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Vanilla NN prediction:

Classification:

Data: {(X;,Y;)}',, Y € {0,1}.
Learn: hy(x) = majority (V;) of k-NN(x). ®

Reduces to regression: let [, () = avg (V;) of k-NN(x)
... then: hy(z) = 1{fr(z) > 1/2}.

Prediction Time: at least order k,
Irrespective of fast search method.

Unfortunately, optimal accuracy requires large i = ()(root of(n)) ...
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Consider regression: Y = f(X) 4+ noise, dim(X) =d
Suppose f(z) = E[Y|z] is Lipschitz:

1 2/
+ <—) minimized at & oc n2/ (24
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B ((X) ~ (X)) ~

Same story for classification ...

So for optimal accuracy, prediction time = Q(n?/(>+)
(Irrespective of fast proximity search)

Our goal: optimal accuracy with prediction time = O(logn) J
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Fast prediction with no tradeoff:

How to achieve this:
Data quantization or Sub-sampling + (simple Variance correction)J

We’ll consider common NN approaches:

e-NIN: use all samples e-close to x

k-NIN: use the k closest samples to =




Outline:

e NN and Data Quantization
® NN and Subsampling

® QOverview and Open Questions
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o

@)
Pick ¢'s in Q close to x

Two options: Pick k closest ¢'s to x or Pick all ¢'s in B(x,¢).

Main issues:
Size of () ... How to choose @) ... How to use Q)
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e-NN Heuristics: [Atkeson et al 97] [Carrier et al. 88] [Lee, Gray 08]

Pick Q as (1) (« - €)-packing, and (2) an (« - €)-cover of {X;}.

Data: {(X;,Y;)}",, Y € {0,1}. *o
7
Learn: Y, = avg (Y;) of {X; — ¢} ,,//o - X
fq(z) = weighted avg (Y;) of ¢'s in B(x,€) e\ . /’
\\\\ P
hq(z) = 1{fq(z) = 1/2}. -

We’'ll make a few changes for the guarantees we want ..
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Intuition: Suppose (X, p) has doubling dimension d

Relate fq to e-NN f. (on n samples) ...
Pick Q as (1) (« - €)-packing, and (2) an (« - €)-cover of {X;}.

- QN B(x,e¢) is small (of size O(a~7)) o = ° v
- Relevant X;'s are 2e-close to = (= bias of f) ,/G.O \
o\ e ]
5 -

1
fQ(x) = Z ”{] Z nq)/q
gEB(x,€)

- Has variance O(1/ )" ng) rather than O(1/minn,)

Argue that Y ng > [{Xi} N B(z, (1 — a)e))| (= Var of fi_a)c)
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Guarantees: [Kpo., Verma, 17]

Assume a fast-range search procedure for Q) N B(z,¢€) ...

Theorem. For appropriate choice of e:
- fo (or hg) can be computed in time O(log(n) + a~9).
- The excess risk of fq (or hg) is of optimal order n~/(2+d).




e-NN Time

.. e-NN Error
Table: Vs Quantization Time

Quantization Error

’ Datasets H SARCOS (42k) ‘ CT Slices (51k) ‘ MiniBooNE (128k) ‘

a=1/6 0.99 - 2.03 0.93-1.29 0.99 - 1.17
a=2/6 0.99 - 4.10 0.92 - 2.04 0.99 - 1.65
a=3/6 0.98 - 6.31 0.91 - 3.17 0.99 - 4.05
a=4/6 0.96 - 7.70 0.91 - 5.40 0.98 - 6.42
a=5/6 0.89 - 9.26 0.85-11.94 0.94 - 8.83
a=6/6 0.77 - 10.14 0.43 - 15.33 0.88 - 10.22
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Main downside of Quantization:
Computing Q) can be O(n?).

Also, it's unclear how to choose () for k-NN rather than e-NN ...
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Subsampling: reduce data and parallelize

Data: {(X;,Y;)}",, Y € {0,1}. o e
Learn: N subsamples {5;} of size m < n o ®
o 7
Yi(x) < Y-value of 1-NN(z) in S;
°

hn m(x) = majority (Yz) over {5}

Desired N, m [Biau et al. 2010] [Samworth 2010]:
- Large N = reduce variance.

- Tradeoff on m: small m = richer {5;}, but more variance.

Optimal choice: m = Q(n¥2+d)) — ratio m/n == 0.
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2 to 8 times speedup over k-NN prediction time
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But can we get accuracy ~ that of k-NN?

[Biau et al. 2010] [Samworth 2010]: Yes, as N — oo

We want high accuracy for small N:
Correct the variance in each subsample ...

Variant (subNN): replace all Y; by hy(X;)
[Xue, Kpo., 17]
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Error is now close to that of k-NN while maintaining 2-8 times speedup.



Guarantees for subNN:

Suppose Py is doubling (i.e., Py (B(x,7)) = r?), and E[Y|z] is Lipschitz



Guarantees for subNN:

Suppose Px is doubling (i.e., P (B(x,7)) = r?), and E[Y|x] is Lipschitz

Theorem. For a good choice of k = k(n),

- Parallel computation time is no more than that of (fast) 1-NN




Guarantees for subNN:

Suppose Px is doubling (i.e., Px(B(x.7)) = r?), and E[Y|x] is Lipschitz

Theorem. For a good choice of k = k(n),

- Parallel computation time is no more than that of (fast) 1-NN

- The Excess Error is at most OPT,(n) + m~1/4




Guarantees for subNN:

Suppose Py is doubling (i.e., Py (B(x,7)) = r?), and E[Y|z] is Lipschitz

Theorem. For a good choice of k = k(n),

- Parallel computation time is no more than that of (fast) 1-NN

- The Excess Error is at most OPT,(n) + m~1/4

OPT m = root(n) and we can let m/n — 0.



Guarantees for subNN:

Suppose Py is doubling (i.e., Py (B(x,7)) = r?), and E[Y|z] is Lipschitz

Theorem. For a good choice of k = k(n),

- Parallel computation time is no more than that of (fast) 1-NN

- The Excess Error is at most OPT(n) 4 m~1/¢

OPT m = root(n) and we can let m/n — 0.
Intuition: let N =1, and S(z) = NN(z) in subsample S,

hsub(z) <= hi(S(2))



Guarantees for subNN:

Suppose Py is doubling (i.e., Py (B(x,7)) = r?), and E[Y|z] is Lipschitz

Theorem. For a good choice of k = k(n),

- Parallel computation time is no more than that of (fast) 1-NN

- The Excess Error is at most OPT(n) 4 m~1/¢

OPT m = root(n) and we can let m/n — 0.
Intuition: let N =1, and S(z) = NN(z) in subsample S,

hsub(2) < hi(S(z)) now
hi(S(x)) ~ h*(S(z))



Guarantees for subNN:

Suppose Py is doubling (i.e., Py (B(x,7)) = r?), and E[Y|z] is Lipschitz

Theorem. For a good choice of k = k(n),

- Parallel computation time is no more than that of (fast) 1-NN

- The Excess Error is at most OPT(n) 4 m~1/¢

OPT m = root(n) and we can let m/n — 0.
Intuition: let N =1, and S(z) = NN(z) in subsample S,

heub(x) <= hi(S(x)) now
hi(S(x)) = h*(S(z)) =~ h*(x) + distance(z, S(z))
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So it's possible to get accuracy &~ OPT-NN, in the time of 1-NN

Various open questions:

- Integrating all the data structures

- Taking Y into account in Quantization or Subsampling distribution
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A nice open question:

Is there a better subsampling distribution?

Maybe ...
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- hyw(x) = weighted majority (Y;) of k-NN(x).
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Recall Subsampling: hy ,,,(z) = majority (V;) over {5, }1

Intuition: suppose N — oo
Each X(;) € k-NN(z) will appear often as 1-NN(z) in some S; J

Say X(;) appears n; times, then it contributes w; o n; to majority.
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n; ~ N-Pg, (X is 1-NN(z) in S;) = N - P;

T O o -+ 0 O .. O
Xy X Xu-1 Xp X(n)

Sampling S; =~  pick each point w.p. p = (m/n)

Pi~(l-p)~'p

So hN,m ~ hk,w with w; < n; o< P;

[Biau et al. 2010] [Samworth 2010]:
err(hn,m) — err(hy,,) typically less than err(hy,)




.., is often more

accurate than h,

1-NN | Majority voting | inverse distance | Dudani Shepard
PP-attach R0.1 | 83.4 (13) 837 (13) 84.2 (30) | 84.0 (35)
Glass 76.4 | 77.3 (2) 77.3 (5) 76.8 (3)
Wine 96.7 97.8 (3) 97.8 (3) 97.8 (7) 97.8 (3)
Sonar 82.5 | - 83.1(7) 85.0 (9) -
Letter 95.6 96.0 (5)
Isolet 88.6 | 91.9 (13) 92.4 (13) 92.9 (15) | 92.4 (13)
Vowel 52.6 55.6 (7) 55.8 (15) | 55.0 (7)
Segmentation 90.9
Tonosphere 90.0 90.6 (5)
Diabetes 66.1 | 70.1 (3) 69.7 (80) 70.3 (100) | 70.1 (3)
Cancer predicition | 69.0 | 79.5 (11) 81.0 (9) 79.5 (21) 79.5 (11)
Cancer diagnosis 89.1 93.3 (5) 93.2 (5) 92.8 (30) 93.3 (5)
Heart disease 57.0 | 62.7 (2) 58.7 (11) 8.7 (9) 59.3 (100)

Experiments on UCI datasets [Zavrel 97]
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1-NN | Majority voting | inverse distance | Dudani Shepard
PP-attach 80.1 83.4 (13) 83.7 (13) 84.2 (30) 84.0 (35)
Glass 76.4 | 77.3 (2) 77.3(5) | 76.8 (3)
Wine 96.7 | 97.8 (3) 97.8 (3) 97.8 (7) | 97.8 (3)
Sonar 82.5 83.1(7) 85.0 (9)
Letter 95.6 96.0 (5)
Isolet 88.6 | 91.9 (13) 92.4 (13) 92.9 (15) | 92.4 (13)
Vowel 52.6 55.6 (7) 55.8 (15) | 55.0 (7)
Segmentation 90.9
Tonosphere 90.0 90.6 (5)
Diabetes 66.1 | 70.1 (3) 69.7 (80) 70.3 (100) | 70.1 (3)
Cancer predicition | 69.0 79.5 (11) 81.0 (9) 79.5 (21) 79.5 (11)
Cancer diagnosis 89.1 93.3 (5) 93.2 (5) 92.8 (30) 93.3 (5)
Heart disease 57.0 | 62.7 (2) 58.7 (11) 8.7 (9) 59.3 (100)

Experiments on UCI datasets [Zavrel 97]

Dudani scheme: w; oc k — i + 1 independent of dist(z, X(;))




.., is often more accurate than £,

I-NN | Majority voting | inverse distance | Dudani Shepard
PP-attach S0.1 | 83.4 (13) 83.7 (13) 84.2 (30) | 84.0 (35)
Glass 76.4 | 77.3 (2) 77.3 (5) 76.8 (3)
Wine 96.7 | 97.8 (3) 97.8 (3) 97.8 (7) | 97.8 (3)
Sonar 82.5 83.1 (7) 85.0 (9)
Letter 95.6 96.0 (5)
Isolet 88.6 | 91.9 (13) 92.4 (13) 92.9 (15) | 92.4 (13)
Vowel 52.6 55.6 (7) 55.8 (15) | 55.0 (7)
Segmentation 90.9
Tonosphere 90.0 90.6 (5)
Diabetes 66.1 | 70.1 (3) 69.7 (80) 70.3 (100) | 70.1 (3)
Cancer predicition | 69.0 79.5 (11) 81.0 (9) 79.5 (21) 79.5 (11)
Cancer diagnosis 89.1 93.3 (5) 93.2 (5) 92.8 (30) 93.3 (5)
Heart disease 57.0 | 62.7 (2) 58.7 (11) 8.7 (9) 59.3 (100)

Experiments on UCI| datasets [Zavrel 97]

Dudani scheme: w; oc k — i + 1 independent of dist(z, X(;))
Theory seems to point to the same ...




Theory: [Samworth 2010] under minor technical conditions ...

3{w;}, independent of distance, s.t.
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Theory: [Samworth 2010] under minor technical conditions ...

3{w;}, independent of distance, s.t.

]Eerr(h'k,w*) n—00
Eerr(hy)

C < 1.

w*, C depend on changes in Px and E[Y|X] near class-boundary.



Open Questions:



Open Questions:

Best hy .+ = Best subsampling distribution?



Open Questions:
Best hy .+ = Best subsampling distribution?

How do we even infer best w* from data?






