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Vanilla NN prediction:

Reduces to regression: let fk(x) = avg (Yi) of k-NN(x)

... then: hk(x) ≡ 1{fk(x) ≥ 1/2}.

Prediction Time: at least order k,

Irrespective of fast search method.

Unfortunately, optimal accuracy requires large k = Ω(root of(n)) ...
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Statistical performance of k-NN:

Consider regression: Y = f(X) + noise, dim(X) = d

Suppose f(x)
.
= E[Y |x] is Lipschitz:

E (fk(X)− f(X))2 ≈ 1

k
+

(
k

n

)2/d

minimized at k ∝ n2/(2+d)

Same story for classification ...

So for optimal accuracy, prediction time = Ω(n2/(2+d))
(Irrespective of fast proximity search)

Our goal: optimal accuracy with prediction time = O(log n)
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Fast prediction with no tradeoff:

How to achieve this:

Data quantization or Sub-sampling + (simple Variance correction)

We’ll consider common NN approaches:

ε-NN: use all samples ε-close to x

k-NN: use the k closest samples to x
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Outline:

• NN and Data Quantization

• NN and Subsampling

• Overview and Open Questions
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Quantization: reduce the data

{Xi}ni=1

Two options: Pick k closest q’s to x or Pick all q’s in B(x, ε).

Main issues:

Size of Q ... How to choose Q ... How to use Q
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ε-NN Heuristics: [Atkeson et al 97] [Carrier et al. 88] [Lee, Gray 08]

Data: {(Xi, Yi)}ni=1, Y ∈ {0, 1}.

Learn: Yq ≡ avg (Yi) of {Xi → q}

We’ll make a few changes for the guarantees we want ..
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ε-NN Heuristics: [Atkeson et al 97] [Carrier et al. 88] [Lee, Gray 08]

Pick Q as (1) (α · ε)-packing, and (2) an (α · ε)-cover of {Xi}.
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Intuition: Suppose (X , ρ) has doubling dimension d

Relate fQ to ε-NN fε (on n samples) ...

Pick Q as (1) (α · ε)-packing, and (2) an (α · ε)-cover of {Xi}.

fQ(x) =
1∑
nq

∑
q∈B(x,ε)

nqYq

- Has variance O(1/
∑
nq) rather than O(1/minnq)

Argue that
∑
nq > |{Xi} ∩B(x, (1− α)ε))| (≈ Var of f(1−α)ε)
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Guarantees: [Kpo., Verma, 17]

Assume a fast-range search procedure for Q ∩B(x, ε) ...

Theorem. For appropriate choice of ε:

- fQ (or hQ) can be computed in time O(log(n) + α−d).

- The excess risk of fQ (or hQ) is of optimal order n−1/(2+d).
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Table: ε-NN Error
Quantization Error vs ε-NN Time

Quantization Time

Datasets SARCOS (42k) CT Slices (51k) MiniBooNE (128k)

α = 1/6 0.99 - 2.03 0.93 - 1.29 0.99 - 1.17

α = 2/6 0.99 - 4.10 0.92 - 2.04 0.99 - 1.65

α = 3/6 0.98 - 6.31 0.91 - 3.17 0.99 - 4.05
α = 4/6 0.96 - 7.70 0.91 - 5.40 0.98 - 6.42
α = 5/6 0.89 - 9.26 0.85 - 11.94 0.94 - 8.83
α = 6/6 0.77 - 10.14 0.43 - 15.33 0.88 - 10.22

As α↗, Error of fQ ↗, but Prediction Time ↘
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Main downside of Quantization:

Computing Q can be O(n2).

Also, it’s unclear how to choose Q for k-NN rather than ε-NN ...
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Subsampling: reduce data and parallelize

Data: {(Xi, Yi)}ni=1, Y ∈ {0, 1}.

Learn: N subsamples {St} of size m� n

Yt(x)← Y -value of 1-NN(x) in St

hN,m(x) = majority (Yt) over {St}

Desired N,m [Biau et al. 2010] [Samworth 2010]:

- Large N =⇒ reduce variance.

- Tradeoff on m: small m =⇒ richer {St}, but more variance.

Optimal choice: m = Ω(nd/(2+d)) =⇒ ratio m/n
n→∞−−−→ 0.
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Optimal choice: m = Ω(nd/(2+d)) =⇒ ratio m/n
n→∞−−−→ 0.
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Rule of Thumb: Pick (m/n) ≈ 10% (often most accurate).

2 to 8 times speedup over k-NN prediction time
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But can we get accuracy ≈ that of k-NN?

[Biau et al. 2010] [Samworth 2010]: Yes, as N →∞

We want high accuracy for small N :

Correct the variance in each subsample ...

Variant (subNN): replace all Yi by hk(Xi)
[Xue, Kpo., 17]
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Guarantees for subNN:

Suppose PX is doubling (i.e., PX(B(x, r)) & rd), and E[Y |x] is Lipschitz

Theorem. For a good choice of k = k(n),

- Parallel computation time is no more than that of (fast) 1-NN

- The Excess Error is at most OPTk(n) +m−1/d

OPT m = root(n) and we can let m/n→ 0.

Intuition: let N = 1, and S(x)
.
= NN(x) in subsample S,

hsub(x)← hk(S(x)) now

hk(S(x)) ≈ h∗(S(x))≈h∗(x) + distance(x, S(x))
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Outline:

• NN and Data Quantization

• NN and Subsampling

• Overview and Open Questions
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So it’s possible to get accuracy ≈ OPT-NN, in the time of 1-NN

Various open questions:

- Integrating all the data structures

- Taking Y into account in Quantization or Subsampling distribution
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A nice open question:

Is there a better subsampling distribution?

Maybe ...
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Subsampling is weighted k-NN

Weighted k-NN: give more weight to closest neighbors

Associate w1 ≥ w2 ≥ . . . ≥ wk to k-NN(x) = {X(1), . . . , X(k)}

- hk,w(x) = weighted majority (Yi) of k-NN(x).



, , , , , , , , , ,

Subsampling is weighted k-NN

Weighted k-NN: give more weight to closest neighbors

Associate w1 ≥ w2 ≥ . . . ≥ wk to k-NN(x) = {X(1), . . . , X(k)}

- hk,w(x) = weighted majority (Yi) of k-NN(x).



, , , , , , , , , ,

Subsampling is weighted k-NN

Weighted k-NN: give more weight to closest neighbors

Associate w1 ≥ w2 ≥ . . . ≥ wk to k-NN(x) = {X(1), . . . , X(k)}

- hk,w(x) = weighted majority (Yi) of k-NN(x).



, , , , , , , , , ,

Subsampling is weighted k-NN

Recall Subsampling: hN,m(x) = majority (Yt) over {St}Nt=1

Intuition: suppose N →∞
Each X(i) ∈ k-NN(x) will appear often as 1-NN(x) in some St

Say X(i) appears ni times, then it contributes wi ∝ ni to majority.
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ni ≈ N ·PSt
(
X(i) is 1-NN(x) in St

)
= N ·Pi

Sampling St ≈ pick each point w.p. p = (m/n)

∴ Pi ≈ (1− p)i−1 · p

So hN,m ≈ hk,w with wi ∝ ni ∝ Pi

[Biau et al. 2010] [Samworth 2010]:

err(hN,m)→ err(hk,w) typically less than err(hk)
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hk,w is often more accurate than hk

Experiments on UCI datasets [Zavrel 97]

Dudani scheme: wi ∝ k − i+ 1 independent of dist(x,X(i))

Theory seems to point to the same ...
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Theory: [Samworth 2010] under minor technical conditions ...

∃{w∗i }, independent of distance, s.t.

E err(hk,w∗)

E err(hk)
n→∞−−−→ C < 1.

w∗, C depend on changes in PX and E[Y |X] near class-boundary.
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Open Questions:

Best hk,w∗ ≡ Best subsampling distribution?

How do we even infer best w∗ from data?
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