Comprehensive search:

- Always returns the NN
- Can take O(n) time in some cases

• Ball trees for metric spaces [Omohundro '89]

- Ball trees for metric spaces [Omohundro '89]
- Bregman ball trees [Cayton '08]

- Ball trees for metric spaces [Omohundro '89]
- Bregman ball trees [Cayton '08]
- Vantage-point (VP) trees [Yianilos '91; Uhlmann '91]

Controlling the complexity of NN search

Recall canonical bad case: points uniformly distributed over a *d*-dimensional unit ball.

Controlling the complexity of NN search

Recall canonical bad case: points uniformly distributed over a *d*-dimensional unit ball.

1 Methods that are adaptive to intrinsic dimension.

Controlling the complexity of NN search

Recall canonical bad case: points uniformly distributed over a *d*-dimensional unit ball.

- 1 Methods that are adaptive to intrinsic dimension.
- 2 Methods that return approximate nearest neighbors.

Cover trees for metric spaces

Beygelzimer-Kakade-Langford '06:

- Hierarchical cover of an arbitrary metric space
- Space O(n), permits dynamic insertion and deletion of data points
- Query time $O(\text{poly}(c) \log n)$

Cover trees for metric spaces

Beygelzimer-Kakade-Langford '06:

- Hierarchical cover of an arbitrary metric space
- Space O(n), permits dynamic insertion and deletion of data points
- Query time $O(\text{poly}(c) \log n)$

A finite set X in a metric space has expansion rate c if for any point x and any radius r > 0,

 $|B(x,2r) \cap X| \leq c \cdot |B(x,r) \cap X|.$

Variants of k-d trees with guarantees

Random projection trees: In each cell of the tree, pick split direction uniformly at random from the unit sphere in \mathbb{R}^d

Perturbed split: after projection, pick $\beta \in_R [1/4, 3/4]$ and split at the β -fractile point.

Variants of k-d trees with guarantees

Random projection trees: In each cell of the tree, pick split direction uniformly at random from the unit sphere in \mathbb{R}^d

Perturbed split: after projection, pick $\beta \in_R [1/4, 3/4]$ and split at the β -fractile point.

Failure probability for defeatist search is < 1/2 if each leaf has $O(d_o^{d_o})$ points, where d_o is the **doubling dimension** of the data. [D-Sinha '13]

Doubling dimension

[Assouad '83; Gupta-Krauthgamer-Lee '03]

Set $S \subset \mathbb{R}^d$ has doubling dimension d_o if for any (Euclidean) ball B, the subset $S \cap B$ can be covered by 2^{d_o} balls of half the radius.

Doubling dimension

[Assouad '83; Gupta-Krauthgamer-Lee '03]

Set $S \subset \mathbb{R}^d$ has doubling dimension d_o if for any (Euclidean) ball B, the subset $S \cap B$ can be covered by 2^{d_o} balls of half the radius.

1 Example: S = line has doubling dimension 1.

Doubling dimension

[Assouad '83; Gupta-Krauthgamer-Lee '03]

Set $S \subset \mathbb{R}^d$ has doubling dimension d_o if for any (Euclidean) ball B, the subset $S \cap B$ can be covered by 2^{d_o} balls of half the radius.

1 Example: S = line has doubling dimension 1.

A k-dimensional flat has doubling dimension c_ok for some absolute constant c_o.
Doubling dimension

[Assouad '83; Gupta-Krauthgamer-Lee '03]

Set $S \subset \mathbb{R}^d$ has doubling dimension d_o if for any (Euclidean) ball B, the subset $S \cap B$ can be covered by 2^{d_o} balls of half the radius.

1 Example: S = line has doubling dimension 1.

- A k-dimensional flat has doubling dimension c_ok for some absolute constant c_o.
- B If S has diameter Δ and doubling dimension d_o, then for any ε > 0, it has an ε-cover of size ≤ $(2Δ/ε)^{d_o}$.

Doubling dimension

[Assouad '83; Gupta-Krauthgamer-Lee '03]

Set $S \subset \mathbb{R}^d$ has doubling dimension d_o if for any (Euclidean) ball B, the subset $S \cap B$ can be covered by 2^{d_o} balls of half the radius.

1 Example: S = line has doubling dimension 1.

- A k-dimensional flat has doubling dimension c_ok for some absolute constant c_o.
- B If S has diameter Δ and doubling dimension d_o, then for any ε > 0, it has an ε-cover of size ≤ $(2Δ/ε)^{d_o}$.
- **4** If S has doubling dimension d_o , then so does any subset of S.

The doubling dimension of sparse sets

Set $S \subset \mathbb{R}^d$ has doubling dimension d_o if for any (Euclidean) ball B, the subset $S \cap B$ can be covered by 2^{d_o} balls of half the radius.

A set of *n* points has doubling dimension at most log *n*.
 Proof: It can be covered by *n* balls of any radius.

The doubling dimension of sparse sets

Set $S \subset \mathbb{R}^d$ has doubling dimension d_o if for any (Euclidean) ball B, the subset $S \cap B$ can be covered by 2^{d_o} balls of half the radius.

- A set of n points has doubling dimension at most log n. Proof: It can be covered by n balls of any radius.
- **2** If sets S_1, \ldots, S_m each have doubling dimension $\leq d_o$, then $S_1 \cup \cdots \cup S_m$ has doubling dimension $\leq d_o + \log m$. Proof: $S_i \cap B$ can be covered by 2^{d_o} balls of half the radius. Therefore, at most $m2^{d_o}$ balls are needed for the union.

The doubling dimension of sparse sets

Set $S \subset \mathbb{R}^d$ has doubling dimension d_o if for any (Euclidean) ball B, the subset $S \cap B$ can be covered by 2^{d_o} balls of half the radius.

- A set of *n* points has doubling dimension at most log *n*.
 Proof: It can be covered by *n* balls of any radius.
- 2) If sets S_1, \ldots, S_m each have doubling dimension $\leq d_o$, then $S_1 \cup \cdots \cup S_m$ has doubling dimension $\leq d_o + \log m$. Proof: $S_i \cap B$ can be covered by 2^{d_o} balls of half the radius. Therefore, at most $m2^{d_o}$ balls are needed for the union.
- **8** Suppose each point in $S \subset \mathbb{R}^d$ has $\leq k$ nonzero coordinates. Then S has doubling dimension $\leq c_o k + k \log d$. Proof: S is the union of $\binom{d}{k}$ flats of dimension k; we've seen that each flat has doubling dimension $\leq c_o k$.

The doubling dimension of manifolds

A Riemannian submanifold $M \subset \mathbb{R}^p$ has condition number $\leq 1/\tau$ if normals to M of length τ don't intersect:

If $M \subset \mathbb{R}^p$ is a k-dimensional manifold of condition number $1/\tau$, then its neighborhoods of radius τ have doubling dimension O(k).

Locality-sensitive hashing [Indyk-Motwani-Andoni]

Typical hash function h_i : random projection + binning

$$h_i(x) = \left\lfloor \frac{r_i \cdot x + b}{w} \right\rfloor$$

- r_i is a random direction
- b is a random offset
- w is the bin width

Locality-sensitive hashing [Indyk-Motwani-Andoni]

Typical hash function h_i : random projection + binning

$$h_i(x) = \left\lfloor \frac{r_i \cdot x + b}{w} \right\rfloor$$

- r_i is a random direction
- b is a random offset
- w is the bin width
- For any data set x_1, \ldots, x_n , query q: probability < 1 of failing to return an **approximate** NN.

Locality-sensitive hashing [Indyk-Motwani-Andoni]

Typical hash function h_i : random projection + binning

$$h_i(x) = \left\lfloor \frac{r_i \cdot x + b}{w} \right\rfloor$$

- r_i is a random direction
- *b* is a random offset
- w is the bin width
- For any data set x_1, \ldots, x_n , query q: probability < 1 of failing to return an **approximate** NN.
- To reduce this probability, make t tables. Space: O(nt).

For data set $S \subset \mathbb{R}^d$ and query q, a c-approximate nearest neighbor is any $x \in S$ such that

$$\|x-q\| \leq c \cdot \min_{z \in S} \|z-q\|.$$

For data set $S \subset \mathbb{R}^d$ and query q, a c-approximate nearest neighbor is any $x \in S$ such that

$$\|x-q\| \leq c \cdot \min_{z \in S} \|z-q\|.$$

Complexity of approximate NN search in Euclidean space:

- Data structure size n^{1+1/c^2}
- Query time n^{1/c^2}

For data set $S \subset \mathbb{R}^d$ and query q, a c-approximate nearest neighbor is any $x \in S$ such that

$$\|x-q\| \leq c \cdot \min_{z \in S} \|z-q\|.$$

Complexity of approximate NN search in Euclidean space:

- Data structure size n^{1+1/c^2}
- Query time n^{1/c^2}

Caution: the same value of c can have very different implications for different data sets.

The MNIST data set of handwritten digits:

What % of c-approximate nearest neighbors have the wrong label?

The MNIST data set of handwritten digits:

What % of c-approximate nearest neighbors have the wrong label?

С	1.0	1.2	1.4	1.6	1.8	2.0
Error rate (%)	3.1	9.0	18.4	29.3	40.7	51.4

The MNIST data set of handwritten digits:

What % of c-approximate nearest neighbors have the wrong label?

С	1.0	1.2	1.4	1.6	1.8	2.0
Error rate (%)	3.1	9.0	18.4	29.3	40.7	51.4

But LSH also does well on exact NN search!

Hash tables versus trees

As long as these structures are randomized, can use:

- collection of LSH tables
- forest of trees

Experimental comparisons, e.g. V. Hyvonen, T. Roos et al (2016).

Relevant books

- G. Biau and L. Devroye. *Lectures on the nearest neighbor method.* Springer, 2015.
- G.H. Chen and D. Shah. *Explaining the success of nearest neighbor methods in prediction.* Foundations and Trends in Machine Learning, 2018.