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Motivation:

Density-based Clustering: group points into high-density regions.

- Flexibility: can identify any number of rich structures in data.
- Clear ground truth: targets concrete mathematical objects.

- Many applications: medical imaging, text mining, speech, vision, ...

However: Heuristics work better than theoretical methods :(

We want a practical procedure with theoretical guarantees!
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Formalisms of density-based clustering

Common idea: cluster data around high-density cores!
... Suppose the data {Xi}n1 ∼i.i.d. some density f

DBSCAN: cores are Connected-Components of a level set λ of f .
Problem: which level λ?



, , , , , , , , , ,

Formalisms of density-based clustering

Common idea: cluster data around high-density cores!
... Suppose the data {Xi}n1 ∼i.i.d. some density f

DBSCAN: cores are Connected-Components of a level set λ of f .
Problem: which level λ?



, , , , , , , , , ,

Formalisms of density-based clustering

Common idea: cluster data around high-density cores!
... Suppose the data {Xi}n1 ∼i.i.d. some density f

DBSCAN: cores are Connected-Components of a level set λ of f .
Problem: which level λ?



, , , , , , , , , ,

Formalisms of density-based clustering

Common idea: cluster data around high-density cores!
... Suppose the data {Xi}n1 ∼i.i.d. some density f

DBSCAN: cores are Connected-Components of a level set λ of f .
Problem: which level λ?



, , , , , , , , , ,

Formalisms of density-based clustering

Common idea: cluster data around high-density cores!
... Suppose the data {Xi}n1 ∼i.i.d. some density f

DBSCAN: cores are Connected-Components of a level set λ of f .
Problem: which level λ? (we can get 6= results)
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Formalisms of density-based clustering

Common idea: cluster data around high-density cores!
... Suppose the data {Xi}n1 ∼i.i.d. some density f

MEAN-SHIFT: cores are point-modes (maxima) of f .
Problem: unstable for general maxima ... hard to analyze.
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Our goal:

Practical and Optimal estimator of general maxima of density f .

Difficulty: unknown location, dimension, shape
Side benefits: applies beyond clustering (e.g. manifold denoising).

Practical subroutines: we’ll traverse a k-NN graph over {Xi}
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Outline:

• How k-NN graphs relate to f . (groundwork)
(with Chaudhuri, Dasgupta, von Luxburg, 2011, 2014)

• Estimating all modes of f . (first intuition ...)
(with S. Dasgupta, 2014)

• Estimating all modal sets of f . (final intuition )
(with H. Jiang, 2017)
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How k-NN graphs relate to f .

Characterize f by its cluster-tree [Hartigan 81]:

- [Cha., Das. 10]: first consistent estimator (extends single-linkage).

- [Kpo., vLux. 11]: Simple k-NN subgraphs + stronger consistency.
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Intuition: recursively remove Xi’s with farthest k’th NN ...
Graph breaks up into subgraphs corresponding to level sets of f .
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Intuition: recursively remove Xi’s with farthest k’th NN ...
Graph breaks up into subgraphs corresponding to level sets of f .

Theo. Let f uniformly cont. + mild conditions on k = Ω(log n).
Let C1, C2 be disjoint CCs of some {f ≥ λ}. W.p → 1,
C1 ∩Xn and C2 ∩Xn are in disjoint CCs of a k-NN subgraph.
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Practical problem: spurious CCs due to data variability.
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Intuition: recursively remove Xi’s with farthest k’th NN ...
Graph breaks up into subgraphs corresponding to level sets of f .

Practical problem: spurious CCs due to data variability.
Reconnect using careful lookups to lower subgraphs.
Consistency of Reconnect shown in [Cha., Das., Kpo., vLux. 14]
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Many new refinements by various authors ...
S. Balakrishnan, L. Wasserman, A. Rinaldo, I. Steinwart, M. Belkin, Y.C. Chen,

F. Chazal, J. Klëmëla, ...
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Estimating all modes of f : What was known

Rate-Optimal: single mode case ([S. Tsybakov, 90] ...).
Practical: mean-shift (hard to analyze ... see [Genovesee, ...
Wasserman et.al., 13], [Arias-Castro et.al., 13] on consistency)

We derive a rate-optimal estimator based on k-NN graphs ...
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Program of construction

• k-NN density rates:
asymptotic 1/

√
k rates (e.g. [Biau, ..., Devroye et.al., 11]).

We show high-prob. finite sample rates.

• Single mode:
Common estimator in theory: x̂ = arg maxx∈IRd f̂(x).

Practical estimator: x̃ = arg maxx∈X1:n f̂(x).
Consistency of x̃ [Abraham, Biau, Cadre, 04]
We show that x̃ is also minimax-optimal.

• Multiple modes:
Practical procedures (e.g. meanshift) are hard to analyze.
Our procedure recovers just modes at optimal rates.
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Sub-Outline:

• k-NN density rates
• Single mode rates

• Multiple modes rates
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k-NN density estimate:

Define rk(x) ≡ distance from x to its kth neighbor in X1:n.

fk(x) ,
k

n · vol (B(x, rk(x)))
=

k

n · vd · rk(x)d
.
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Finite sample rates for fk:

W.p > 1− δ, simult. ∀x ∈ supp(f), ∀ε > 0,(
1−

Cn,δ√
k

)
(f(x)− ε) ≤ fk(x) ≤

(
1 +

Cn,δ√
k

)
(f(x) + ε),

provided log n . k . r(ε, x)d · (f(x)− ε) · n.

r(ε, x) ≡ sup {r : on B(x, r), f(·) ≈ f(x) + ε}.

∴ optimal (local) rates under smoothness conditions.
If f is α-Hölder at x:

|fk(x)− f(x)| = O
(
n−α/(2α+d)

)
, for k = Θ(n2α/(2α+d)).
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Sub-Outline:

• k-NN density rates

• Single mode rates
• Multiple modes rates
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Most commonly studied

x̂ = arg maxx∈IRd fn(x)

Recursive estimates (One sample at a time)

[L. Devroye 79], [S. Tsybakov, 90 (optimal for Hölder classes.)]

Direct estimates (no density estimation)

x̃ = arg maxx∈X1:n fk(x) = arg minx∈X1:n rk(x).
(Consistency, [Abraham, Biau, Cadre, 04])
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A.1 (local): x = arg max f(x), ∃∇2f on B(x), ∇2f(x) ≺ 0.
A.2 (global): level sets of f have single CC.

Theorem. Let x̃ = arg maxx∈X1:n fk(x). W.h.p. we have

‖x̃− x‖ . k−1/4, provided lnn . k . n4/(4+d).

Constants depend on f(x) and ∇2f(x). (OPTIMAL, see Tsyb.90)
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Proof idea:

• There is a sample point at distance ≤ optimal rate.
• ∇2f(x) ≺ 0 : ∃ a level set Ax:

c ‖x− x′‖2 ≤ f(x)− f(x′) ≤ C ‖x− x′‖2.
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Sub-Outline:

• k-NN density rates

• Single mode rates
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Setup:

Modes: M≡ {x : ∃r > 0,∀x′ ∈ B(x, r), f(x′) < f(x)} .

A.1 (local) ∀x ∈M, ∃∇2f on B(x), ∇2f(x) ≺ 0.
A.2 (global) Any CC of any level set of f contains a mode in M.
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ALGO: As fk goes down, pick a new mode as a new bump appears.

Identifying CCs of level sets:
CCs of subgraphs of a k-NN graph [Chau., Das., Kpo., v Lux., 14]
How to identify false modes in fk?
Remove all bumps of height . |fk − f | ≈ 1/

√
k.
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Identifying good modes

x is r-salient: separated from other modes by valley of thickness r.

Theorem. Suppose x ∈M is r-salient. Let n ≥ N(x). W.h.p.
∃x̃ ∈Mn s.t.

‖x̃− x‖ . k−1/4, provided lnn/r4 . k . n4/(4+d).

Constants depend on f(x) and ∇2f(x).
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Pruning bad modes

Theorem 4. Suppose f is Lipschitz. Let k ≥ lnn.
All modes in Mn at fk-level λ > λk ≈ 1/k
can be assigned to distinct modes in M at f -level ≈ λ.
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• How k-NN graphs relate to f .
(with Chaudhuri, Dasgupta, von Luxburg, 2011, 2014)
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(with S. Dasgupta, 2014)
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(with H. Jiang, 2017)
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Estimating all modal sets of f .

Here: Regions of locally high-density ...
Point-modes (0-dimensional), and more general connected sets.

Related to topological data analysis

Manifold + noise, low-dimensional ridge, ... etc
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Key changes to previous procedure:

Estimating general modal-sets M :

M ≡ Region of IRd where f is locally maximal.
M̂ ≡ samples x s.t. |max fk − fk(x)| ≈ max fk/

√
k.

Needs local pruning! (Else some M̂ have wrong dimension).
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Key change in analysis:

f might not be smooth at boundary of M

However, if f is uniformly continuous on some B(M, r), then for
all x ∈ B(M, r),

L(d(x,M)) ≤ fM − f(x) ≤ U(d(x,M))

for some L(·), U(·) increasing on [0,∞), 0 at 0.
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Consistency

Theorem. The following holds w.h.p. Suppose M is r-salient. Let
n ≥ N(M, r). We recover an M̂ s.t.

dHausdorff(M̂,M) . L−1(fM/
√
k),

provided log n/L2(r) . k .
(
U−1(fM/

√
k)
)d
· n.

Similar pruning guarantees with a bit more work.
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Clustering procedure:

QuickShift ++

• Estimate modal-sets M1,M2, . . . ,MK ;

• Assign every point x (by gradient ascent) to some Mi:
Follow sample path x0 → x1 → x2 . . . Mi,
... xt+1 ≡ closest point to xt s.t. f̂(xt+1) > f̂(xt)
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More experiments on UCI datasets:

Data/ Algo DBSCAN MnShift QkShift QkShift++

seeds 0.4473 0.7319 0.6715 0.7261
0.4429 0.6769 0.6360 0.7085

phonemes 0.6333 0.5732 0.7653 0.7663
0.7280 0.5396 0.7954 0.8019

banknote 0.5584 0.2434 0.3318 0.6152
0.4594 0.2351 0.3397 0.4866

images 0.3313 0.3497 0.4077 0.5359
0.5264 0.4656 0.5364 0.6456

letters 0.0460 0.1506 0.1335 0.2128
0.2338 0.3457 0.3706 0.4122

page blocks 0.0132 0.0028 0.0925 0.4727
0.0578 0.0526 0.0397 0.2192

Clustering scores are: Mutual information, and Rand-Index.
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Sensitivity to tuning parameters.

(Blue) Mutual Information score, (Red) Rand-index score



, , , , , , , , , ,

We’ve started investigating related applications ...

- Medical imaging (detecting low-d structures).
- Image segmentation (detecting object boundaries).
- Internet of Things (outlier detection).
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Unsupervised Image Segmentation

Figure: Best tradeoff between over and under segmentation.
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Future questions:

• Adaptive (data-driven) choices of hyperparameters.

• High-dimensional clustering:
Feature selection, spectral and projection methods.

That’s all. Thanks!
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