Efficient and Optimal Modal-set Estimation using kNN graphs

Samory Kpotufe ORFE, Princeton University

Based on various results with Sanjoy Dasgupta, Kamalika Chaudhuri, Ulrike von Luxburg, Heinrich Jiang

Motivation:

Density-based Clustering: group points into high-density regions.

- Flexibility: can identify any number of rich structures in data.
- Clear ground truth: targets concrete mathematical objects.
- Many applications: medical imaging, text mining, speech, vision, ...

However: Heuristics work better than theoretical methods :(

We want a **practical** procedure with **theoretical** guarantees!

Motivation:

Density-based Clustering: group points into high-density regions.

- Flexibility: can identify any number of rich structures in data.
- Clear ground truth: targets concrete mathematical objects.
- Many applications: medical imaging, text mining, speech, vision, ...

However: Heuristics work better than theoretical methods :(We want a **practical** procedure with **theoretical** guarantees!

Motivation:

Density-based Clustering: group points into high-density regions.

- Flexibility: can identify any number of rich structures in data.
- Clear ground truth: targets concrete mathematical objects.
- Many applications: medical imaging, text mining, speech, vision, ...

However: Heuristics work better than theoretical methods :(

We want a **practical** procedure with **theoretical** guarantees!

Common idea: cluster data around high-density cores!

... Suppose the data $\{X_i\}_1^n \sim_{i.i.d.}$ some density f

DBSCAN: cores are Connected-Components of a level set λ of f. Problem: which level λ ?

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Common idea: cluster data around high-density cores! ... Suppose the data $\{X_i\}_1^n \sim_{i.i.d.}$ some density f

DBSCAN: cores are Connected-Components of a level set λ of f. Problem: which level λ ?

Common idea: cluster data around high-density cores! ... Suppose the data $\{X_i\}_1^n \sim_{i.i.d.}$ some density f

DBSCAN: cores are Connected-Components of a level set λ of f. Problem: which level λ ?

Common idea: cluster data around high-density cores! ... Suppose the data $\{X_i\}_1^n \sim_{i.i.d.}$ some density f

DBSCAN: cores are Connected-Components of a level set λ of f. Problem: which level λ ?

Common idea: cluster data around high-density cores! ... Suppose the data $\{X_i\}_1^n \sim_{i.i.d.}$ some density f

DBSCAN: cores are Connected-Components of a level set λ of f. Problem: which level λ ? (we can get \neq results)

Common idea: cluster data around high-density cores! ... Suppose the data $\{X_i\}_1^n \sim_{i.i.d.}$ some density f

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

MEAN-SHIFT: cores are *point-modes* (maxima) of *f*. **Problem:** unstable for general maxima ... hard to analyze.

Common idea: cluster data around high-density cores! ... Suppose the data $\{X_i\}_1^n \sim_{i.i.d.}$ some density f

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

MEAN-SHIFT: cores are *point-modes* (maxima) of *f*. **Problem:** unstable for general maxima ... hard to analyze

Common idea: cluster data around high-density cores! ... Suppose the data $\{X_i\}_1^n \sim_{i.i.d.}$ some density f

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

MEAN-SHIFT: cores are *point-modes* (maxima) of f. **Problem:** unstable for general maxima ... hard to analyze.

Common idea: cluster data around high-density cores! ... Suppose the data $\{X_i\}_1^n \sim_{i.i.d.}$ some density f

MEAN-SHIFT: cores are *point-modes* (maxima) of *f*. **Problem:** unstable for general maxima ... hard to analyze.

Practical and Optimal estimator of general maxima of density f.

Difficulty: unknown location, dimension, shape Side benefits: applies beyond clustering (e.g. manifold denoising).

Practical subroutines: we'll traverse a k-NN graph over $\{X_i\}$

Practical and Optimal estimator of general maxima of density f.

Difficulty: unknown location, dimension, shape

Side benefits: applies beyond clustering (e.g. manifold denoising).

Practical subroutines: we'll traverse a k-NN graph over $\{X_i\}$

Practical and Optimal estimator of general maxima of density f.

Difficulty: unknown location, dimension, shape Side benefits: applies beyond clustering (e.g. manifold denoising).

Practical subroutines: we'll traverse a k-NN graph over $\{X_i\}$

Practical and Optimal estimator of general maxima of density f.

Difficulty: unknown location, dimension, shape Side benefits: applies beyond clustering (e.g. manifold denoising).

Practical subroutines: we'll traverse a k-NN graph over $\{X_i\}$

- How *k*-NN graphs relate to *f*. (groundwork) (with Chaudhuri, Dasgupta, von Luxburg, 2011, 2014)
- Estimating all modes of *f*. (first intuition ...) (with S. Dasgupta, 2014)
- Estimating all modal sets of *f*. (final intuition □) (with H. Jiang, 2017)

- How *k*-NN graphs relate to *f*. (groundwork) (with Chaudhuri, Dasgupta, von Luxburg, 2011, 2014)
- Estimating all modes of *f*. (first intuition ...) (with S. Dasgupta, 2014)
- Estimating all modal sets of *f*. (final intuition □) (with H. Jiang, 2017)

- How *k*-NN graphs relate to *f*. (groundwork) (with Chaudhuri, Dasgupta, von Luxburg, 2011, 2014)
- Estimating all modes of *f*. (first intuition ...) (with S. Dasgupta, 2014)
- Estimating all modal sets of *f*. (final intuition □) (with H. Jiang, 2017)

Characterize f by its *cluster-tree* [Hartigan 81]:

- [Cha., Das. 10]: first consistent estimator (extends single-linkage).
- [Kpo., vLux. 11]: Simple k-NN subgraphs + stronger consistency.

Characterize *f* by its *cluster-tree* [Hartigan 81]:

- [Cha., Das. 10]: first consistent estimator (extends single-linkage).
- [Kpo., vLux. 11]: Simple k-NN subgraphs + stronger consistency.

Characterize *f* by its *cluster-tree* [Hartigan 81]:

- [Cha., Das. 10]: first consistent estimator (extends single-linkage).
- [Kpo., vLux. 11]: Simple k-NN subgraphs + stronger consistency.

Characterize *f* by its *cluster-tree* [Hartigan 81]:

- [Cha., Das. 10]: first consistent estimator (extends single-linkage).
- [Kpo., vLux. 11]: Simple *k*-NN subgraphs + stronger consistency.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Theo. Let f uniformly cont. + mild conditions on $k = \Omega(\log n)$. Let C_1, C_2 be disjoint CCs of some $\{f \ge \lambda\}$. W.p $\to 1$, $C_1 \cap X^n$ and $C_2 \cap X^n$ are in disjoint CCs of a k-NN subgraph.

・ロット (雪) (日) (日) (日)

ヘロン 人間 とくほと 人口 と

Practical problem: spurious CCs due to data variability.

Practical problem: spurious CCs due to data variability. **Reconnect** using careful lookups to lower subgraphs. Consistency of *Reconnect* shown in [Cha., Das., Kpo., vLux. 14]

Many new refinements by various authors ...

S. Balakrishnan, L. Wasserman, A. Rinaldo, I. Steinwart, M. Belkin, Y.C. Chen, F. Chazal, J. Klëmëla, ...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- How k-NN graphs relate to f. (with Chaudhuri, Dasgupta, von Luxburg, 2011, 2014)
- Estimating all **modes** of f.

(with S. Dasgupta, 2014)

• Estimating all **modal sets** of *f*.

(with H. Jiang, 2017)

Rate-Optimal: single mode case ([S. Tsybakov, 90] ...). **Practical:** mean-shift (hard to analyze ... see [Genovesee, ... Wasserman et.al., 13], [Arias-Castro et.al., 13] on consistency) We derive a rate-optimal estimator based on *k*-NN graphs ...

(日)、

Rate-Optimal: single mode case ([S. Tsybakov, 90] ...). **Practical:** mean-shift (hard to analyze ... see [Genovesee, ... Wasserman et.al., 13], [Arias-Castro et.al., 13] on consistency) We derive a rate-optimal estimator based on *k*-NN graphs

・ロト ・ 理ト ・ ヨト ・ ヨト

Rate-Optimal: single mode case ([S. Tsybakov, 90] ...). **Practical:** mean-shift (hard to analyze ... see [Genovesee, ... Wasserman et.al., 13], [Arias-Castro et.al., 13] on consistency) We derive a rate-optimal estimator based on *k*-NN graphs ...

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Rate-Optimal: single mode case ([S. Tsybakov, 90] ...). **Practical:** mean-shift (hard to analyze ... see [Genovesee, ... Wasserman et.al., 13], [Arias-Castro et.al., 13] on consistency)

We derive a rate-optimal estimator based on k-NN graphs ...

・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
Estimating all modes of f: What was known

Rate-Optimal: single mode case ([S. Tsybakov, 90] ...). **Practical:** mean-shift (hard to analyze ... see [Genovesee, ... Wasserman et.al., 13], [Arias-Castro et.al., 13] on consistency) We derive a rate-optimal estimator based on *k*-NN graphs ...

• k-NN density rates:

asymptotic $1/\sqrt{k}$ rates (e.g. [Biau, ..., Devroye et.al., 11]). We show high-prob. finite sample rates.

• Single mode:

Common estimator in theory: $\hat{x} = \arg \max_{x \in \mathbb{R}^d} \hat{f}(x)$. Practical estimator: $\tilde{x} = \arg \max_{x \in X_{1:n}} \hat{f}(x)$. Consistency of \tilde{x} [Abraham, Biau, Cadre, 04] We show that \tilde{x} is also minimax-optimal.

• Multiple modes:

Practical procedures (e.g. meanshift) are hard to analyze. Our procedure recovers *just* modes at optimal rates.

- 日本 - 1 日本 - 日本 - 日本

• *k*-NN density rates:

asymptotic $1/\sqrt{k}$ rates (e.g. [Biau, ..., Devroye et.al., 11]). We show high-prob. finite sample rates.

• Single mode:

Common estimator in theory: $\hat{x} = \arg \max_{x \in \mathbb{R}^d} f(x)$. Practical estimator: $\tilde{x} = \arg \max_{x \in X_{1:n}} \hat{f}(x)$. Consistency of \tilde{x} [Abraham, Biau, Cadre, 04] We show that \tilde{x} is also minimax-optimal.

• Multiple modes:

Practical procedures (e.g. meanshift) are hard to analyze. Our procedure recovers *just* modes at optimal rates.

- 日本 - 1 日本 - 日本 - 日本

• k-NN density rates:

asymptotic $1/\sqrt{k}$ rates (e.g. [Biau, ..., Devroye et.al., 11]). We show high-prob. finite sample rates.

Single mode:

Common estimator in theory: $\hat{x} = \arg \max_{x \in \mathbb{R}^d} \hat{f}(x)$.

Practical estimator: $\tilde{x} = \arg \max_{x \in X_{1:n}} f(x)$. Consistency of \tilde{x} [Abraham, Biau, Cadre, 04] We show that \tilde{x} is also minimax-optimal.

• Multiple modes:

Practical procedures (e.g. meanshift) are hard to analyze.

• k-NN density rates:

asymptotic $1/\sqrt{k}$ rates (e.g. [Biau, ..., Devroye et.al., 11]). We show high-prob. finite sample rates.

• Single mode:

Common estimator in theory: $\hat{x} = \arg \max_{x \in \mathbb{R}^d} \hat{f}(x)$. Practical estimator: $\tilde{x} = \arg \max_{x \in X_{1:n}} \hat{f}(x)$. Consistency of \tilde{x} [Abraham, Biau, Cadre, 04] We show that \tilde{x} is also minimax-optimal.

• Multiple modes:

Practical procedures (e.g. meanshift) are hard to analyze. Our procedure recovers *just* modes at optimal rates.

• k-NN density rates:

asymptotic $1/\sqrt{k}$ rates (e.g. [Biau, ..., Devroye et.al., 11]). We show high-prob. finite sample rates.

• Single mode:

Common estimator in theory: $\hat{x} = \arg \max_{x \in \mathbb{R}^d} \hat{f}(x)$. Practical estimator: $\tilde{x} = \arg \max_{x \in X_{1:n}} \hat{f}(x)$. Consistency of \tilde{x} [Abraham, Biau, Cadre, 04] We show that \tilde{x} is also minimax-optimal.

• Multiple modes:

Practical procedures (e.g. meanshift) are hard to analyze.

• k-NN density rates:

asymptotic $1/\sqrt{k}$ rates (e.g. [Biau, ..., Devroye et.al., 11]). We show high-prob. finite sample rates.

• Single mode:

Common estimator in theory: $\hat{x} = \arg \max_{x \in \mathbb{R}^d} \hat{f}(x)$. Practical estimator: $\tilde{x} = \arg \max_{x \in X_{1:n}} \hat{f}(x)$. Consistency of \tilde{x} [Abraham, Biau, Cadre, 04] We show that \tilde{x} is also minimax-optimal.

• Multiple modes:

Practical procedures (e.g. meanshift) are hard to analyze. Our procedure recovers *just* modes at optimal rates.

• k-NN density rates:

asymptotic $1/\sqrt{k}$ rates (e.g. [Biau, ..., Devroye et.al., 11]). We show high-prob. finite sample rates.

• Single mode:

Common estimator in theory: $\hat{x} = \arg \max_{x \in \mathbb{R}^d} \hat{f}(x)$. Practical estimator: $\tilde{x} = \arg \max_{x \in X_{1:n}} \hat{f}(x)$. Consistency of \tilde{x} [Abraham, Biau, Cadre, 04] We show that \tilde{x} is also minimax-optimal.

Multiple modes:

Practical procedures (e.g. meanshift) are hard to analyze.

Our procedure recovers *just* modes at optimal rates.

• k-NN density rates:

asymptotic $1/\sqrt{k}$ rates (e.g. [Biau, ..., Devroye et.al., 11]). We show high-prob. finite sample rates.

• Single mode:

Common estimator in theory: $\hat{x} = \arg \max_{x \in \mathbb{R}^d} \hat{f}(x)$. Practical estimator: $\tilde{x} = \arg \max_{x \in X_{1:n}} \hat{f}(x)$. Consistency of \tilde{x} [Abraham, Biau, Cadre, 04] We show that \tilde{x} is also minimax-optimal.

Multiple modes:

Practical procedures (e.g. meanshift) are hard to analyze. Our procedure recovers *just* modes at optimal rates. Sub-Outline:

• *k*-NN density rates

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Single mode rates
- Multiple modes rates

k-NN density estimate:

Define $r_k(x) \equiv$ distance from x to its kth neighbor in $X_{1:n}$.

$$f_k(x) \triangleq \frac{k}{n \cdot \operatorname{vol}\left(B(x, r_k(x))\right)} = \frac{k}{n \cdot v_d \cdot r_k(x)^d}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

k-NN density estimate:

Define $r_k(x) \equiv$ distance from x to its kth neighbor in $X_{1:n}$.

$$f_k(x) \triangleq \frac{k}{n \cdot \operatorname{vol}\left(B(x, r_k(x))\right)} = \frac{k}{n \cdot v_d \cdot r_k(x)^d}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Finite sample rates for f_k :

 $\mathsf{W}.\mathsf{p}>1-\delta\text{, simult. }\forall x\in\mathsf{supp}(f)\text{, }\forall\epsilon>0\text{,}$

$$\left(1 - \frac{C_{n,\delta}}{\sqrt{k}}\right)(f(x) - \epsilon) \le f_k(x) \le \left(1 + \frac{C_{n,\delta}}{\sqrt{k}}\right)(f(x) + \epsilon),$$

provided log $\mathbf{n} \lesssim \mathbf{k} \lesssim r(\epsilon, x)^d \cdot (\mathbf{f}(\mathbf{x}) - \epsilon) \cdot \mathbf{n}.$

 $r(\epsilon,x)\equiv \sup\,\{r: \text{ on } B(x,r), f(\cdot)\approx f(x)+\epsilon\}.$

 \therefore optimal (local) rates under smoothness conditions. If f is α -Hölder at x:

$$|f_k(x) - f(x)| = O\left(n^{-\alpha/(2\alpha+d)}\right), \quad \text{ for } k = \Theta(n^{2\alpha/(2\alpha+d)}).$$

・ロ・・日・・日・・日・・日・

Finite sample rates for f_k :

 $\mathsf{W}.\mathsf{p}>1-\delta\text{, simult. }\forall x\in\mathsf{supp}(f)\text{, }\forall\epsilon>0\text{,}$

$$\left(1 - \frac{C_{n,\delta}}{\sqrt{k}}\right)(f(x) - \epsilon) \le f_k(x) \le \left(1 + \frac{C_{n,\delta}}{\sqrt{k}}\right)(f(x) + \epsilon),$$

provided log $\mathbf{n} \lesssim \mathbf{k} \lesssim r(\epsilon, x)^d \cdot (\mathbf{f}(\mathbf{x}) - \epsilon) \cdot \mathbf{n}.$

 $r(\epsilon,x) \equiv \sup{\{r: \text{ on } B(x,r), f(\cdot) \approx f(x) + \epsilon\}}.$

 \therefore optimal (local) rates under smoothness conditions. If f is α -Hölder at x:

$$|f_k(x) - f(x)| = O\left(n^{-\alpha/(2\alpha+d)}\right), \text{ for } k = \Theta(n^{2\alpha/(2\alpha+d)}).$$

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ >

Finite sample rates for f_k :

 $\mathsf{W}.\mathsf{p}>1-\delta\text{, simult. }\forall x\in\mathsf{supp}(f)\text{, }\forall\epsilon>0\text{,}$

$$\left(1 - \frac{C_{n,\delta}}{\sqrt{k}}\right)(f(x) - \epsilon) \le f_k(x) \le \left(1 + \frac{C_{n,\delta}}{\sqrt{k}}\right)(f(x) + \epsilon),$$

provided log $\mathbf{n} \lesssim \mathbf{k} \lesssim r(\epsilon, x)^d \cdot (\mathbf{f}(\mathbf{x}) - \epsilon) \cdot \mathbf{n}.$

 $r(\epsilon,x) \equiv \sup{\{r: \text{ on } B(x,r), f(\cdot) \approx f(x) + \epsilon\}}.$

 \therefore optimal (local) rates under smoothness conditions. If f is α -Hölder at x:

$$|f_k(x) - f(x)| = O\left(n^{-\alpha/(2\alpha+d)}\right), \quad \text{ for } k = \Theta(n^{2\alpha/(2\alpha+d)}).$$

Sub-Outline:

- k-NN density rates
- Single mode rates

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Multiple modes rates

Most commonly studied $\hat{x} = \arg \max_{x \in \mathbb{R}^d} f_n(x)$

Recursive estimates (One sample at a time)

[L. Devroye 79], [S. Tsybakov, 90 (optimal for Hölder classes.)]

Direct estimates (no density estimation)

 $\tilde{x} = \arg \max_{x \in X_{1:n}} f_k(x) = \arg \min_{x \in X_{1:n}} r_k(x).$ (Consistency, [Abraham, Biau, Cadre, 04]) Most commonly studied $\hat{x} = \arg \max_{x \in \mathbb{R}^d} f_n(x)$

Recursive estimates (One sample at a time)

[L. Devroye 79], [S. Tsybakov, 90 (optimal for Hölder classes.)]

- 日本 - 1 日本 - 日本 - 日本

Direct estimates (no density estimation)

 $ilde{x} = rg \max_{x \in X_{1:n}} f_k(x) = rg \min_{x \in X_{1:n}} r_k(x).$ (Consistency, [Abraham, Biau, Cadre, 04]) Most commonly studied $\hat{x} = \arg \max_{x \in \mathbb{R}^d} f_n(x)$

Recursive estimates (One sample at a time)

[L. Devroye 79], [S. Tsybakov, 90 (optimal for Hölder classes.)]

Direct estimates (no density estimation)

 $\tilde{x} = \arg \max_{x \in X_{1:n}} f_k(x) = \arg \min_{x \in X_{1:n}} r_k(x).$ (Consistency, [Abraham, Biau, Cadre, 04]) **A.1 (local):** $x = \arg \max f(x)$, $\exists \nabla^2 f$ on B(x), $\nabla^2 f(x) \prec 0$. **A.2 (global):** level sets of f have single CC.

Theorem. Let $\tilde{x} = \arg \max_{x \in X_{1:n}} f_k(x)$. W.h.p. we have $\|\tilde{x} - x\| \lesssim k^{-1/4}$, provided $\ln n \lesssim k \lesssim n^{4/(4+d)}$.

Constants depend on f(x) and $\nabla^2 f(x)$. (OPTIMAL, see Tsyb.90)

A.1 (local): $x = \arg \max f(x)$, $\exists \nabla^2 f$ on B(x), $\nabla^2 f(x) \prec 0$. A.2 (global): level sets of f have single CC.

Theorem. Let $\tilde{x} = \arg \max_{x \in X_{1:n}} f_k(x)$. W.h.p. we have $\|\tilde{x} - x\| \lesssim k^{-1/4}$, provided $\ln n \lesssim k \lesssim n^{4/(4+d)}$.

Constants depend on f(x) and $\nabla^2 f(x)$. (OPTIMAL, see Tsyb.90)

Proof idea:

There is a sample point at distance ≤ optimal rate.
∇² f(x) ≺ 0 : ∃ a level set A_x:

 $c ||x - x'||^2 \le f(x) - f(x') \le C ||x - x'||^2$

・ロト・日本・モト・モート ヨー うへで

Proof idea:

- There is a sample point at distance \leq optimal rate.
- $\nabla^2 f(x) \prec 0$: \exists a level set A_x :

$$c \|x - x'\|^2 \le f(x) - f(x') \le C \|x - x'\|^2.$$

・ロト・日本・モト・モート ヨー うへで

Proof idea:

- There is a sample point at distance \leq optimal rate.
- $\nabla^2 f(x) \prec 0$: \exists a level set A_x :

 $c \|x - x'\|^2 \le f(x) - f(x') \le C \|x - x'\|^2.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 ${\small Sub-Outline:}$

- k-NN density rates
- Single mode rates

• Multiple modes rates

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Setup:

Modes: $\mathcal{M} \equiv \{x : \exists r > 0, \forall x' \in B(x, r), f(x') < f(x)\}$. A.1 (local) $\forall x \in \mathcal{M}, \exists \nabla^2 f \text{ on } B(x), \nabla^2 f(x) \prec 0$. A.2 (global) Any CC of any level set of f contains a mode in \mathcal{M} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

ALGO: As f_k goes down, pick a new mode as a new *bump* appears.

Identifying CCs of level sets:

CCs of subgraphs of a k-NN graph [Chau., Das., Kpo., v Lux., 14] How to identify false modes in f_k ? Remove all *bumps* of height $\leq |f_k - f| \approx 1/\sqrt{k}$.

ALGO: As f_k goes down, pick a new mode as a new *bump* appears.

Identifying CCs of level sets:

CCs of subgraphs of a *k*-NN graph [Chau., Das., Kpo., v Lux., 14] How to identify false modes in f_k ? Remove all *bumps* of height $\leq |f_k - f| \approx 1/\sqrt{k}$.

ALGO: As f_k goes down, pick a new mode as a new *bump* appears.

Identifying CCs of level sets:

CCs of subgraphs of a k-NN graph [Chau., Das., Kpo., v Lux., 14] How to identify false modes in f_k ? Remove all *bumps* of height $\leq |f_k - f| \approx 1/\sqrt{k}$.

Identifying good modes

x is r-salient: separated from other modes by valley of thickness r.

Theorem. Suppose $x \in \mathcal{M}$ is *r*-salient. Let $n \ge N(x)$. W.h.p. $\exists \tilde{x} \in \mathcal{M}_n$ s.t.

 $\|\tilde{x} - x\| \lesssim k^{-1/4}$, provided $\ln n/r^4 \lesssim k \lesssim n^{4/(4+d)}$.

Constants depend on f(x) and $\nabla^2 f(x)$.

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

Identifying good modes

x is r-salient: separated from other modes by valley of thickness r.

Theorem. Suppose $x \in \mathcal{M}$ is *r*-salient. Let $n \ge N(x)$. W.h.p. $\exists \tilde{x} \in \mathcal{M}_n$ s.t.

 $\|\tilde{x} - x\| \lesssim k^{-1/4}$, provided $\ln n/r^4 \lesssim k \lesssim n^{4/(4+d)}$.

Constants depend on f(x) and $\nabla^2 f(x)$.

Identifying good modes

x is r-salient: separated from other modes by valley of thickness r.

Theorem. Suppose $x \in \mathcal{M}$ is *r*-salient. Let $n \ge N(x)$. W.h.p. $\exists \tilde{x} \in \mathcal{M}_n$ s.t.

 $\|\tilde{x} - x\| \lesssim k^{-1/4}$, provided $\ln n/r^4 \lesssim k \lesssim n^{4/(4+d)}$.

Constants depend on f(x) and $\nabla^2 f(x)$.

Pruning bad modes

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem 4. Suppose f is Lipschitz. Let $k \ge \ln n$. All modes in \mathcal{M}_n at f_k -level $\lambda > \lambda_k \approx 1/k$ can be assigned to *distinct* modes in \mathcal{M} at f-level $\approx \lambda$.

Outline:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- How k-NN graphs relate to f. (with Chaudhuri, Dasgupta, von Luxburg, 2011, 2014)
- Estimating all modes of f.

(with S. Dasgupta, 2014)

• Estimating all **modal sets** of *f*.

(with H. Jiang, 2017)

Estimating all modal sets of f.

Here: Regions of locally high-density ...

Point-modes (0-dimensional), and more general connected sets.

・ロト ・四ト ・ヨト ・ヨ

Related to topological data analysis Manifold + noise, low-dimensional ridge, ... etc

Estimating all modal sets of f.

Here: **Regions** of locally high-density ... Point-modes (0-dimensional), and more general connected sets.

- 日本 - 1 日本 - 日本 - 日本

Related to topological data analysis Manifold + noise, low-dimensional ridge, ... etc
Estimating all modal sets of f.

Here: **Regions** of locally high-density ... Point-modes (0-dimensional), and more general connected sets.

Related to topological data analysis

Manifold + noise, low-dimensional ridge, ... etc

Estimating general modal-sets M:

 $M \equiv$ Region of \mathbb{R}^d where f is locally maximal. $\widehat{M} \equiv$ samples x s.t. $|\max f_k - f_k(x)| \approx \max f_k / \sqrt{k}$.

Needs local pruning! (Else some \widehat{M} have wrong dimension).

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Estimating general modal-sets *M*:

 $M \equiv$ Region of \mathbb{R}^d where f is locally maximal. $\widehat{M} \equiv$ samples x s.t. $|\max f_k - f_k(x)| \approx \max f_k / \sqrt{k}$.

Needs local pruning! (Else some \widehat{M} have wrong dimension).

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへで

Estimating general modal-sets *M*:

 $M \equiv$ Region of \mathbb{R}^d where f is locally maximal. $\widehat{M} \equiv$ samples x s.t. $|\max f_k - f_k(x)| \approx \max f_k/\sqrt{k}$.

Needs local pruning! (Else some \widehat{M} have wrong dimension).

Estimating general modal-sets *M*:

 $M \equiv$ Region of \mathbb{R}^d where f is locally maximal. $\widehat{M} \equiv$ samples x s.t. $|\max f_k - f_k(x)| \approx \max f_k/\sqrt{k}$.

Needs local pruning! (Else some \widehat{M} have wrong dimension).

・ロト ・ 母ト ・ ヨト ・ ヨト

Key change in analysis:

f might not be smooth at boundary of M

However, if f is uniformly continuous on some B(M, r), then for all $x \in B(M, r)$,

$L(d(x,M)) \le f_M - f(x) \le U(d(x,M))$

for some $L(\cdot), U(\cdot)$ increasing on $[0, \infty)$, 0 at 0.

Key change in analysis:

f might not be smooth at boundary of M

However, if f is uniformly continuous on some B(M,r), then for all $x \in B(M,r)$,

 $L(d(x,M)) \le f_M - f(x) \le U(d(x,M))$

for some $L(\cdot), U(\cdot)$ increasing on $[0, \infty)$, 0 at 0.

Key change in analysis:

f might not be smooth at boundary of M

However, if f is uniformly continuous on some B(M,r), then for all $x\in B(M,r),$

 $L(d(x,M)) \le f_M - f(x) \le U(d(x,M))$

for some $L(\cdot), U(\cdot)$ increasing on $[0, \infty)$, 0 at 0.

Theorem. The following holds w.h.p. Suppose M is r-salient. Let $n \ge N(M, r)$. We recover an \widehat{M} s.t.

$$\begin{split} &d_{\mathsf{Hausdorff}}(\widehat{M}, M) \lesssim L^{-1}(f_M/\sqrt{k}), \\ &\text{provided log } \mathbf{n}/L^2(r) \lesssim \mathbf{k} \lesssim \left(U^{-1}(f_M/\sqrt{k})\right)^d \cdot \mathbf{n}. \end{split}$$

Theorem. The following holds w.h.p. Suppose M is r-salient. Let $n \ge N(M, r)$. We recover an \widehat{M} s.t.

 $d_{\text{Hausdorff}}(\widehat{M}, M) \lesssim L^{-1}(f_M/\sqrt{k}),$ provided log $\mathbf{n}/L^2(r) \lesssim \mathbf{k} \lesssim \left(U^{-1}(f_M/\sqrt{k})\right)^d \cdot \mathbf{n}.$

Theorem. The following holds w.h.p. Suppose M is r-salient. Let $n \ge N(M, r)$. We recover an \widehat{M} s.t.

$$\begin{split} &d_{\mathsf{Hausdorff}}(\widehat{M},M) \lesssim L^{-1}(f_M/\sqrt{k}), \\ &\text{provided log } \mathbf{n}/L^2(r) \lesssim \mathbf{k} \lesssim \left(U^{-1}(f_M/\sqrt{k})\right)^d \cdot \mathbf{n}. \end{split}$$

Theorem. The following holds w.h.p. Suppose M is r-salient. Let $n \ge N(M, r)$. We recover an \widehat{M} s.t.

$$\begin{split} &d_{\mathsf{Hausdorff}}(\widehat{M},M) \lesssim L^{-1}(f_M/\sqrt{k}), \\ &\text{provided log } \mathbf{n}/L^2(r) \lesssim \mathbf{k} \lesssim \left(U^{-1}(f_M/\sqrt{k})\right)^d \cdot \mathbf{n}. \end{split}$$

Clustering procedure:

QuickShift ++

- Estimate modal-sets M_1, M_2, \ldots, M_K ;
- Assign every point x (by gradient ascent) to some M_i : Follow sample path $x_0 \rightarrow x_1 \rightarrow x_2 \dots \rightarrow M_t$, $\dots x_{t+1} \equiv$ closest point to x_t s.t. $f(x_{t+1}) > f(x_t)$

Clustering procedure:

QuickShift ++

- Estimate modal-sets M_1, M_2, \ldots, M_K ;
- Assign every point x (by gradient ascent) to some M_i : Follow sample path $x_0 \to x_1 \to x_2 \ldots \rightsquigarrow M_i$,

... $x_{t+1} \equiv \text{closest point to } x_t \text{ s.t. } f(x_{t+1}) > f(x_t)$

Clustering procedure:

QuickShift ++

- Estimate modal-sets M_1, M_2, \ldots, M_K ;
- Assign every point x (by gradient ascent) to some M_i: Follow sample path x₀ → x₁ → x₂... → M_i, ... x_{t+1} ≡ closest point to x_t s.t. f(x_{t+1}) > f(x_t)

More experiments on UCI datasets:

Data/ Algo	DBSCAN	MnShift	QkShift	QkShift++
seeds	0.4473	0.7319	0.6715	0.7261
	0.4429	0.6769	0.6360	0.7085
phonemes	0.6333	0.5732	0.7653	0.7663
	0.7280	0.5396	0.7954	0.8019
banknote	0.5584	0.2434	0.3318	0.6152
	0.4594	0.2351	0.3397	0.4866
images	0.3313	0.3497	0.4077	0.5359
	0.5264	0.4656	0.5364	0.6456
letters	0.0460	0.1506	0.1335	0.2128
	0.2338	0.3457	0.3706	0.4122
page blocks	0.0132	0.0028	0.0925	0.4727
	0.0578	0.0526	0.0397	0.2192

Clustering scores are: Mutual information, and Rand-Index.

Sensitivity to tuning parameters.

(Blue) Mutual Information score, (Red) Rand-index score

▲□▶ ▲□▶ ▲注▶ ▲注▶ ……注: のへ(?).

We've started investigating related applications ...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Medical imaging (detecting low-d structures).
- Image segmentation (detecting object boundaries).
- Internet of Things (outlier detection).

We've started investigating related applications ...

- Medical imaging (detecting low-*d* structures).
- Image segmentation (detecting object boundaries).
- Internet of Things (outlier detection).

Unsupervised Image Segmentation

Figure: Best tradeoff between over and under segmentation.

- Adaptive (data-driven) choices of hyperparameters.
- High-dimensional clustering: Feature selection, spectral and projection methods.

That's all. Thanks!

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- Adaptive (data-driven) choices of hyperparameters.
- High-dimensional clustering: *Feature selection, spectral and projection* methods.

That's all. Thanks!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Adaptive (data-driven) choices of hyperparameters.
- High-dimensional clustering: Feature selection, spectral and projection methods.

That's all. Thanks!

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Adaptive (data-driven) choices of hyperparameters.
- High-dimensional clustering: Feature selection, spectral and projection methods.

That's all. Thanks!

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ