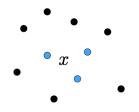
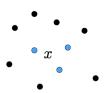
Best Practice and Statistical tradeoffs?



Samory Kpotufe

Statistics, Columbia University

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙



・ロット (雪) ・ (日) ・ (日) ・ (日)

Reduces to regression: let $f_k(x) = \text{avg } (Y_i)$ of k-NN(x)... then: $h_k(x) \equiv \mathbb{1}\{f_k(x) \ge 1/2\}.$

Prediction Time: at least order k, Irrespective of fast search method.

Unfortunately, optimal accuracy requires large $k = \Omega(\text{root of}(n))$...

Regression:

Data: $\{(X_i, Y_i)\}_{i=1}^n$, $Y \in \mathbb{R}$. Learn: $f_k(x) = \text{average } (Y_i) \text{ of } k\text{-NN}(x)$.

Reduces to regression: let $f_k(x) = \text{avg }(Y_i)$ of k-NN(x)... then: $h_k(x) \equiv \mathbb{1}\{f_k(x) \ge 1/2\}.$

Prediction Time: at least order *k*, Irrespective of fast search method.

Unfortunately, optimal accuracy requires large $k = \Omega(\text{root of}(n))$...

Classification:

Data: $\{(X_i, Y_i)\}_{i=1}^n$, $Y \in \{0, 1\}$. Learn: $h_k(x)$ = majority (Y_i) of k-NN(x).

Reduces to regression: let $f_k(x) = \text{avg } (Y_i)$ of k-NN(x)... then: $h_k(x) \equiv \mathbb{1}\{f_k(x) \ge 1/2\}.$

Prediction Time: at least order k, Irrespective of fast search method.

Unfortunately, optimal accuracy requires large $k = \Omega(\text{root of}(n))$...

Classification:

Data: $\{(X_i, Y_i)\}_{i=1}^n$, $Y \in \{0, 1\}$. Learn: $h_k(x)$ = majority (Y_i) of k-NN(x).

Reduces to regression: let $f_k(x) = \text{avg } (Y_i)$ of k-NN(x)... then: $h_k(x) \equiv \mathbb{1}\{f_k(x) \ge 1/2\}.$

Prediction Time: at least order k, Irrespective of fast search method.

Unfortunately, optimal accuracy requires large $k = \Omega(\text{root of}(n))$...

Classification:

Data: $\{(X_i, Y_i)\}_{i=1}^n$, $Y \in \{0, 1\}$. Learn: $h_k(x)$ = majority (Y_i) of k-NN(x).

Reduces to regression: let $f_k(x) = \text{avg } (Y_i)$ of k-NN(x)... then: $h_k(x) \equiv \mathbb{1}\{f_k(x) \ge 1/2\}.$

Prediction Time: at least order k,

Irrespective of fast search method.

Unfortunately, optimal accuracy requires large $k = \Omega(\text{root of}(n))$...

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Classification:

Data: $\{(X_i, Y_i)\}_{i=1}^n, Y \in \{0, 1\}.$ **Learn:** $h_k(x) = majority (Y_i) \text{ of } k\text{-NN}(x).$

Reduces to regression: let $f_k(x) = \text{avg } (Y_i)$ of k-NN(x)... then: $h_k(x) \equiv \mathbb{1}\{f_k(x) \ge 1/2\}.$

Prediction Time: at least order k,

Irrespective of fast search method.

Unfortunately, optimal accuracy requires large $k = \Omega(\text{root of}(n))$...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Classification:

Data: $\{(X_i, Y_i)\}_{i=1}^n$, $Y \in \{0, 1\}$. Learn: $h_k(x)$ = majority (Y_i) of k-NN(x).

Reduces to regression: let $f_k(x) = \text{avg } (Y_i)$ of k-NN(x)... then: $h_k(x) \equiv \mathbb{1}\{f_k(x) \ge 1/2\}.$

Prediction Time: at least order k,

Irrespective of fast search method.

Unfortunately, optimal accuracy requires large $k = \Omega(\text{root of}(n)) \dots$

Consider regression: $Y = f(X) + \text{noise, } \dim(X) = d$ Suppose $f(x) \doteq \mathbb{E}[Y|x]$ is Lipschitz:

$$\mathbb{E}\left(f_k(X) - f(X)\right)^2 \approx \frac{1}{k} + \left(\frac{k}{n}\right)^{2/d} \text{ minimized at } k \propto n^{2/(2+d)}$$

Same story for classification ...

So for optimal accuracy, prediction time = $\Omega(n^{2/(2+d)})$ (Irrespective of fast proximity search)

Our goal: optimal accuracy with prediction time = $O(\log n)$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● のへで

Consider regression: $Y = f(X) + \text{noise, } \dim(X) = d$

Suppose $f(x) \doteq \mathbb{E}[Y|x]$ is Lipschitz:

$$\mathbb{E}\left(f_k(X) - f(X)\right)^2 \approx \frac{1}{k} + \left(\frac{k}{n}\right)^{2/d} \text{ minimized at } k \propto n^{2/(2+d)}$$

Same story for classification ...

So for optimal accuracy, prediction time = $\Omega(n^{2/(2+d)})$ (Irrespective of fast proximity search)

Our goal: optimal accuracy with prediction time $= O(\log n)$

Consider regression: $Y = f(X) + \text{noise, } \dim(X) = d$ Suppose $f(x) \doteq \mathbb{E}[Y|x]$ is Lipschitz:

$$\mathbb{E}\left(f_k(X) - f(X)\right)^2 \approx \frac{1}{k} + \left(\frac{k}{n}\right)^{2/d} \text{ minimized at } k \propto n^{2/(2+d)}$$

Same story for classification ...

So for optimal accuracy, prediction time = $\Omega(n^{2/(2+d)})$ (Irrespective of fast proximity search)

Our goal: optimal accuracy with prediction time = $O(\log n)$

Consider regression: $Y = f(X) + \text{noise, } \dim(X) = d$ Suppose $f(x) \doteq \mathbb{E}[Y|x]$ is Lipschitz:

$$\mathbb{E} \left(f_k(X) - f(X) \right)^2 \approx \frac{1}{k} + \left(\frac{k}{n} \right)^{2/d} \text{ minimized at } k \propto n^{2/(2+d)}$$

Same story for classification ...

So for optimal accuracy, prediction time = $\Omega(n^{2/(2+d)})$ (Irrespective of fast proximity search)

Our goal: optimal accuracy with prediction time = $O(\log n)$

Consider regression: $Y = f(X) + \text{noise, } \dim(X) = d$ Suppose $f(x) \doteq \mathbb{E}[Y|x]$ is Lipschitz:

$$\mathbb{E}\left(f_k(X) - f(X)\right)^2 \approx \frac{1}{k} + \left(\frac{k}{n}\right)^{2/d} \text{ minimized at } k \propto n^{2/(2+d)}$$

Same story for classification ...

So for optimal accuracy, prediction time = $\Omega(n^{2/(2+d)})$ (Irrespective of fast proximity search)

Our goal: optimal accuracy with prediction time = $O(\log n)$

Consider regression: $Y = f(X) + \text{noise, } \dim(X) = d$ Suppose $f(x) \doteq \mathbb{E}[Y|x]$ is Lipschitz:

$$\mathbb{E} \left(f_k(X) - f(X) \right)^2 \approx \frac{1}{k} + \left(\frac{k}{n} \right)^{2/d} \text{ minimized at } k \propto n^{2/(2+d)}$$

Same story for classification ...

So for optimal accuracy, prediction time = $\Omega(n^{2/(2+d)})$ (Irrespective of fast proximity search)

Our goal: optimal accuracy with prediction time $= O(\log n)$

Consider regression: $Y = f(X) + \text{noise, } \dim(X) = d$ Suppose $f(x) \doteq \mathbb{E}[Y|x]$ is Lipschitz:

$$\mathbb{E} \left(f_k(X) - f(X) \right)^2 \approx \frac{1}{k} + \left(\frac{k}{n} \right)^{2/d} \text{ minimized at } k \propto n^{2/(2+d)}$$

Same story for classification ...

So for optimal accuracy, prediction time = $\Omega(n^{2/(2+d)})$ (Irrespective of fast proximity search)

Our goal: optimal accuracy with prediction time = $O(\log n)$

Consider regression: $Y = f(X) + \text{noise, } \dim(X) = d$ Suppose $f(x) \doteq \mathbb{E}[Y|x]$ is Lipschitz:

$$\mathbb{E} \left(f_k(X) - f(X) \right)^2 \approx \frac{1}{k} + \left(\frac{k}{n} \right)^{2/d} \text{ minimized at } k \propto n^{2/(2+d)}$$

Same story for classification ...

So for optimal accuracy, prediction time = $\Omega(n^{2/(2+d)})$ (Irrespective of fast proximity search)

Our goal: optimal accuracy with prediction time $= O(\log n)$

Fast prediction with no tradeoff:

How to achieve this:

Data quantization or Sub-sampling + (simple Variance correction)

◆□▶ ◆冊▶ ◆臣▶ ◆臣▶ ─ 臣 ─

We'll consider common NN approaches. ϵ -NN: use all samples ϵ -close to x

 $k extsf{-NN}$: use the k closest samples to x

Fast prediction with no tradeoff:

How to achieve this:

Data quantization or Sub-sampling + (simple Variance correction)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

We'll consider common NN approaches:

 ϵ -NN: use all samples ϵ -close to x

k-NN: use the k closest samples to x

Fast prediction with no tradeoff:

How to achieve this:

Data quantization or Sub-sampling + (simple Variance correction)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

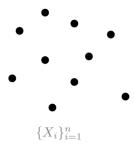
We'll consider common NN approaches:

 ϵ -NN: use all samples ϵ -close to x

k-NN: use the k closest samples to x

Outline:

- NN and Data Quantization
- NN and Subsampling
- Overview and Open Questions

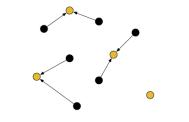


Two options: Pick k closest q's to x or Pick all q's in $B(x, \epsilon)$.

Main issues:

Size of \mathbf{Q} ... How to choose \mathbf{Q} ... How to use \mathbf{Q}

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ



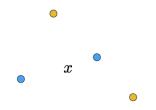
Assign $\{X_i\}$ to representatives $\mathbf{Q} \equiv \{q\}$

Two options: Pick k closest q's to x or Pick all q's in $B(x,\epsilon)$.

Main issues:

Size of ${\bf Q}$... How to choose ${\bf Q}$... How to use ${\bf Q}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00



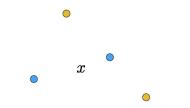
Pick q's in \mathbf{Q} close to x

Two options: Pick k closest q's to x or Pick all q's in $B(x,\epsilon)$.

Main issues:

Size of \mathbf{Q} ... How to choose \mathbf{Q} ... How to use \mathbf{Q}

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで



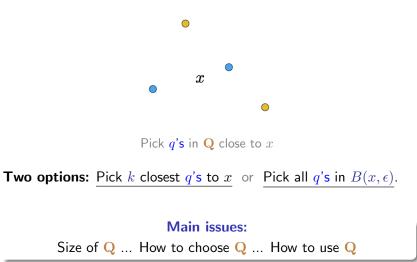
Pick q's in \mathbf{Q} close to x

Two options: Pick k closest q's to x or Pick all q's in $B(x, \epsilon)$.

Main issues:

Size of Q ... How to choose Q ... How to use Q

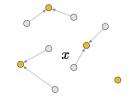
▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

€-NN Heuristics: [Atkeson et al 97] [Carrier et al. 88] [Lee, Gray 08]

Data: $\{(X_i, Y_i)\}_{i=1}^n$, $Y \in \{0, 1\}$. Learn: $Y_q \equiv \arg(Y_i)$ of $\{X_i \rightarrow q\}$



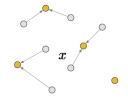
We'll make a few changes for the guarantees we want ...

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ 三 ○ ○ ○

€-NN Heuristics: [Atkeson et al 97] [Carrier et al. 88] [Lee, Gray 08]

Pick Q to (1) have small size, and (2) be close to $\{X_i\}$...

Data: $\{(X_i, Y_i)\}_{i=1}^n$, $Y \in \{0, 1\}$. Learn: $Y_q \equiv avg(Y_i)$ of $\{X_i \rightarrow q\}$



€-NN Heuristics: [Atkeson et al 97] [Carrier et al. 88] [Lee, Gray 08]

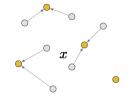
Pick Q to (1) have small size, and (2) be close to $\{X_i\}$...

Data: $\{(X_i, Y_i)\}_{i=1}^n$, $Y \in \{0, 1\}$. Learn: $Y_q \equiv avg(Y_i)$ of $\{X_i \rightarrow q\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Pick Q to (1) have small size, and (2) be close to $\{X_i\}$...

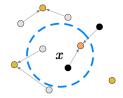
Data: $\{(X_i, Y_i)\}_{i=1}^n$, $Y \in \{0, 1\}$. **Learn:** $Y_q \equiv avg(Y_i) \text{ of } \{X_i \rightarrow q\}$



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Pick Q to (1) have small size, and (2) be close to $\{X_i\}$...

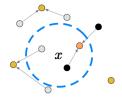
Data: $\{(X_i, Y_i)\}_{i=1}^n, Y \in \{0, 1\}.$ **Learn:** $Y_q \equiv \text{avg } (Y_i) \text{ of } \{X_i \to q\}$ $f_{\mathbf{Q}}(x) = \text{avg } (Y_q) \text{ of } q' \text{ s in } B(x, \epsilon)$ $h_{\mathbf{Q}}(x) = \mathbb{1}\{f_{\mathbf{Q}}(x) \ge 1/2\}.$



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Pick Q to (1) have small size, and (2) be close to $\{X_i\}$...

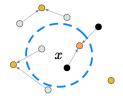
Data: $\{(X_i, Y_i)\}_{i=1}^n, Y \in \{0, 1\}.$ **Learn:** $Y_q \equiv \text{avg}(Y_i) \text{ of } \{X_i \to q\}$ $f_{\mathbf{Q}}(x) = \text{avg}(Y_q) \text{ of } q' \text{ s in } B(x, \epsilon)$ $h_{\mathbf{Q}}(x) = \mathbb{1}\{f_{\mathbf{Q}}(x) \ge 1/2\}.$



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Pick Q as (1) $(\alpha \cdot \epsilon)$ -packing, and (2) an $(\alpha \cdot \epsilon)$ -cover of $\{X_i\}$.

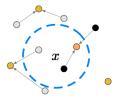
Data: $\{(X_i, Y_i)\}_{i=1}^n, Y \in \{0, 1\}.$ **Learn:** $Y_q \equiv \text{avg } (Y_i) \text{ of } \{X_i \to q\}$ $f_{\mathbf{Q}}(x) = \text{avg } (Y_q) \text{ of } q' \text{ s in } B(x, \epsilon)$ $h_{\mathbf{Q}}(x) = \mathbb{1}\{f_{\mathbf{Q}}(x) \ge 1/2\}.$



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Pick Q as (1) $(\alpha \cdot \epsilon)$ -packing, and (2) an $(\alpha \cdot \epsilon)$ -cover of $\{X_i\}$.

Data: $\{(X_i, Y_i)\}_{i=1}^n$, $Y \in \{0, 1\}$. **Learn:** $Y_q \equiv \text{avg } (Y_i) \text{ of } \{X_i \rightarrow q\}$ $f_{\mathbf{Q}}(x) = \text{weighted avg } (Y_q) \text{ of } q' \text{ s in } B(x, \epsilon)$ $h_{\mathbf{Q}}(x) = \mathbb{1}\{f_{\mathbf{Q}}(x) \ge 1/2\}.$



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Intuition: Suppose (\mathcal{X}, ρ) has doubling dimension d

Relate $f_{\mathbf{Q}}$ to ϵ -NN f_{ϵ} (on n samples) ...

Pick **Q** as (1) $(\alpha \cdot \epsilon)$ -packing, and (2) an $(\alpha \cdot \epsilon)$ -cover of $\{X_i\}$.

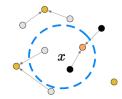
- Has variance $O(1/\sum n_q)$ rather than $O(1/\min n_q)$.

Argue that $\sum n_q > |\{X_i\} \cap B(x_i(1-\alpha)c))| (\approx \text{Var of } f_{(1-\alpha)c})$

Intuition: Suppose (\mathcal{X}, ρ) has doubling dimension d

Relate $f_{\mathbf{Q}}$ to ϵ -NN f_{ϵ} (on *n* samples) ...

Pick **Q** as (1) $(\alpha \cdot \epsilon)$ -packing, and (2) an $(\alpha \cdot \epsilon)$ -cover of $\{X_i\}$.



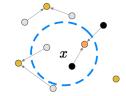
- Has variance $O(1/\sum n_q)$ rather than $O(1/\min n_q)$

Argue that $\sum n_q > |\{X_i\} \cap B(x,(1-lpha)\epsilon)| \; (pprox {\sf Var} \; {\sf of} \; f_{(1-lpha)\epsilon})$

Intuition: Suppose (\mathcal{X}, ρ) has doubling dimension d

Relate $f_{\mathbf{Q}}$ to ϵ -NN f_{ϵ} (on n samples) ... Pick \mathbf{Q} as (1) $(\alpha \cdot \epsilon)$ -packing, and (2) an $(\alpha \cdot \epsilon)$ -cover of $\{X_i\}$.

- $\mathbf{Q} \cap B(x, \epsilon)$ is small (of size $O(\alpha^{-d})$)



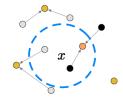
$$f_{\mathbf{Q}}(x) = \frac{1}{\sum n_q} \sum_{q \in B(x,\epsilon)} n_q Y_q$$

- Has variance $O(1/\sum n_q)$ rather than $O(1/\min n_q)$

Argue that $\sum n_q > |\{X_i\} \cap B(x,(1-lpha)\epsilon))| \; (pprox \mathsf{Var} \; \mathsf{of} \; f_{(1-lpha)\epsilon})$

Relate $f_{\mathbf{Q}}$ to ϵ -NN f_{ϵ} (on n samples) ... Pick \mathbf{Q} as (1) $(\alpha \cdot \epsilon)$ -packing, and (2) an $(\alpha \cdot \epsilon)$ -cover of $\{X_i\}$.

- $\mathbf{Q} \cap B(x, \epsilon)$ is small (of size $O(\alpha^{-d})$)
- Relevant X_i 's are 2ϵ -close to $x \ (\approx \text{ bias of } f_{\epsilon})$



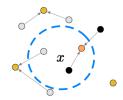
$$f_{\mathbf{Q}}(x) = \frac{1}{\sum n_q} \sum_{q \in B(x,\epsilon)} n_q Y_q$$

- Has variance $O(1/\sum n_q)$ rather than $O(1/\min n_q)$

Argue that $\sum n_q > |\{X_i\} \cap B(x, (1-\alpha)\epsilon))| \ (\approx \text{Var of } f_{(1-\alpha)\epsilon})$

Relate $f_{\mathbf{Q}}$ to ϵ -NN f_{ϵ} (on n samples) ... Pick \mathbf{Q} as (1) $(\alpha \cdot \epsilon)$ -packing, and (2) an $(\alpha \cdot \epsilon)$ -cover of $\{X_i\}$.

- $\mathbf{Q} \cap B(x, \epsilon)$ is small (of size $O(\alpha^{-d})$)
- Relevant X_i 's are 2ϵ -close to $x \ (\approx \text{ bias of } f_{\epsilon})$



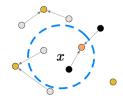
$$f_{\mathbf{Q}}(x) = \frac{1}{\sum n_q} \sum_{q \in B(x,\epsilon)} n_q Y_q$$

- Has variance $O(1/\sum n_q)$ rather than $O(1/\min n_q)$

Argue that $\sum n_q > |\{X_i\} \cap B(x, (1-\alpha)\epsilon))| \ (\approx Var \ ext{of} \ f_{(1-\alpha)\epsilon})$

Relate $f_{\mathbf{Q}}$ to ϵ -NN f_{ϵ} (on n samples) ... Pick \mathbf{Q} as (1) $(\alpha \cdot \epsilon)$ -packing, and (2) an $(\alpha \cdot \epsilon)$ -cover of $\{X_i\}$.

- $\mathbf{Q} \cap B(x, \epsilon)$ is small (of size $O(\alpha^{-d})$)
- Relevant X_i 's are 2ϵ -close to $x \ (\approx \text{ bias of } f_{\epsilon})$



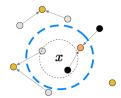
$$f_{\mathbf{Q}}(x) = \frac{1}{\sum n_q} \sum_{q \in B(x,\epsilon)} n_q Y_q$$

- Has variance $O(1/\sum n_q)$ rather than $O(1/\min n_q)$

Argue that $\sum n_q > |\{X_i\} \cap B(x, (1-\alpha)\epsilon))| \ (\approx \text{Var of } f_{(1-\alpha)\epsilon})$

Relate $f_{\mathbf{Q}}$ to ϵ -NN f_{ϵ} (on n samples) ... Pick \mathbf{Q} as (1) $(\alpha \cdot \epsilon)$ -packing, and (2) an $(\alpha \cdot \epsilon)$ -cover of $\{X_i\}$.

- $\mathbf{Q} \cap B(x, \epsilon)$ is small (of size $O(\alpha^{-d})$)
- Relevant X_i 's are 2ϵ -close to $x \ (\approx \text{ bias of } f_{\epsilon})$



$$f_{\mathbf{Q}}(x) = \frac{1}{\sum n_q} \sum_{q \in B(x,\epsilon)} n_q Y_q$$

- Has variance $O(1/\sum n_q)$ rather than $O(1/\min n_q)$

Argue that $\sum n_q > |\{X_i\} \cap B(x, (1-\alpha)\epsilon))| \ (\approx \text{Var of } f_{(1-\alpha)\epsilon})$

Assume a fast-range search procedure for $\mathbf{Q} \cap B(x,\epsilon)$...

Theorem. For appropriate choice of ϵ :

- f_Q (or h_Q) can be computed in time $O(\log(n) + \alpha^{-d})$.
- The excess risk of f_Q (or h_Q) is of optimal order $n^{-1/(2+d)}$.

Assume a fast-range search procedure for $\mathbf{Q} \cap B(x, \epsilon)$...

Theorem. For appropriate choice of ϵ :

- f_Q (or h_Q) can be computed in time $O(\log(n) + \alpha^{-d})$.

- The excess risk of f_Q (or h_Q) is of optimal order $n^{-1/(2+d)}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Assume a fast-range search procedure for $\mathbf{Q} \cap B(x, \epsilon)$...

Theorem. For appropriate choice of ϵ :

- f_Q (or h_Q) can be computed in time $O(\log(n) + \alpha^{-d})$.
- The excess risk of f_Q (or h_Q) is of optimal order $n^{-1/(2+d)}$.

Assume a fast-range search procedure for $\mathbf{Q} \cap B(x, \epsilon)$...

Theorem. For appropriate choice of ϵ :

- f_Q (or h_Q) can be computed in time $O(\log(n) + \alpha^{-d})$.
- The excess risk of f_Q (or h_Q) is of optimal order $n^{-1/(2+d)}$.

Table:	ϵ -NN Error		ϵ -NN Time
	Quantization Error	v5	Quantization Time

Datasets	SARCOS (42k)	CT Slices (51k)	MiniBooNE (128k)
$\alpha = 1/6$	0.99 - 2.03	0.93 - 1.29	0.99 - 1.17
$\alpha = 2/6$	0.99 - 4.10	0.92 - 2.04	0.99 - 1.65
$\alpha = 3/6$	0.98 - 6.31	0.91 - 3.17	0.99 - 4.05
$\alpha = 4/6$	0.96 - 7.70	0.91 - 5.40	0.98 - 6.42
$\alpha = 5/6$	0.89 - 9.26	0.85 - 11.94	0.94 - 8.83
$\alpha = 6/6$	0.77 - 10.14	0.43 - 15.33	0.88 - 10.22

As $\alpha \nearrow$, Error of $f_{\mathbf{Q}} \nearrow$, but Prediction Time \searrow

Main downside of Quantization: Computing Q can be $O(n^2)$.

Also, it's unclear how to choose ${f Q}$ for $k ext{-NN}$ rather than $\epsilon ext{-NN}$...

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Main downside of Quantization: Computing Q can be $O(n^2)$.

Also, it's unclear how to choose Q for k-NN rather than ϵ -NN ...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Outline:

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

- NN and Data Quantization
- NN and Subsampling
- Overview and Open Questions

Data: $\{(X_i, Y_i)\}_{i=1}^n$, $Y \in \{0, 1\}$. **Learn:** N subsamples $\{S_t\}$ of size $m \ll r$

 $h_{N,m}(x) = \mathsf{majority}\;(Y_t)\;\mathsf{over}\;\{S_t\}$

(日) (四) (日) (日) (日)

Desired N, m [Biau et al. 2010] [Samworth 2010]:

- Large $N \implies$ reduce variance.
- **Tradeoff on** m: small $m \implies$ richer $\{S_t\}$, but more variance.

Data: $\{(X_i, Y_i)\}_{i=1}^n$, $Y \in \{0, 1\}$. **Learn:** N subsamples $\{S_t\}$ of size $m \ll n$

 $egin{aligned} Y_t(x) \leftarrow Y ext{-value of } 1 ext{-NN}(x) ext{ in } S_t \ h_{N,m}(x) = ext{majority } (Y_t) ext{ over } \{S_t\} \end{aligned}$

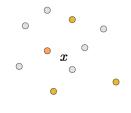
イロト 不得 トイヨト イヨト ニヨー

Desired N, m [Biau et al. 2010] [Samworth 2010]:

- Large $N \implies$ reduce variance.
- Tradeoff on m: small $m \implies$ richer $\{S_t\}$, but more variance.

Data: $\{(X_i, Y_i)\}_{i=1}^n$, $Y \in \{0, 1\}$. **Learn:** N subsamples $\{S_t\}$ of size $m \ll n$

 $egin{aligned} Y_t(x) &\leftarrow Y ext{-value of } 1 ext{-NN}(x) ext{ in } S_t \ h_{N,m}(x) &= ext{majority } (Y_t) ext{ over } \{S_t\} \end{aligned}$



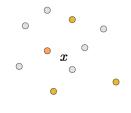
◆□▶ ◆冊▶ ◆臣▶ ◆臣▶ ─ 臣 ─

Desired *N*, *m* [Biau et al. 2010] [Samworth 2010]:

- Large $N \implies$ reduce variance.
- **Tradeoff on** m: small $m \implies$ richer $\{S_t\}$, but more variance.

Data: $\{(X_i, Y_i)\}_{i=1}^n$, $Y \in \{0, 1\}$. Learn: N subsamples $\{S_t\}$ of size $m \ll n$

 $Y_t(x) \leftarrow Y$ -value of 1-NN(x) in S_t $h_{N,m}(x) = majority (Y_t) \text{ over } \{S_t\}$

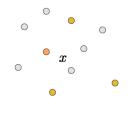


Desired *N*, *m* [Biau et al. 2010] [Samworth 2010]:

- Large $N \implies$ reduce variance.
- **Tradeoff on** m: small $m \implies$ richer $\{S_t\}$, but more variance.

Data: $\{(X_i, Y_i)\}_{i=1}^n$, $Y \in \{0, 1\}$. **Learn:** N subsamples $\{S_t\}$ of size $m \ll n$

 $Y_t(x) \leftarrow Y$ -value of 1-NN(x) in S_t $h_{N,m}(x) = majority (Y_t) \text{ over } \{S_t\}$



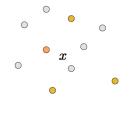
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Desired N, m [Biau et al. 2010] [Samworth 2010]:

- Large $N \implies$ reduce variance.
- **Tradeoff on** m: small $m \implies$ richer $\{S_t\}$, but more variance.

Data: $\{(X_i, Y_i)\}_{i=1}^n$, $Y \in \{0, 1\}$. **Learn:** N subsamples $\{S_t\}$ of size $m \ll n$

 $Y_t(x) \leftarrow Y$ -value of 1-NN(x) in S_t $h_{N,m}(x) = majority (Y_t) \text{ over } \{S_t\}$



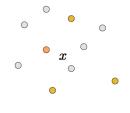
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Desired *N*, *m* [Biau et al. 2010] [Samworth 2010]:

- Large $N \implies$ reduce variance.
- **Tradeoff on** m: small $m \implies$ richer $\{S_t\}$, but more variance.

Data: $\{(X_i, Y_i)\}_{i=1}^n$, $Y \in \{0, 1\}$. Learn: N subsamples $\{S_t\}$ of size $m \ll n$

 $Y_t(x) \leftarrow Y$ -value of 1-NN(x) in S_t $h_{N,m}(x) = majority (Y_t) \text{ over } \{S_t\}$



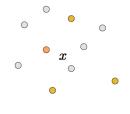
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Desired N, m [Biau et al. 2010] [Samworth 2010]:

- Large $N \implies$ reduce variance.
- Tradeoff on m: small $m \implies$ richer $\{S_t\}$, but more variance.

Data: $\{(X_i, Y_i)\}_{i=1}^n$, $Y \in \{0, 1\}$. **Learn:** N subsamples $\{S_t\}$ of size $m \ll n$

 $Y_t(x) \leftarrow Y$ -value of 1-NN(x) in S_t $h_{N,m}(x) = majority (Y_t) \text{ over } \{S_t\}$

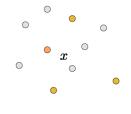


Desired N, m [Biau et al. 2010] [Samworth 2010]:

- Large $N \implies$ reduce variance.
- **Tradeoff on** m: small $m \implies$ richer $\{S_t\}$, but more variance.

Data: $\{(X_i, Y_i)\}_{i=1}^n$, $Y \in \{0, 1\}$. Learn: N subsamples $\{S_t\}$ of size $m \ll n$

 $Y_t(x) \leftarrow Y$ -value of 1-NN(x) in S_t $h_{N,m}(x) = majority (Y_t) \text{ over } \{S_t\}$

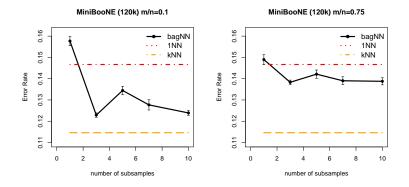


A D N A 目 N A E N A E N A B N A C N

Desired N, m [Biau et al. 2010] [Samworth 2010]:

- Large $N \implies$ reduce variance.
- **Tradeoff on** m: small $m \implies$ richer $\{S_t\}$, but more variance.

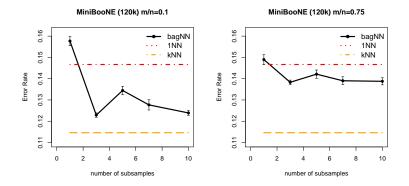
Optimal choice:
$$m = \Omega(n^{d/(2+d)}) \implies$$
 ratio $m/n \xrightarrow{n \to \infty} 0$.



Rule of Thumb: Pick $(m/n) \approx 10\%$ (often most accurate).

2 to 8 times speedup over k-NN prediction time

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ



Rule of Thumb: Pick $(m/n) \approx 10\%$ (often most accurate).

2 to 8 times speedup over k-NN prediction time

But can we get accuracy \approx that of k-NN?

[Biau et al. 2010] [Samworth 2010]: Yes, as $N
ightarrow \infty$

We want high accuracy for small N: Correct the variance in each subsample ...

> Variant (subNN): replace all Y_i by $h_k(X_i)$ [Xue, Kpo., 17]

> > ◆□▶ ◆冊▶ ◆臣▶ ◆臣▶ ─ 臣 ─

But can we get accuracy \approx that of k-NN? [Biau et al. 2010] [Samworth 2010]: Yes, as $N \rightarrow \infty$

We want high accuracy for small N: Correct the variance in each subsample ...

> Variant (subNN): replace all Y_i by $h_k(X_i)$ [Xue, Kpo., 17]

> > ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

But can we get accuracy \approx that of k-NN? [Biau et al. 2010] [Samworth 2010]: Yes, as $N \rightarrow \infty$

We want high accuracy for small N: Correct the variance in each subsample ...

Variant (subNN): replace all Y_i by $h_k(X_i)$ [Xue, Kpo., 17]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

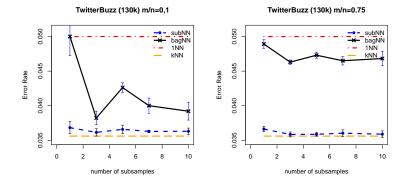
But can we get accuracy \approx that of k-NN? [Biau et al. 2010] [Samworth 2010]: Yes, as $N \rightarrow \infty$

We want high accuracy for small N:

Correct the variance in each subsample ...

Variant (subNN): replace all Y_i by $h_k(X_i)$ [Xue, Kpo., 17]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで



Error is now close to that of k-NN while maintaining 2-8 times speedup.

Suppose P_X is doubling (i.e., $P_X(B(x,r))\gtrsim r^d$), and E[Y|x] is Lipschitz

Theorem. For a good choice of k = k(n),

- Parallel computation time is no more than that of (fast) $1 ext{-NN}$
- The Excess Error is at most $\mathsf{OPT}_k(n) + m^{-1/a}$

OPT m = root(n) and we can let $m/n \rightarrow 0$.

Intuition: let N = 1, and $S(x) \doteq NN(x)$ in subsample S,

 $h_{\rm sub}(x) \leftarrow h_k(S(x)) \mbox{ now}$ $h_k(S(x)) \approx h^*(S(x)) \approx h^*(x) + \mbox{distance}(x,S(x))$

・ロト・西・・田・・田・・日・

Suppose P_X is doubling (i.e., $P_X(B(x,r))\gtrsim r^d$), and E[Y|x] is Lipschitz

Theorem. For a good choice of k = k(n),

- Parallel computation time is no more than that of (fast) 1-NN

- The Excess Error is at most $\mathsf{OPT}_k(n) + m^{-1/6}$

OPT m = root(n) and we can let $m/n \rightarrow 0$.

Intuition: let N = 1, and $S(x) \doteq NN(x)$ in subsample S,

 $h_{\rm sub}(x) \leftarrow h_k(S(x)) \mbox{ now}$ $h_k(S(x)) \approx h^*(S(x)) \approx h^*(x) + \mbox{distance}(x,S(x))$

うせん 川田 ふぼや 小田 そうそう

Suppose P_X is doubling (i.e., $P_X(B(x,r))\gtrsim r^d$), and E[Y|x] is Lipschitz

Theorem. For a good choice of k = k(n),

- Parallel computation time is no more than that of (fast) 1-NN
- The Excess Error is at most $\mathsf{OPT}_k(n) + m^{-1/d}$

OPT m = root(n) and we can let $m/n \rightarrow 0$.

Intuition: let N = 1, and $S(x) \doteq NN(x)$ in subsample S,

 $h_{\rm sub}(x) \leftarrow h_k(S(x)) \mbox{ now}$ $h_k(S(x)) \approx h^*(S(x)) \approx h^*(x) + \mbox{distance}(x,S(x))$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Suppose P_X is doubling (i.e., $P_X(B(x,r))\gtrsim r^d$), and E[Y|x] is Lipschitz

Theorem. For a good choice of k = k(n),

- Parallel computation time is no more than that of (fast) 1-NN
- The Excess Error is at most $\mathsf{OPT}_k(n) + m^{-1/d}$

OPT $m = \operatorname{root}(n)$ and we can let $m/n \to 0$.

Intuition: let N = 1, and $S(x) \doteq NN(x)$ in subsample S,

 $h_{\rm sub}(x) \leftarrow h_k(S(x)) \mbox{ now}$ $h_k(S(x)) \approx h^*(S(x)) \approx h^*(x) + {\rm distance}(x,S(x))$

・ロト ・ ロ・ ・ ヨ・ ・ ヨ・ ・ ロ・

Suppose P_X is doubling (i.e., $P_X(B(x,r))\gtrsim r^d$), and E[Y|x] is Lipschitz

Theorem. For a good choice of k = k(n),

- Parallel computation time is no more than that of (fast) 1-NN
- The Excess Error is at most $OPT_k(n) + m^{-1/d}$

OPT
$$m = \operatorname{root}(n)$$
 and we can let $m/n \to 0$.

Intuition: let N = 1, and $S(x) \doteq NN(x)$ in subsample S,

 $h_{\mathsf{sub}}(x) \leftarrow h_k(S(x))$ now

 $h_k(S(x)) \approx h^*(S(x)) \approx h^*(x) + \operatorname{distance}(x, S(x))$

Suppose P_X is doubling (i.e., $P_X(B(x,r))\gtrsim r^d$), and E[Y|x] is Lipschitz

Theorem. For a good choice of k = k(n),

- Parallel computation time is no more than that of (fast) 1-NN
- The Excess Error is at most $OPT_k(n) + m^{-1/d}$

OPT
$$m = root(n)$$
 and we can let $m/n \to 0$.

Intuition: let N = 1, and $S(x) \doteq NN(x)$ in subsample S,

$$h_{\mathsf{sub}}(x) \gets h_k(S(x)) \,\, \mathsf{now}$$

$$h_k(S(x)) \approx h^*(S(x)) \approx h^*(x) + \mathsf{distance}(x,S(x))$$

A D N A 目 N A E N A E N A B N A C N

Suppose P_X is doubling (i.e., $P_X(B(x,r))\gtrsim r^d$), and E[Y|x] is Lipschitz

Theorem. For a good choice of k = k(n),

- Parallel computation time is no more than that of (fast) 1-NN
- The Excess Error is at most $OPT_k(n) + m^{-1/d}$

OPT
$$m = root(n)$$
 and we can let $m/n \to 0$.

Intuition: let N = 1, and $S(x) \doteq NN(x)$ in subsample S,

$$h_{\mathsf{sub}}(x) \gets h_k(S(x)) \text{ now}$$

$$h_k(S(x)) \approx h^*(S(x)) \approx h^*(x) + \mathsf{distance}(x,S(x))$$

A D N A 目 N A E N A E N A B N A C N

Outline:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- NN and Data Quantization
- NN and Subsampling
- Overview and Open Questions

- Integrating all the data structures
- Taking Y into account in Quantization or Subsampling distribution

- Integrating all the data structures
- Taking Y into account in Quantization or Subsampling distribution

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Integrating all the data structures
- Taking Y into account in Quantization or Subsampling distribution

- Integrating all the data structures
- Taking \boldsymbol{Y} into account in Quantization or Subsampling distribution

A nice open question:

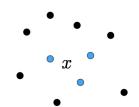
Is there a better subsampling distribution?

Maybe ...

A nice open question:

Is there a better subsampling distribution?

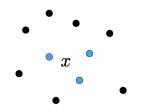
Maybe ...



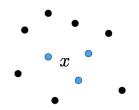
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Weighted k-NN: give more weight to closest neighbors Associate $w_1 \ge w_2 \ge \ldots \ge w_k$ to k-NN $(x) = \{X_{(1)}, \ldots, X_{(k)}\}$

- $h_{k,w}(x) =$ weighted majority (Y_i) of k-NN(x).



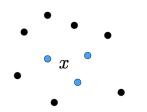
Weighted k-NN: give more weight to closest neighbors Associate $w_1 \ge w_2 \ge \ldots \ge w_k$ to k-NN $(x) = \{X_{(1)}, \ldots, X_{(k)}\}$ - $h_{k,w}(x)$ = weighted majority (Y_i) of k-NN(x).



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Weighted k-NN: give more weight to closest neighbors Associate $w_1 \ge w_2 \ge \ldots \ge w_k$ to k-NN $(x) = \{X_{(1)}, \ldots, X_{(k)}\}$

- $h_{k,w}(x)$ = weighted majority (Y_i) of k-NN(x).

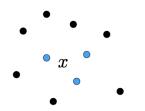


Recall Subsampling: $h_{N,m}(x) = \text{majority } (Y_t) \text{ over } \{S_t\}_{t=1}^N$

Intuition: suppose $N \to \infty$

Each $X_{(i)} \in k$ -NN(x) will appear often as 1-NN(x) in some S_t

 \mathcal{L}_{H} appears n_i times, then it contributes u_i or n_i to majority.

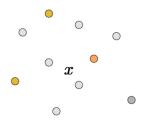


Recall Subsampling: $h_{N,m}(x) = \text{majority } (Y_t) \text{ over } \{S_t\}_{t=1}^N$

Intuition: suppose $N \to \infty$

Each $X_{(i)} \in k$ -NN(x) will appear often as 1-NN(x) in some S_t

Say $X_{(i)}$ appears n_i times, then it contributes $w_i \propto n_i$ to majority.

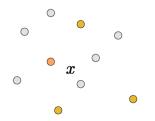


Recall Subsampling: $h_{N,m}(x) = \text{majority } (Y_t) \text{ over } \{S_t\}_{t=1}^N$

Intuition: suppose $N \to \infty$ Each $X_{(i)} \in k$ -NN(x) will appear often as 1-NN(x) in some S_t

Say $X_{(i)}$ appears n_i times, then it contributes $w_i \propto n_i$ to majority.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

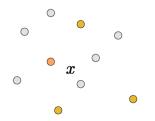


Recall Subsampling: $h_{N,m}(x) = \text{majority } (Y_t) \text{ over } \{S_t\}_{t=1}^N$

Intuition: suppose $N \to \infty$ Each $X_{(i)} \in k$ -NN(x) will appear often as 1-NN(x) in some S_t

Say $X_{(i)}$ appears n_i times, then it contributes $w_i \propto n_i$ to majority.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・



Recall Subsampling: $h_{N,m}(x) = \text{majority } (Y_t) \text{ over } \{S_t\}_{t=1}^N$

Intuition: suppose $N \to \infty$

Each $X_{(i)} \in k$ -NN(x) will appear often as 1-NN(x) in some S_t

Say $X_{(i)}$ appears n_i times, then it contributes $w_i \propto n_i$ to majority.

Sampling $S_t~pprox$ pick each point w.p. p=(m/n)

 $\therefore \quad \mathbb{P}_i \approx (1-p)^{i-1} \cdot p$

So $h_{N,m}pprox h_{k,w}$ with $w_i \propto n_i \propto \mathbb{P}_i$

[Biau et al. 2010] [Samworth 2010]:

 $\operatorname{err}(h_{N,m}) \to \operatorname{err}(h_{k,w})$ typically less than $\operatorname{err}(h_k)$

◆□▶ ◆冊▶ ◆臣▶ ◆臣▶ ─ 臣 ─

$$oldsymbol{x}$$
 $oldsymbol{\circ}$ \dots $oldsymbol{\circ}$ \dots $oldsymbol{\circ}$ $X_{(1)}$ $X_{(2)}$ $X_{(i-1)}$ $X_{(i)}$ $X_{(n)}$

Sampling $S_t \approx$ pick each point w.p. p = (m/n)

 $\therefore \quad \mathbb{P}_i \approx (1-p)^{i-1} \cdot p$

So $h_{N,m}pprox h_{k,w}$ with $w_i\propto n_i\propto \mathbb{P}_i$

[Biau et al. 2010] [Samworth 2010]:

 $\operatorname{err}(h_{N,m}) o \operatorname{err}(h_{k,w})$ typically less than $\operatorname{err}(h_k)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Sampling $S_t \approx$ pick each point w.p. p = (m/n) $\therefore \mathbb{P}_i \approx (1-p)^{i-1} \cdot p$

So $h_{N,m}pprox h_{k,w}$ with $w_i\propto n_i\propto \mathbb{P}_i$

[Biau et al. 2010] [Samworth 2010]:

 $\operatorname{err}(h_{N,m}) o \operatorname{err}(h_{k,w})$ typically less than $\operatorname{err}(h_k)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Sampling $S_t \approx$ pick each point w.p. p = (m/n) $\therefore \mathbb{P}_i \approx (1-p)^{i-1} \cdot p$

So $h_{N,m}pprox h_{k,w}$ with $w_i\propto n_i\propto \mathbb{P}_i$

[Biau et al. 2010] [Samworth 2010]

 $\operatorname{err}(h_{N,m}) \to \operatorname{err}(h_{k,w})$ typically less than $\operatorname{err}(h_k)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Sampling $S_t \approx$ pick each point w.p. p = (m/n) $\therefore \mathbb{P}_i \approx (1-p)^{i-1} \cdot p$

So $h_{N,m} \approx h_{k,w}$ with $w_i \propto n_i \propto \mathbb{P}_i$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

[Biau et al. 2010] [Samworth 2010]: $ext{err}(h_{N,m}) o ext{err}(h_{k,w})$ typically less than $ext{err}(h_k)$

Sampling $S_t \approx$ pick each point w.p. p = (m/n) $\therefore \mathbb{P}_i \approx (1-p)^{i-1} \cdot p$

So $h_{N,m} \approx h_{k,w}$ with $w_i \propto n_i \propto \mathbb{P}_i$

[Biau et al. 2010] [Samworth 2010]:

 $\operatorname{err}(h_{N,m}) \to \operatorname{err}(h_{k,w})$ typically less than $\operatorname{err}(h_k)$

$h_{k,w}$ is often more accurate than h_k

	1-NN	Majority voting	inverse distance	Dudani	Shepard
PP-attach	80.1	83.4 (13)	83.7 (13)	84.2 (30)	84.0 (35)
Glass	76.4	77.3 (2)	-	77.3 (5)	76.8 (3)
Wine	96.7	97.8 (3)	97.8 (3)	97.8 (7)	97.8 (3)
Sonar	82.5	-	83.1 (7)	85.0 (9)	-
Letter	95.6	_	-	96.0 (5)	_
Isolet	88.6	91.9 (13)	92.4 (13)	92.9 (15)	92.4 (13)
Vowel	52.6	-	55.6 (7)	55.8 (15)	55.0 (7)
Segmentation	90.9		_	_	_
Ionosphere	90.0	_	-	90.6 (5)	_
Diabetes	66.1	70.1 (3)	69.7 (80)	70.3 (100)	70.1 (3)
Cancer predicition	69.0	79.5 (11)	81.0 (9)	79.5 (21)	79.5 (11)
Cancer diagnosis	89.1	93.3 (5)	93.2 (5)	92.8 (30)	93.3 (5)
Heart disease	57.0	62.7 (2)	58.7 (11)	58.7 (9)	59.3 (100)

Experiments on UCI datasets [Zavrel 97]

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Dudani scheme: $w_i \propto k - i + 1$ independent of dist $(x, X_{(i)})$ Theory seems to point to the same ...

$h_{k,w}$ is often more accurate than h_k

	1-NN	Majority voting	inverse distance	Dudani	Shepard
PP-attach	80.1	83.4 (13)	83.7 (13)	84.2 (30)	84.0 (35)
Glass	76.4	77.3 (2)	-	77.3 (5)	76.8 (3)
Wine	96.7	97.8 (3)	97.8 (3)	97.8 (7)	97.8 (3)
Sonar	82.5	-	83.1 (7)	85.0 (9)	-
Letter	95.6	-	-	96.0 (5)	_
Isolet	88.6	91.9 (13)	92.4 (13)	92.9 (15)	92.4 (13)
Vowel	52.6	-	55.6 (7)	55.8 (15)	55.0 (7)
Segmentation	90.9		_	_	_
Ionosphere	90.0	_	-	90.6 (5)	-
Diabetes	66.1	70.1 (3)	69.7 (80)	70.3 (100)	70.1 (3)
Cancer predicition	69.0	79.5 (11)	81.0 (9)	79.5 (21)	79.5 (11)
Cancer diagnosis	89.1	93.3 (5)	93.2 (5)	92.8 (30)	93.3 (5)
Heart disease	57.0	62.7 (2)	58.7 (11)	58.7 (9)	59.3 (100)

Experiments on UCI datasets [Zavrel 97]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Dudani scheme: $w_i \propto k - i + 1$ independent of dist $(x, X_{(i)})$

Theory seems to point to the same ...

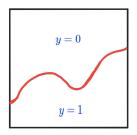
$h_{k,w}$ is often more accurate than h_k

	1-NN	Majority voting	inverse distance	Dudani	Shepard
PP-attach	80.1	83.4 (13)	83.7 (13)	84.2 (30)	84.0 (35)
Glass	76.4	77.3 (2)	-	77.3 (5)	76.8 (3)
Wine	96.7	97.8 (3)	97.8 (3)	97.8 (7)	97.8 (3)
Sonar	82.5	-	83.1 (7)	85.0 (9)	-
Letter	95.6	-	-	96.0 (5)	_
Isolet	88.6	91.9 (13)	92.4 (13)	92.9 (15)	92.4 (13)
Vowel	52.6	-	55.6 (7)	55.8 (15)	55.0(7)
Segmentation	90.9		-	-	_
Ionosphere	90.0	-	-	90.6 (5)	_
Diabetes	66.1	70.1 (3)	69.7 (80)	70.3 (100)	70.1 (3)
Cancer predicition	69.0	79.5 (11)	81.0 (9)	79.5 (21)	79.5 (11)
Cancer diagnosis	89.1	93.3 (5)	93.2 (5)	92.8 (30)	93.3 (5)
Heart disease	57.0	62.7 (2)	58.7 (11)	58.7 (9)	59.3 (100)

Experiments on UCI datasets [Zavrel 97]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Dudani scheme: $w_i \propto k - i + 1$ independent of $dist(x, X_{(i)})$ Theory seems to point to the same ...

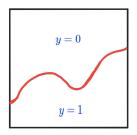


Theory: [Samworth 2010] under minor technical conditions ... $\exists \{w_i^*\}$, independent of distance, s.t.

$$\frac{\mathbb{E}\operatorname{err}(h_{k,w^*})}{\mathbb{E}\operatorname{err}(h_k)} \xrightarrow{n \to \infty} C < 1.$$

 w^*, C depend on changes in P_X and $\mathbb{E}[Y|X]$ near class-boundary.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●



Theory: [Samworth 2010] under minor technical conditions ... $\exists \{w_i^*\}$, independent of distance, s.t.

$$\frac{\mathbb{E}\operatorname{err}(h_{k,w^*})}{\mathbb{E}\operatorname{err}(h_k)} \xrightarrow{n \to \infty} C < 1.$$

 w^*, C depend on changes in P_X and $\mathbb{E}[Y|X]$ near class-boundary.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Open Questions:

Best $h_{k,w^*} \equiv$ Best subsampling distribution?

How do we even infer best w^* from data?

Open Questions:

Best $h_{k,w^*} \equiv$ Best subsampling distribution?

How do we even infer best w^* from data?

Open Questions:

Best $h_{k,w^*} \equiv$ Best subsampling distribution?

How do we even infer best w^* from data?

• • •

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶