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Econometrica, Vol. 69, No. 6 (November, 2001), 1519-1554 

LAG LENGTH SELECTION AND THE CONSTRUCTION OF 
UNIT ROOT TESTS WITH GOOD SIZE AND POWER 

BY SERENA NG AND PIERRE PERRON1 

It is widely known that when there are errors with a moving-average root close to -1, 
a high order augmented autoregression is necessary for unit root tests to have good size, 
but that information criteria such as the AIC and the BIC tend to select a truncation lag 
(k) that is very small. We consider a class of Modified Information Criteria (MIC) with 
a penalty factor that is sample dependent. It takes into account the fact that the bias in 
the sum of the autoregressive coefficients is highly dependent on k and adapts to the type 
of deterministic components present. We use a local asymptotic framework in which the 
moving-average root is local to -1 to document how the MIC performs better in selecting 
appropriate values of k. In Monte-Carlo experiments, the MIC is found to yield huge size 
improvements to the DFGLS and the feasible point optimal PT test developed in Elliott, 
Rothenberg, and Stock (1996). We also extend the M tests developed in Perron and Ng 
(1996) to allow for GLS detrending of the data. The MIC along with GLS detrended data 
yield a set of tests with desirable size and power properties. 

KEYWORDS: Integrated processes, truncation lag, GLS detrending, information 
criteria. 

1. INTRODUCTION 

MANY UNIT ROOT TESTS have been developed for testing the null hypothesis of 
a unit root against the alternative of stationarity. While the presence or absence 
of a unit root has important implications, many remain skeptical about the con- 
clusions drawn from such tests. This concern is justifiable, as these tests gener- 
ally suffer from two problems. First, many tests have low power when the root 
of the autoregressive polynomial is close to but less than unity (e.g., DeJong et 
al. (1992)). Second, the majority of the tests suffer from severe size distortions 
when the moving-average polynomial of the first differenced series has a large 
negative root (e.g., Schwert (1989), Perron and Ng (1996)). Although less severe, 
the problem also arises when there is a large negative autoregressive root in the 
residuals. The consequence is over-rejections of the unit root hypothesis. While 
few economic time series are found to have negative serial correlation of the 
autoregressive type, many do exhibit a large negative moving-average root. The 
inflation rate is an example, and omitted outliers have also been shown to induce 

'This is a substantially revised version of a paper previously circulated as "Constructing Unit 
Root Tests with Good Size and Power." We thank three anonymous referees and Alain Monfort, 
the co-editor, for comments on earlier drafts. The authors thank the Social Sciences and Humanities 
Research Council of Canada (SSHRC), the Natural Sciences and Engineering Research Council of 
Canada (NSERC), and the Fonds de la Formation de Chercheurs et l'Aide a la Recherche du Quebec 
(FCAR) for financial support. 
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a negative moving average root in the error process (e.g., Franses and Haldrup 
(1994)). It is therefore desirable to have powerful unit root tests that are robust 
to size distortions. 

The implementation of unit root tests often necessitates the selection of an 
autoregressive truncation lag, say, k. This is required in the autoregression used 
to form the Said-Dickey-Fuller test. It is also required in constructing an autore- 
gressive estimate of the spectral density at frequency zero. However, simulations 
have repeatedly shown a strong association between k and the severity of size dis- 
tortions and/or the extent of power loss (e.g., Ng and Perron (1995), and Lopez 
(1997)). To date, there exists no operational procedure for selecting k that yields 
robust and satisfactory results. The problem is that while a small k is adequate 
for finite order autoregressive errors and ARIA processes with small moving- 
average components, a large k is generally necessary for noise functions with a 
moving-average root that is large. For the latter class of models, selection rules 
such as the Schwarz or Bayesian Information Criterion (BIC) and the Akaike 
Information Criterion (AIC) tend to select values of k that are generally too 
small for unit root tests to have good sizes. 

This paper sets out to resolve two problems. One is to enhance the power of 
several tests that have been shown to have small size distortions. More precisely, 
in Perron and Ng (1996), we analyzed a class of modified tests, originally pro- 
posed by Stock (1990), and showed that these tests are far more robust to size 
distortions than other unit root tests in the literature when the residuals have neg- 
ative serial correlation. Exploiting the findings in Elliott, Rothenberg, and Stock 
(1996) (hereafter ERS) and Dufour and King (1991) that local GLS detrending 
of the data yields substantial power gains, we apply the idea of GLS detrending 
to the modified tests and show that non-negligible size and power gains can be 
made when used in conjunction with an autoregressive spectral density estimator 
at frequency zero provided the truncation lag is appropriately selected. 

Our second task is to provide an improved procedure for choosing the trun- 
cation lag. We argue that the penalty of k assigned to overfitting in information 
criteria such as the AIC under-estimates the cost of a low order model when the 
unit root process has a negative moving-average root and, hence, tends to select 
a lag length that is too small. We suggest a class of modified information criteria 
that takes better account of the cost of underfitting. The modified AIC is shown 
to lead to substantial size improvements over standard information criteria in 
all the unit root tests considered. Taking the two steps together, GLS detrend- 
ing along with the selection rule for k provide procedures which allow for the 
construction of unit root tests with much improved size and power. Additionally, 
using GLS detrended data to estimate the spectral density at frequency zero is 
found to have favorable size and power implications. 

The paper proceeds as follows. After setting up the preliminaries in Section 2, 
Section 3 considers the class of M tests with GLS detrending. Section 4 explains 
why information criteria will underestimate k and Section 5 proposes an alterna- 
tive penalty factor in the context of integrated data. Section 6 presents the prop- 
erties of the modified information criteria using a local asymptotic framework 



LAG LENGTH SELECTION 1521 

and shows why the AIC version is preferable. Simulation results are presented 
in Section 7, and the procedures are illustrated using inflation rates for the G7 
countries in Section 8. Section 9 offers brief concluding remarks. Mathematical 
derivations are given in the Appendix. 

2. PRELIMINARIES 

We assume that we have T + 1 observations generated by (for t = O, ... , T): 

(1) Yt = dt + ut, ut = atut-, + vt, 

where E(u2) < oo (even as T oo), vt = 6(L)et = Z7o0 61et_ with EZ- o j I5jI < oo 
and {et} i.i.d. (0, e2). The non-normalized spectral density at frequency zero of 
vt is given by a-2 = (oe2Q(1)2. Also, T-1/2 Et111 vt =X> SW(s), where =X denotes weak 
convergence in distribution and W(s) is a Wiener process defined on C[O, 1]. 
In (1), dt = O'zt, where zt is a set of deterministic components. We consider 

d'= P=o qit', with special focus on p = 0, 1, though the analysis remains valid 
for more general cases.2 Of interest is testing the null hypothesis a = 1 against 
a < 1. The DF test due to Dickey and Fuller (1979) and Said and Dickey (1984) 
is the t statistic for go = 0 in the autoregression: 

k 

(2) Ayt = dt + PoYt-i + E pjAYt-j + etk. 

j=1 

In Perron and Ng (1996), we analyzed the properties of three tests: MZa, MZt, 
and MSB, collectively referred to as the M tests. These are defined as (for the 
no deterministic term case): 

(3) MZ.a = (T1YT SAR)(2T Yt-1) 

T \1/2 
(4) MSB = T-2 E yt2 /S2) 1/ 

t=1 

and MZt = MZa x MSB. All three tests are based on S2R, an autoregressive 
estimate of the spectral density at frequency zero of vt. Let /(1) = Z$1 f, 60 = 

(T - k)-1 T=k?e e, with f3i and {etk} obtained from (2) estimated by OLS. Then, 

(5) S2R = Sk2/(_ - /(1))2. 

The M tests for p = 0 and 1 can be obtained upon replacing Yt-i and YT by the 
residuals obtained from least squares detrending. The MZa and MZt tests can be 

2 Most of the results presented here, in particular Theorem 1 below, hold with the less restrictive 
assumption that {et} is a martingale difference sequence with respect to the sigma algebra c = 

{es; s < t} with o = limI<: T1 Zt,1 E(etIlt_). 
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viewed as modified versions of the Phillips (1987) and Phillips-Perron (1988) Za 
and Zt tests, referred to as the Z tests below (see Perron and Ng (1998)). The Z 
tests suffer from severe size distortions when vt has a negative moving-average 
root. When the root is close to minus one (e.g., -.8), the rejection rate can be 
as high as 100% (see Schwert (1989)). Perron and Ng (1996) showed that the M 
tests have dramatically smaller size distortions than most (if not all) unit root tests 
in the literature in cases of negative moving-average errors if the autoregressive 
spectral density estimator defined above is used in conjunction with a suitably chosen 
k. The three M tests have similar properties and we use MZa for illustration. 

3. THE TESTS UNDER GLS DETRENDING 

To improve power, ERS proposed local to unity GLS detrending of the data. 
For any series {xt}[=0, define (xO, xt) = (xo, (1 - aL)xt), t = 1, . . . , T, for some 
chosen a- = 1 + c/T. The GLS detrended series is defined as 

(6) Yt Yt -z 

where & minimizes S(a-, f) = (y" - q'z )a(ya - q'za). If v, is i.i.d. normal, the 
point optimal test of the null hypothesis a = 1 against the alternative hypothesis 

a = a is the likelihood ratio statistic, L = S(a) - S(1), where S(d) = mind, S( -, /). 
ERS considered a feasible point optimal test that takes into account that vt may 
be serially correlated. The statistic is 

(7) PT = [S( ) - SM11SAR, 

where S2R is defined as in (5). The value of c is chosen such that the asymptotic 
local power function of the test is tangent to the power envelope at 50% power. 
For p = 0 this is -7.0 and for p = 1, it is -13.5. The PT test did not perform 
well in simulations when k was selected by the BIC. Large size distortions were 
recorded. ERS then recommended the DFGLs statistic (whose local asymptotic 
power function also lies close to the Gaussian local power envelope) as the t- 
statistic for testing go = 0 from the following regression estimated by OLS: 

k 

(8) A5t = foit-1 + E fi tA j + etk. 

j=1 

3.1. The MGLs Tests 

While the power gains of the DFGLs from using GLS detrended data are 
impressive, simulations also show that the test exhibits strong size distortions 
when vt is an MA(1) with a negative coefficient. For T = 100, ERS report rejec- 
tion rates of 30 and 50% for p = 0 and 1, respectively, when the nominal rate is 
5%. An explanation is provided in Section 4. Size distortions, however, are less 
of an issue with the M tests in theory as we showed in Perron and Ng (1996). 
In practice, it does require us to have a way to find the appropriate k. Suppose 
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for the moment that this lag length selection problem is solved. Since the power 
gains from the DFGLS over the DF come from the use of GLS detrended data, 
it is natural to consider the M tests under GLS detrending. We now state the 
asymptotic properties of the MGLS tests. 

THEOREM 1: Let Yt be generated as in (1) with a = 1 + c/T and consider 
data obtained from local GLS detrending at a- = 1 + c/T. Also, let s 2 be a 
consistent estimate of (J2. If p = 0, MZGLs =X 0.5(Jc(1)2 - )(fg Jc(r)2dr) - and 
MSBGLS X, (f J (r)2dr) 1/2. If p = 1, MZ_LS 0.5(VC15(1)2 - 1)(fo V1 , (r)2dr)1 
and MSBGLS X (f0 J, 5(r)2dr)1/2, where Jj(r) is an Ornstein-Uhlenbeck process 
defined by dJc(r) = cJc(r)dr+dW(r) with Jc(0) = 0, and Vc, (r) = Jc(r) - 

r[AJC(1) + 3(1-A) f01 sJc (s) ds], A = (1-C)/(1-c ? c2/3). Results for MZGLs can 
be obtained in view of the fact that MZGLs = MZGLS x MSBGLs. 

The proof is based on standard results for sample moments of GLS detrended 
data and therefore omitted. The MZGLS, MZGLS, and MSBGLS have similar size 
and power properties and will be referred to as the MGLS tests. We have com- 
puted, via simulations, the local asymptotic power functions of the M tests with 
OLS and GLS detrending. These showed the MGLS tests to be uniformly more 
powerful than the M tests and also to have local asymptotic power functions 
that are indistinguishable from those of the DFGLS and the Gaussian asymptotic 
local power envelope. A graph is therefore not presented. The important point 
is that the MGLS tests, like the DFGLS, achieve local asymptotic power that is 
approximately the same as the feasible point-optimal test. We also consider two 
modified feasible point optimal tests and derive their limiting distributions: 

(9) p =0: MPT = [T E Y1 - CT-] /SAR 
t=1 

X C2 f JC(r)2dr - C J (1)2 

p=1: MPLS = [2T2 Et2_+(1-c)T Y]T/SAR 

X V2 G -(r)2dr + (1 -c cV, cl 

These tests are based on the same motivation that leads to the definition of the 
M tests in Stock (1990), namely, to provide functionals of samp-le moments that 
have the same asymptotic distributions as well known unit root tests. The MPT 
is important because its limiting distribution coincides with that of the feasible 
point optimal test considered in ERS. 

Critical values for the limiting distributions of the MGLS tests were obtained 
by numerical simulations that approximate the Wiener process W(r) by partial 
sums of N(0, 1) random variables with 5,000 steps and 20,000 simulations. These 
are summarized in Table I. 
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TABLE I 

ASYMPTOTIC CRITICAL VALUESa 

Percentile MZGLS MZGLS, ADFGLS MSBGLS pGLS MpGLS a t ~~ ~~~~~T T 

Case: p= 0, C= -7.0 
.01 -13.8 -2.58 .174 1.78 
.05 -8.1 -1.98 .233 3.17 
.10 -5.7 -1.62 .275 4.45 

Case: p= 1, C=-13.5 
.01 -23.8 -3.42 .143 4.03 
.05 -17.3 -2.91 .168 5.48 
.10 -14.2 -2.62 .185 6.67 

aFor MZGLS, MZGLS, and ADFGLS with p = 0, the critical values are from Fuller 
(1976). The other entries were obtained using 20,000 simulations and 5,000 steps to approx- 
imate the Wiener processes. 

3.2. The Construction of the Autoregressive Spectral Density 
Estimator and the MGLS 

All that is required for Theorem 1 and the results of ERS to hold is that 
SAR converges to u2 under the null hypothesis of a unit root, and for the tests 
to be consistent, that TS2R diverges under the alternative of stationarity. The 
attractiveness of GLS detrending is that it estimates the deterministic function 
with more precision and leads to reduced bias in f3i. Since this should lead to a 
more precise estimate of /3(1), we also consider estimating 5AR using the autore- 
gression (8) based on GLS detrended data. An additional advantage is that this 
estimator is invariant to the slope of the trend function.3 Experimentation with 
different values of c when constructing the autoregressive spectral density gave 
similar results. Hence, c = -7.0 and -13.5 will continue to be used. The tests so 
constructed are denoted ZGLS and MGLS. These are to be distinguished from the 
ZGLS and MGLS statistics that use least squares detrended data to estimate S2R 

4. THE SIZE ISSUE, THE SELECTION OF k, AND 

INFORMATION CRITERIA 

To see the influence of the lag order k, we consider the finite sample size of 
the tests MZaLS, DFGLS, and ZGLS. The setup, which will be used throughout, 
is to consider data generated by (1) with a = 1 and Vt either an MA(1), i.e. 
vt = et + Oet_1, or an AR(1), i.e. vt = pvt1 + et, with et - i.i.d. N(O, 1). The 
errors are generated from the rndn( function in Gauss with 999 as the seed, and 
5,000 replications are used. We use the nominal size of 5% as the benchmark. 

3 When p = 1, Perron and Ng (1996), Stock (1990), and ERS estimate equation (2) with only a 
constant by ordinary least-squares. This still ensures a consistent estimate under the null hypothesis 
but the omission of the trend term implies a noninvariance with respect to the slope of the trend 
function in finite samples under the alternative hypothesis. This noninvariance is such that the tests 
lose power as the slope increases. 
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TABLE II.A 

EXACT SIZE OF THE TESTS AT SELECTED VALUES OF k: p = 0 

MA Case T 0 k =0 1 2 3 4 5 6 7 8 9 10 

100 -0.8 0.994 0.904 0.808 0.740 0.698 0.672 0.654 0.644 0.636 0.633 0.627 
zGLS -0.5 0.618 0.322 0.224 0.193 0.176 0.181 0.182 0.192 0.197 0.207 0.216 

0.0 0.072 0.082 0.089 0.104 0.112 0.125 0.137 0.152 0.164 0.179 0.190 
0.5 0.010 0.143 0.056 0.116 0.100 0.129 0.135 0.153 0.158 0.179 0.187 
0.8 0.006 0.172 0.036 0.147 0.071 0.155 0.108 0.166 0.138 0.188 0.169 

250 -0.8 0.987 0.861 0.725 0.641 0.592 0.559 0.539 0.524 0.515 0.507 0.504 
-0.5 0.553 0.258 0.166 0.124 0.112 0.110 0.106 0.112 0.111 0.115 0.116 

0.0 0.060 0.062 0.063 0.066 0.069 0.075 0.077 0.081 0.087 0.087 0.092 
0.5 0.008 0.111 0.047 0.080 0.065 0.077 0.076 0.083 0.084 0.091 0.095 
0.8 0.004 0.145 0.030 0.108 0.049 0.099 0.062 0.096 0.074 0.100 0.085 

100 -0.8 0.990 0.828 0.543 0.319 0.187 0.129 0.095 0.086 0.079 0.077 0.078 
MzGLS -0.5 0.595 0.241 0.126 0.097 0.084 0.092 0.097 0.106 0.120 0.132 0.141 

0.0 0.065 0.070 0.082 0.095 0.104 0.119 0.130 0.145 0.158 0.172 0.185 
0.5 0.008 0.139 0.054 0.113 0.097 0.126 0.132 0.150 0.156 0.176 0.186 
0.8 0.004 0.168 0.035 0.143 0.068 0.153 0.106 0.164 0.136 0.186 0.168 

250 -0.8 0.987 0.828 0.597 0.407 0.260 0.166 0.107 0.075 0.055 0.044 0.035 
-0.5 0.545 0.227 0.121 0.081 0.067 0.063 0.062 0.066 0.070 0.071 0.074 

0.0 0.058 0.059 0.061 0.064 0.066 0.072 0.076 0.079 0.084 0.084 0.088 
0.5 0.008 0.110 0.045 0.078 0.064 0.076 0.075 0.082 0.083 0.090 0.095 
0.8 0.004 0.145 0.029 0.108 0.048 0.099 0.061 0.095 0.074 0.100 0.084 

100 -0.8 0.991 0.843 0.624 0.455 0.322 0.243 0.187 0.157 0.129 0.114 0.104 
DFGLS -0.5 0.605 0.263 0.147 0.108 0.089 0.087 0.081 0.079 0.076 0.078 0.075 

0.0 0.073 0.070 0.072 0.074 0.072 0.072 0.070 0.070 0.071 0.074 0.073 
0.5 0.010 0.124 0.046 0.081 0.063 0.075 0.074 0.077 0.078 0.075 0.071 
0.8 0.005 0.150 0.030 0.107 0.043 0.089 0.054 0.082 0.059 0.080 0.064 

250 -0.8 0.985 0.823 0.613 0.449 0.332 0.247 0.194 0.155 0.128 0.109 0.099 
-0.5 0.535 0.227 0.123 0.084 0.068 0.064 0.062 0.062 0.061 0.058 0.060 

0.0 0.057 0.054 0.054 0.053 0.056 0.055 0.058 0.058 0.056 0.055 0.054 
0.5 0.009 0.103 0.043 0.070 0.055 0.061 0.057 0.058 0.057 0.060 0.060 
0.8 0.004 0.133 0.027 0.090 0.039 0.074 0.046 0.068 0.049 0.065 0.051 

AR Case T p k =0 1 2 3 4 5 6 7 8 9 10 

100 -0.8 0.802 0.286 0.286 0.295 0.300 0.308 0.314 0.322 0.328 0.340 0.346 
zGLS 0.8 0.000 0.102 0.115 0.135 0.143 0.158 0.172 0.191 0.201 0.217 0.226 

250 -0.8 0.737 0.170 0.171 0.171 0.173 0.176 0.179 0.182 0.185 0.184 0.183 
0.8 0.000 0.069 0.071 0.077 0.082 0.084 0.090 0.094 0.093 0.099 0.100 

100 -0.8 0.784 0.027 0.035 0.050 0.065 0.081 0.089 0.113 0.120 0.140 0.149 
MZ?GLS 0.8 0.000 0.100 0.114 0.134 0.142 0.157 0.170 0.190 0.199 0.216 0.225 

250 -0.8 0.730 0.043 0.041 0.047 0.048 0.050 0.058 0.062 0.064 0.071 0.071 
0.8 0.000 0.069 0.071 0.077 0.082 0.084 0.090 0.094 0.092 0.099 0.100 

100 -0.8 0.791 0.073 0.074 0.077 0.079 0.080 0.076 0.081 0.075 0.083 0.078 
DFGLS 0.8 0.000 0.066 0.070 0.069 0.068 0.069 0.071 0.072 0.071 0.077 0.079 

250 -0.8 0.718 0.057 0.054 0.056 0.054 0.055 0.057 0.057 0.057 0.059 0.058 
0.8 0.000 0.059 0.061 0.063 0.062 0.060 0.060 0.060 0.058 0.058 0.054 
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TABLE II.B 

EXACT SIZE OF THE TESTS AT SELECTED VALUES OF k: p = 1 

MA Case T 0 k = 0 1 2 3 4 5 6 7 8 9 10 

100 -0.8 1.000 0.994 0.965 0.940 0.918 0.906 0.893 0.888 0.882 0.882 0.883 
zGLS -0.5 0.810 0.470 0.340 0.299 0.290 0.309 0.323 0.358 0.376 0.413 0.450 

0.0 0.053 0.076 0.100 0.136 0.169 0.222 0.259 0.313 0.346 0.400 0.430 
0.5 0.001 0.169 0.059 0.163 0.155 0.226 0.253 0.303 0.343 0.397 0.432 
0.8 0.001 0.219 0.023 0.229 0.091 0.284 0.190 0.350 0.297 0.422 0.389 

250 -0.8 1.000 0.992 0.960 0.927 0.899 0.875 0.859 0.848 0.839 0.833 0.830 
-0.5 0.801 0.404 0.253 0.202 0.181 0.174 0.176 0.179 0.188 0.199 0.209 

0.0 0.047 0.057 0.064 0.077 0.081 0.094 0.104 0.113 0.129 0.142 0.154 
0.5 0.002 0.127 0.037 0.092 0.071 0.097 0.095 0.120 0.122 0.143 0.153 
0.8 0.001 0.176 0.014 0.129 0.038 0.131 0.068 0.139 0.099 0.162 0.136 

100 -0.8 1.000 0.925 0.592 0.345 0.220 0.185 0.159 0.163 0.163 0.185 0.183 
MZGLS -0.5 0.750 0.252 0.104 0.093 0.099 0.132 0.159 0.204 0.234 0.285 0.317 

0.0 0.032 0.055 0.080 0.115 0.152 0.206 0.243 0.300 0.332 0.390 0.419 
0.5 0.001 0.161 0.054 0.155 0.148 0.219 0.246 0.299 0.338 0.392 0.427 
0.8 0.001 0.211 0.021 0.224 0.087 0.277 0.186 0.346 0.294 0.417 0.386 

250 -0.8 1.000 0.978 0.800 0.514 0.276 0.147 0.087 0.058 0.048 0.040 0.036 
-0.5 0.786 0.311 0.126 0.074 0.057 0.059 0.065 0.069 0.082 0.100 0.106 

0.0 0.040 0.049 0.057 0.070 0.077 0.088 0.099 0.108 0.124 0.136 0.149 
0.5 0.002 0.124 0.034 0.090 0.069 0.095 0.094 0.117 0.121 0.142 0.150 
0.8 0.001 0.174 0.014 0.128 0.036 0.130 0.066 0.137 0.098 0.160 0.135 

100 -0.8 1.000 0.977 0.815 0.600 0.415 0.293 0.203 0.167 0.125 0.116 0.098 
DFGLS -9.5 0.838 0.375 0.176 0.112 0.087 0.084 0.074 0.070 0.068 0.069 0.065 

0.0 0.070 0.072 0.067 0.072 0.069 0.073 0.072 0.071 0.069 0.068 0.061 
0.5 0.003 0.160 0.045 0.091 0.064 0.073 0.062 0.066 0.061 0.067 0.062 
0.8 0.002 0.209 0.021 0.127 0.036 0.099 0.046 0.085 0.053 0.076 0.061 

250 -0.8 1.000 0.984 0.875 0.685 0.504 0.362 0.259 0.194 0.150 0.120 0.099 
-0.5 0.809 0.352 0.161 0.101 0.072 0.061 0.059 0.053 0.053 0.056 0.052 

0.0 0.053 0.055 0.055 0.056 0.056 0.054 0.054 0.054 0.055 0.055 0.054 
0.5 0.002 0.126 0.034 0.071 0.048 0.057 0.053 0.054 0.052 0.056 0.050 
0.8 0.001 0.172 0.015 0.098 0.024 0.075 0.032 0.063 0.038 0.058 0.042 

AR Case T p k=0 1 2 3 4 5 6 7 8 9 10 

100 -0.8 0.960 0.497 0.509 0.526 0.549 0.574 0.593 0.616 0.640 0.669 0.690 
zGLS 0.8 0.000 0.123 0.162 0.213 0.252 0.312 0.351 0.410 0.441 0.489 0.514 

250 -0.8 0.956 0.319 0.327 0.330 0.335 0.345 0.352 0.360 0.369 0.375 0.379 
0.8 0.000 0.070 0.077 0.089 0.099 0.119 0.129 0.150 0.159 0.176 0.183 

100 -0.8 0.941 0.001 0.008 0.030 0.058 0.104 0.140 0.191 0.233 0.290 0.329 
MZGLS 0\8 0.000 0.121 0.160 0.211 0.249 0.309 0.349 0.408 0.439 0.487 0.513 

250 -0.8 0.?52 0.011 0.015 0.020 0.028 0.037 0.050 0.062 0.076 0.092 0.106 
0.8 0.000 0.070 0.076 0.089 0.099 0.119 0.128 0.150 0.159 0.175 0.183 

100 -0.8 0.967 0.069 0.067 0.067 0.060 0.068 0.059 0.065 0.063 0.065 0.065 
DFGLS 0.8 0.000 0.072 0.067 0.070 0.071 0.069 0.069 0.074 0.066 0.072 0.071 

250 -0.8 0.959 0.052 0.051 0.052 0.050 0.049 0.050 0.050 0.051 0.052 0.053 
0.8 0.000 0.057 0.055 0.057 0.054 0.055 0.058 0.056 0.055 0.059 0.058 
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Reported in Table II are the sizes of the tests for p = 0, 1 at selected values of 0 
and p. We report results for T = 100 and 250 to highlight the fact that the size 
issue in the negative moving average case is not a small sample problem. 

Several features of the results for MA errors are of note. First, for a 0 of the 
same absolute value, a negative 0 always requires a larger lag to obtain a more 
accurate size. Second, for a positive 0, the size of the tests are significantly better 
when k is even. Third, the larger the number of deterministic terms, the more 
distant are the exact from the nominal sizes. Fourth, there is always a value of 
k that will yield an MZGLS with a reasonably accurate size when 0 = -0.80. 
For example, for p = 0 when T = 100 and 250, exact sizes of .077 and .055, 
respectively, are achievable with lags of 9 and 8. In contrast, there does not exist 
a k that will result in an acceptable size for ZGLS, and increasing the sample size 
will not reduce the size distortions adequately. For the sample sizes reported, 
the exact sizes for ZGLS are well above 0.5 at 0 = -.8, and size distortions are 
non-negligible even when 0 = -0.5. Fifth, the DFGLS also exhibits a dependence 
on k. At T = 100, the size is .104 at k = 10, but is .624 when k = 2. 

For AR errors, size discrepancies between ZGLS and MGLS also exist when 
p is large and negative, albeit not as dramatic as in the MA case. The results 
reveal that the MZaLS is inferior to the DFGLS when p = 1, the sample size is 
small, and lpl is large. For large negative AR coefficients, the MZGLS has a more 
accurate size at k greater than 1. For large positive AR coefficients, the MZGLS 
is oversized for small T, though the size improves as T increases. 

Clearly, the choice of k is crucial especially in the case of negative moving 
average errors. Various practical solutions have been used against this problem. 
In ERS, the BIC is used to select k but they set the lower bound to be 3, 
because even larger size distortions would have resulted if zero was the lower 
bound. An alternative method is the sequential t test for the significance of the 
last lag considered in Ng and Perron (1995). It has the ability to yield higher 
k's than the BIC when there are negative moving-average errors and reduce size 
distortions. But, the sequential test tends to overparameterize in other cases. 
This, as does ERS's implementation of the BIC, leads to less efficient estimates 
and subsequently to power losses. Neither approach is fully satisfactory. 

The AIC and the BIC belong to the class of information based rules (here- 
after, IC) where the chosen value of k is ki = arg mink[O.kmax]IC(k) where4 

(10) IC(k) = ln(o6i) + (k + p 1)CT/(T -kmax), 

&k = (T - kma- LT=kmax?i tk CT/T - 0 as T -> oc, and CT > 0. The various 
criteria differ in CT, the weight applied to overfitting, but all use k as the penalty 
to overfitting. We argue below that, with integrated data, this penalty may be a 
poor approximation to the cost of underfitting. 

4See Ng and Perron (2000) for an analysis pertaining to the adequacy of the particular formulation 
of the information criterion stated. 
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5. AN ALTERNATIVE PENALTY FOR INTEGRATED DATA 

To motivate the main idea, we consider the derivation of the AIC for data gen- 
erated by a finite order AR(ko) with normal errors and a unit root (i.e., the DGP 
is (2) with k = ko, go = 0, and etk = et - i.i.d. N(O, 1)). The family of parametric 
models fitted is given by (8). For notation, we let go (k) = (O, 01, ,f3k)'g (k) = 

(0, 1,-*,k), o(k) = (P1. * I*3Pk)' and P/o(k) = (1 . .., IPk). In what 
follows, we adopt the treatment of Gourieroux and Monfort (1995, pp. 307-309). 
The goal is to select an autoregressive order between 0 and some upper bound 
kmax. We assume this upper bound satisfies kmax/T -> 0 as T -> oo. Let f(Ay 
00(k)) be the likelihood function of the data (AYk m1x ... , AYT) conditional on 

the initial observations (yo, ... , Ykmax). This ensures that each competing model is 
evaluated with the same number of effective observations, namely T - kmax. The 
Kullback distance between the true probability distribution and the estimated 
parametric model is Q = Eo [ln (f (Ay I /0(k))) - ln (f (Ay I /3(k)))] with sample 
analog: 

T 

Q = (T - kmax)1 E ln(f(Ayt I go(k))) 
t=kmax+1 

T 

-(T -kmax)-l E ln(f (Ayt I /3(k))). 
t=kmax+1 

As discussed in Gourieroux-Monfort (1995), Akaike's suggestion was to find a 
Q* such that limT,,,, E[T(Q - Q*)] = 0 so that Q* is unbiased for Q to order 
T-1. Let Xt = (Yt-, Zt) with Zt = (Yt-l , * jyt-) and 

T 

kT (k) = (1/k2) (P(k) - / (k))' E XtXt ((k) -/30(k)), 
t=kma ?1 

where &k2 = (T - kmax)-1 T=k ?1 
T 

e2. Using Taylor series expansions, we have 

TQ=(PT(k)/2+op(1) and TQ=- (PT(k)/2+op(1). Since T(Q-Q)= IT(k)+ 

op(l), limT-.,, E[T(Q -Q*)] = 0 if Q* = Q + T(k) and the remainder term is 
uniformly integrable. Now consider the term PT(k) in the context of integrated 
data. Given the asymptotic block diagonality of the matrix DT LT=kma +1 XtXDT 
with DT = diag((T-kma)-1, (T-kmax)-1/2, ... I (T-kmax)-/2), we have 

(11) ~T(k>+i ((JI)O E Y-2 

T 

&k 
'2 2 tkma? 

(11)~~ (Tk 1/ gTo E t-1 k+ p(1 

t=kmax+1 
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where Xi is a chi-square random variable with k degrees of freedom that is 
asymptotically independent of the first term. Hence, assuming the remainder 
term is uniformly integrable, a Q* that will satisfy limT,,,O E[T(Q -Q*)] = 0 is 

T 

Q= (T-kmax)1 E ln(f(Ay,Ig3o(k))) 
t=kmax 1 

t=kmax+l1 

T 

+ (11&Tk2) (32 E 
2 
21 +k. 

t=kmaX +?1 

Since the first term is common to all models and the second term is propor- 
tional to -((T- kmax)/2) ln(k2) under normality, minimizing Q* is equivalent to 
minimizing 

(12) MAIC(k) = In(Tk2) + 2(TT(k) + k) 
T-kmax 

where TT(k) = (k2) 
1 2 

ETky1 y2 and &k2 = (T -kmax) 1 ET e=k+1e2. Note 
that the same result holds in the general case where the data are generated by (1). 
The important step is the relation given by (11), which can be shown to hold in 
the general case, in the sense that the remainder term is op(l) uniformly in k for 
0 < k < KT, where KT = o(T1/3). This follows using the results of Berk (1974) and 
Said and Dickey (1984) provided k -> oo, k3/T -> 0, and T-112 L]=k+1 If4i - 0 

As a natural generalization of the MAIC(k), we propose a class of Modified 
Information Criteria (MIC) that selects k as kmic = arg mink MIC(k) where 

(13) MI C(k) = ln(6k2) + CT (TT (k) + k) (13) MIC(k) =T -kmax 

with CT > 0 and CT/T -> 0 as T -+> . The MBI C obtains with CT = ln(T - km=). 
There are two important elements that distinguish (13) from standard infor- 

mation criteria. The first is the imposition of the null hypothesis go = 0. This 
idea of imposing the null hypothesis in model selection when the ultimate objec- 
tive is hypothesis testing appears new and may have implications beyond the unit 
root issue.5 This is an interesting avenue of research, but is beyond the scope of 
this paper. The second element is that we retain a term in the penalty function 
that is stochastic. Now, as T -?oo, (1/6o)go ET=k_ +t_l X== (-2/o-)[W(1)2 - 

1]2/[2 fl W(r)2dr] -r(W), say, where W is a detrended Wiener process, whose 
exact form depends on the deterministic components and the method of detrend- 
ing. In principle, we could use the mean of r(W), which is independent of k, 
instead of rT(k), to construct Q* and the objective function would then reduce 

5We thank a referee for bringing this feature to our attention. 
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to the standard AIC. A central theme of our argument for retaining rT(k) is 
that, unless both T and k are very large, it varies substantially with k, especially 
when a negative MA component is present. In a sense, the imposition of the null 
hypothesis, go = 0, allows us to avoid using asymptotic expected values to approx- 
imate the penalty factor. We can therefore hope that TT(k) will better capture 
the relevant cost of selecting different orders in finite samples since it depends 
not only on k, but also on the nature of the deterministic components and the 
detrending procedure. Hence, the penalty term will also depend on these factors. 

To get an idea of the dependence of rT (k) on k, Figure 1 graphs the aver- 
age over 5,000 replications of rT(k) against k for p = 0,1 using the DGP 

AY, = e? + Oe,_1 with et - i.i.d. N(O, 1). For positive 0, _T(k) is indeed fairly 
invariant to k (as is the case for AR processes, not reported). But, there is a clear 
inverse and nonlinear relation between rT(k) and k for negative values of 0. This 
relation exists even when 0 is -.5 for both p = 0 and p = 1. The basic reason for 
the dependence of TT(k) on k is that the bias in the sum of the estimated autore- 
gressive coefficients (i.e., io) is very high for small values of k. This suggests that 
TT(k) will play a role in determining the appropriate k when there are negative 
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FIGURE 1: TT(k). 
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moving-average errors. To make this claim precise, the next subsection uses a 
local asymptotic framework to analyze the properties of TrT(k) and the MIC. 

6. LOCAL ASYMPTOTIC PROPERTIES 

As discussed above, TT(k) will likely influence the choice of k when there is a 
large negative moving-average root, a situation for which standard unit root tests 
exhibit severe size distortions. To understand the issue of lag length selection 
in this setting, a useful device is an asymptotic framework in which the moving 
average coefficient is parameterized as local to -1. 

(14) Yt - TYt-1 = et + oTet-1, 

aT = 1 + c/T, OT -1 + ?/T, 

et ~ i.i.d. (0, Te2), yo = eo = 0, 8 > 0, and c < 0. As T increases to infinity, 
aT -1, OT - -1, and Yt becomes a white noise process. However, Yt is a nearly 
integrated nearly white noise process in finite samples. Nabeya and Perron (1994) 
used this asymptotic framework to derive approximations to the finite sample 
properties of the least-squares estimator in a first-order autoregressive model 
with negative moving-average errors and showed these approximations not only 
to be superior to those obtained from standard asymptotic distributions but also 
to be quite accurate even for small sample sizes. Perron and Ng (1996) used the 
same setup to analyze the size and power of various unit root tests based upon 
augmented autoregressions. Our aim here is to use the same device to first obtain 
useful qualitative features about the relative properties of the IC and MIC, and 
second, to guide us to an appropriate choice of the penalty weight CT. 

6.1. Local Asymptotic Properties of TT (k) 

The following Theorem (proved in the Appendix) summarizes the general 
properties of _T(k) in this local asymptotic framework. 

THEOREM 2: Let yt be generated by (14), Z1 = (1 ? 82 of Jc(r)2dr)/ 
[82 fo Jc(r)2dr]2 when p = 0, and Z1 = (1 + 82 fJ VC 5(r)2dr)/[82 Jr Q V(r)2dr]2 
when p = 1. Let k -> oo, K1T = o(T1/2), T1/2/K2T = op(l), and K3T = o(T). Then, 
(i) uniformly in 0 < k < K1T: (k2/T)TT(k) =X Zj; (ii) if k/T1/2 - K, TT(k) =X 

1(K)2Z2, where E(Z2) = E(Z1) and #~(K) = 28 exp(-2K8)/(1 - exp(-2K8)); and 
(iii) uniformly in K2T <! k < K3T, TT(k) X Z3, where Z3 is Op(1). 

Theorem 2 shows that the local limit of TT(k) is unbounded unless k increases 
at least at rate T112. Since TT(O) diverges at rate T (see Nabeya and Perron 
(1994)), and rT(k) diverges at rate T/k2 if k2/T -> 0, the cost to overfitting is 
not linear in k as is assumed for the IC, and Figure 1 bears this out. Theorem 2 
also highlights the fact that TT(k) will depend, via Z1, on the nature of the 
deterministic components and the method of detrending. 
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Given Theorem 2 and the fact that 1k2 is consistent for o-e2 irrespective of the 
rate of increase of k (shown in the Appendix), it can be shown that, in this local 
asymptotic framework, the limiting distribution of the DF test diverges to -o 
unless k grows at least at rate T1/2.6 Hence, the unit root will always be rejected 
if standard critical values are used. This explains why the DF test tends to be 
oversized when k is small. In Perron and Ng (1996, 1998), we showed that 
k2s R = Op(1) but we also need TS2R to be Op(1) for the M tests to be bounded 
under the null hypothesis in this local framework. But k2s2R and TS2R can both 
be bounded only if k/T1/2 -?> K for some 0 < K< 00. In the next section, we will 
consider model selection procedures with this requirement in mind. 

6.2. Local Asymptotic Properties of the MIC and IC 

In the standard asymptotic framework, with data generated by (1), rT(k) is 
invariant to k for T and k large. It follows that kmic grows at a logarithmic rate 
from Hannan and Deistler (1988). We now consider the properties of k chosen 
by the MIC and the IC in the local asymptotic framework with the additional 
technical requirement that C2/T -> 0. Using Theorem 2 and an expansion for 
ln(6k2) derived in the Appendix, we have the following expansions for the MIC 
and IC. 

LEMMA 1: Let Yt be generated by (14) and K1T, K2T, and K3T as defined in 
Theorem 2; then (i) uniformly in 0 < k < K1T: 

(15) MIC(k) = ln(o-e2) + ? + CT Z1 + CT k + 
OP(T-1/2); 

(ii) for k/T1/2 -?> K, with #(K) defined in Theorem 2: 

(16) MIC(k) = In(e2)+ (K) + CT 
k 

+OP(T-1/2); n -e ?/T 
'K)Z ? 

C/T 
?O(T1) 

(iii) uniformly in K2T < k < K3T: 

(17) MIC(k)=In(oe2) + CT Z3 + CT k + OP(T-1/2) 
V7Texp(2k5/17T) T T 

The expansions for the IC(k) are the same except that the terms involving the Z's 
are absent. 

The objects of ultimate interest are the values kic and k,..ic chosen by the IC 
and the MIC, respectively, over all possible values of k. 

6 This is a more general result than Pantula (1991) who used a different local asymptotic framework 
for modeling the negative moving average component in unit root tests. Pantula's result applies only 
when k = Op(T1/4). 
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THEOREM 3: Let Yt be generated by (14) and consider the rate of increase of k 
as T -> oo. Define: 

FMIC()(K) 
452 exp(-2K8) 

FMIc(1)(K) = 
Vl - exp(-2K5)]2 

? TT [1x(-2K3)]3? 

_VCT/TI CT 2C2 
MIC(2kKJ - K2 K3T 

FIC (K) = -482 exp(-2K8) ? CT 
[1 -exp(-2K8)]2 T 

When CT is fixed, k nicI(Knlic(l)T -I? 1 where Kmic(l) solves Fm c(l)(K) =, and 
(kic/KicT112) - 1, where Kic solves F1c(K) = 0. When CT - ,> ookic/V/T/CTCT 
1. When CT - 00 and CT/T -? d(> 0), kmic/(Kmic(2)V\T/CT) -> 1, where Kmic(2) 

solves FMIC(2)(K) = 0. If CT -> ? and CI/T -+> o,kmic/(2ZiT)1/3 _> 1. 

Provided CT is constant (as is the case with Akaike's value of 2), both the IC 
and the MIC will choose k proportional to T1/2 asymptotically, much faster than 
the logarithmic rate attained under the standard asymptotic framework. The rate 
of 11 is optimal for unit root tests because this is the rate that will render the 
class of DF as well as the M tests nondivergent under the null hypothesis in this 
local asymptotic framework. However, when CT increases with T, this optimal 
rate is not achieved. 

The proportionality factor for the rate of increase of kic when CT increases 
with T is one and highlights a major shortcoming of the IC in such cases, namely 
a complete independence to 8, the parameter of the local asymptotic framework. 
For the kmic when CT increases with T, the proportionality factor depends on 
the parameters of the model via Z1. This effect, however, still vanishes as T 
increases. This lack of flexibility does not arise when CT is fixed since Kmic and 
Kic always maintain a dependence on 8. Although kic increases at the appropriate 
rate of VT, it too has drawbacks because Kic is invariant to T and it is the same 
whether p = 0 or p = 1. In contrast, Knic adapts to the sample size and the trend 
function via a second order factor involving Z1. Thus, the MIC with CT fixed 
maintains a proportionality factor that is the most flexible with respect to T, the 
regression model, as well as parameters of the DGP. 

If the weight CT on the penalty factor is too large, that is C/T- oo, the MIC 
chooses a rate that is independent of CT, namely T1 3, while the IC continues to 
select a k that is proportional to \VT/CT. This, however, is a result of theoretical 
rather than practical interest since almost all information criteria that have been 
suggested are such that CI/T -O 0. 

To illustrate these properties, we consider the MAIC and AIC with CT = 2 
and the MBIC and BIC with CT = ln(T). We denote the proportionality factors 
by Kmaic, Kaic, Kmbic, and Kbic, respectively. Numerical values of K are reported in 
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TABLE III.A 

VALUES OF THE PROPORTIONALITY FACTOR K 

p=0 p=1 

T\8 0.50 1.00 1.50 2.00 5.00 8.00 0.50 1.00 1.50 2.00 5.00 8.00 

100 bic 0.99 0.96 0.93 0.89 0.67 0.54 0.99 0.96 0.93 0.89 0.67 0.54 
aic 0.69 0.65 0.61 0.57 0.39 0.30 0.69 0.65 0.61 0.57 0.39 0.30 
mbic 3.59 1.73 1.24 1.04 0.68 0.54 6.34 2.89 1.87 0.40 0.71 0.54 
maic 1.70 0.88 0.68 0.59 0.39 0.30 2.96 1.37 0.90 0.70 0.39 0.30 

150 bic 0.99 0.96 0.93 0.90 0.69 0.55 0.99 0.96 0.93 0.90 0.69 0.55 
aic 0.69 0.65 0.61 0.57 0.39 0.30 0.69 0.65 0.61 0.57 0.39 0.30 
mbic 3.58 1.73 1.24 1.04 0.69 0.55 6.41 2.92 1.88 1.42 0.72 0.56 
maic 1.63 0.85 0.67 0.59 0.39 0.30 2.87 1.32 0.88 0.69 0.39 0.30 

250 bic 0.99 0.97 0.94 0.90 0.70 0.57 0.99 0.67 0.94 0.90 0.70 0.57 
aic 0.69 0.65 0.61 0.57 0.39 0.30 0.69 0.65 0.61 0.57 0.39 0.30 
mbic 3.55 1.71 1.24 1.04 0.71 0.57 6.46 2.93 1.89 1.42 0.73 0.57 
maic 1.55 0.82 0.66 0.58 0.39 0.30 2.75 1.27 0.85 0.67 0.39 0.30 

500 bic 0.99 0.97 0.94 0.91 0.72 0.58 0.99 0.97 0.94 0.91 0.72 0.58 
aic 0.69 0.65 0.61 0.57 0.39 0.30 0.69 0.65 0.61 0.57 0.39 0.30 
mbic 3.47 1.68 1.23 1.04 0.72 0.58 6.46 2.92 1.89 1.42 0.75 0.59 
maic 1.44 0.79 0.65 0.58 0.39 0.30 2.60 1.20 0.81 0.65 0.39 0.30 

5000 bic 0.99 0.98 0.96 0.93 0.76 0.63 0.99 0.98 0.96 0.93 0.76 0.63 
aic 0.69 0.65 0.61 0.57 0.39 0.30 0.69 0.65 0.61 0.57 0.39 0.30 
mbic 3.06 1.52 1.16 1.02 0.76 0.63 6.12 2.74 1.78 1.36 0.78 0.63 
maic 1.14 0.71 0.62 0.57 0.39 0.30 2.12 1.00 0.72 0.60 0.39 0.30 

50000 bic 0.99 0.98 0.96 0.94 0.79 0.66 0.99 0.98 0.96 0.94 0.79 0.66 
aic 0.69 0.65 0.61 0.57 0.39 0.30 0.69 0.65 0.61 0.57 0.39 0.30 
mbic 2.56 1.34 1.08 0.99 0.79 0.67 5.43 2.42 1.59 1.25 0.80 0.66 
maic 0.92 0.67 0.61 0.57 0.39 0.30 1.69 0.85 0.66 0.58 0.39 0.30 

Table III.A for selected values of 3 and T under the null hypothesis of a unit root 
with c = 0. In the case of the MIC these values are random variables because of 
the presence of Z1. The numerical calculations reported use its expected value.7 
Table III.A shows first that the Kmic's are drastically larger than the Kics when 3 
is small. Second, the Kic'S vary much less with 8 than the Kmic's. Third, the K,( ic'S 

are larger when p = 1 than when p = 0, but the Kic's are invariant to the order 
of the deterministic terms in the regression. 

Values of k selected by the IC and the MIC are in Table III.B. These are 
constructed using the expected value of the MIC given by (for the IC(k) the term 

7 To get the expected value we use the following crude approximation. For p = 0, E[Z1] 
(E[1 + 82 ]1 W(r)2dr])/ 4E([fJ W(r)2dr]2) = (4 + 252)/84. For p = 1, E[Zj] E[1 + 
82 fl Vo,(r)2dr]/84E(fl Vo 0(r)2dr)2. For c =-13.5, tedious but straightforward algebra gives 
E[Z1] ; (1 + ?2(.102475)/(1 + ? 4(.102475)2). 
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TABLE III.B 

k CHOSEN BY MINIMIZING THE ASYMPTOTIC APPROXIMATION OF THE MIC AND IC (18) 

p=O0 p=1 

T\8 0.50 1.00 1.50 2.00 5.00 8.00 0.50 1.00 1.50 2.00 5.00 8.00 

100 bic 4 4 4 4 3 2 4 4 4 4 3 2 
aic 6 6 6 5 3 3 6 6 6 5 3 3 
mbic 16 8 5 4 3 2 29 13 8 6 3 2 
maic 17 8 6 5 3 3 29 13 9 7 3 3 

150 bic 5 5 5 4 3 3 5 5 5 4 3 3 
aic 8 8 7 7 4 3 8 8 7 7 4 3 
mbic 19 9 6 5 3 3 35 15 10 7 3 3 
maic 20 10 8 7 4 3 35 16 10 8 4 3 

250 bic 6 6 6 6 4 3 6 6 6 6 4 3 
aic 10 10 9 9 6 4 10 10 9 9 6 4 
mbic 23 11 8 7 4 3 43 19 12 9 4 3 
maic 24 13 10 9 6 4 43 20 13 10 6 4 

500 bic 8 8 8 8 6 5 8 8 8 8 6 5 
aic 15 14 13 12 8 6 15 14 13 12 8 6 
mbic 31 15 11 9 6 5 57 26 16 12 6 5 
maic 32 17 14 13 8 6 58 27 18 14 8 6 

5000 bic 24 23 23 22 18 15 24 23 23 22 18 15 
aic 49 46 43 40 27 21 49 46 43 40 27 21 
mbic 74 37 28 24 18 15 148 66 43 33 19 15 
maic 80 50 44 40 27 21 150 71 50 42 27 21 

50000 bic 67 66 65 63 53 45 67 66 65 63 53 45 
aic 154 147 137 128 88 68 154 147 137 128 88 68 
mbic 174 91 74 67 54 45 369 164 108 85 54 45 
maic 207 151 138 128 88 68 379 190 147 130 88 68 

with Z1 is absent) 

2) (1 - O 
(18) E[MIC(k)] = lnf(e ?) + - )2(k?l) 

+ CT ([( j ( )2(k+l) ] ( T 

This expression is valid uniformly in 0 < k < K3T for K3T = o(T) and is obtained 
using equation (A.4) and Lemma A.5. When 8 is small and especially when 
p = 1, the kmic are several folds larger than the kic. As well, differences between 
kaic and kn aic are nontrivial even for sample sizes deemed unrealistically large. 
Table JJJ.B also provides some guidance for the k's that would likely be selected 
in practice. When 0 = -.9, for example, the local asymptotic results for 8 = 1 and 
T = 100 suggest that kbiC = 4 for both p = 0 and 1, but that the kmaic are 8 and 
13, respectively. The local asymptotic results therefore support the earlier claim 
that the IC lacks the flexibility to handle DGP's with a large negative moving 
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average root and/or alternative deterministic components. The issue of practical 
interest is whether in finite samples and for realistic values of the moving average 
parameter, such large discrepancies remain and what are the implications for 
unit root tests. The rest of the analysis presents evidence to this effect. 

6.3. The Finite Sample Properties of knfic 

To evaluate the finite sample properties of the MIC vis-a-vis the IC, we per- 
formed the following simulation experiment. For a given DGP, we construct the 
MZoGLS and DFGLS tests at each k E [0,10], and record the exact sizes. We then 
find the so-called optimal values of k*, denoted k* and k*gis, as the first k with 
a size closest to within .03 of the nominal size of 0.05. If no such k exists, k* is 
the k for which the exact size of the test has the smallest absolute deviation from 
the nominal size of 5%. We then obtain kbiC as the median value selected by the 
BIC over the range 0 and 10. A similar procedure is used to obtain kmlbiC, kaic, 

and kniaic. The setup for the simulations is as outlined in Section 4. 
In Table IVA (p = 0) and IVB (p = 1), we report the values for k2*, k kgs5 k 

and k,nic for selected parameters for CT = 2 and CT = ln(T - kmax). While the kic's 
are in the same range as the k*'s for many cases, there are important differences 
between the two when 0 < 0. The k,1i is much closer to k,1* and kfgls in negative 
MA models than the kic. For example, when 0 = -.8, k* and k*gis are 10 at 
T = 250 and p = 1; the BIC chooses 3 over half the time whereas k,znaic has 8 as 
the median value. The kaic is closer to k,2* and k*fgls than the kbiC, but still not 
as close as the kniaic. For the AR case, the kmaic indeed selects the appropriate 
order of one, but when p= 1, this sometimes differs from k* . This does not 
reflect a weakness of the MIC but rather that the MGLS tests are undersized 
when the autoregressive coefficient is large and negative. The results show that 
k maic corresponds closely to the k*fgls in the AR case. 

7. SIZE AND POWER OF THE TESTS IN FINITE SAMPLES 

In this section, we need to establish two things: first, that the MIC chooses 
values of k that are appropriate in the sense of minimizing size distortions under 
the null hypothesis and not overparameterizing under the alternative; second, 
that the MGLS and MGLS statistics have power comparable to the DFGLS and 
dominate the M tests. Whenever an estimate of U2 is required, S2R based upon 
the regression (8) is used. Because the MAIC dominates all other criteria from 
both theoretical and numerical perspectives we only consider the MGLS tests 
constructed using the MAIC. In the simulations, the lower bound is always zero 
to reduce the chance of overparameterizing when a large k is not necessary. 
The upper bound is kmax = int(12(T/100)1/4).8 The results are tabulated for T = 
100,150, and 250. The ten statistics being considered are detailed in the notes 
to Table VIA and Table VI.A. 

8 In practice, the upper bound should be set such that the constraint does not bind. In simulations, 
the upper bound occasionally binds when T = 100 but not for larger sample sizes (e.g. T = 150). 
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For p = 0, the results for size are reported in Table VA. The M and MGLS 

tests still have inflated sizes at T = 100 when 0 = -0.8. However, use of GLS 
detrended data to construct S2R produces substantial size improvements. The 
DFGLS based on the BIC yields an exact size around 0.4 at 0 = -0.8, but 

TABLE IV.A 

SELECTED k FOR p = 0 

MA Case: vt = (1 + OL)et 

T =100 T =250 

o ~k*Z7 k*fgls kbic kaic kmbic k 
MZaic 

k kdfgls kbic kaic kbic aic 

-0.8 8 8 2 4 5 6 7 10 4 6 5 7 
-0.7 6 10 2 3 3 4 6 7 3 5 4 5 
-0.6 5 7 1 2 2 3 5 6 2 4 3 4 
-0.5 3 7 1 2 2 2 4 4 2 3 2 3 
-0.4 2 4 1 2 1 2 2 2 1 2 2 2 
-0.3 2 3 1 1 1 1 2 2 1 2 1 2 
-0.2 1 2 0 1 1 1 1 1 1 1 1 1 
-0.1 1 1 0 0 0 0 1 1 0 1 0 1 

0.0 0 0 0 0 0 0 0 0 0 0 0 0 
0.1 0 0 0 0 0 0 0 0 0 1 0 1 
0.2 0 0 0 1 0 1 1 1 1 1 1 1 
0.3 2 2 1 1 1 1 2 1 1 2 1 2 
0.4 2 2 1 2 1 2 2 2 1 2 2 2 
0.5 2 2 1 2 2 2 2 2 2 3 2 3 
0.6 2 2 2 3 2 3 2 2 2 4 2 4 
0.7 2 2 2 4 2 4 2 2 3 5 3 5 
0.8 2 2 3 5 3 5 2 2 4 7 4 7 

AR Case: (1-pL)vt =et 

T =100 T =250 

k*Z k*fgs kbic kaic k,nbic 
kt7iaic 

k* k*fgls kbic kaic k,nbic 
kt7iaic 

-0.8 1 1 1 1 1 1 1 1 1 1 1 1 
-0.7 1 1 1 1 1 1 1 1 1 1 1 1 
-0.6 1 1 1 1 1 1 1 1 1 1 1 1 
-0.5 1 1 1 1 1 1 1 1 1 1 1 1 
-0.4 1 1 1 1 1 1 1 1 1 1 1 1 
-0.3 1 1 1 1 1 1 1 1 1 1 1 1 
-0.2 1 1 0 1 1 1 1 1 1 1 1 1 
-0.1 1 1 0 0 0 0 1 1 0 1 0 1 

0.0 0 0 0 0 0 0 0 0 0 0 0 0 
0.1 0 0 0 0 0 0 0 0 0 1 0 1 

0.2 1 0 0 1 0 1 1 1 1 1 1 1 
0.3 1 1 1 1 1 1 1 1 1 1 1 1 
0.4 0 1 1 1 1 1 1 1 1 1 1 1 
0.5 1 1 1 1 1 1 1 1 1 1 1 1 
0.6 1 1 1 1 1 1 1 1 1 1 1 1 
0.7 1 1 1 1 1 1 1 1 1 1 1 1 
0.8 1 1 1 1 1 1 1 1 1 1 1 1 

Note: The entries are the median values of the selected k using 5,000 replications. 
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TABLE IV.B 

SELECTED k FOR p = 1 

MA Case: vt = (1 + OL)et 

T =100 T =250 

o kznz kdfgls kbic kaic kbi. k7aic kTh* k*fgls kbic kaic k,nbic k,paic 

-0.8 6 10 0 2 6 6 7 10 3 5 7 8 
-0.7 4 8 1 2 4 5 5 8 3 4 5 6 
-0.6 4 6 1 2 3 4 4 6 2 3 4 4 
-0.5 3 6 1 2 2 3 3 4 2 3 3 3 
-0.4 2 3 1 1 2 2 2 3 1 2 2 2 
-0.3 2 2 0 1 1 1 2 2 1 1 1 2 
-0.2 1 4 0 1 1 1 1 1 1 1 1 1 
-0.1 0 1 0 0 0 1 1 1 0 1 0 1 

0.0 0 0 0 0 0 0 0 0 0 0 0 0 

0.1 1 0 0 1 0 0 1 0 0 1 0 1 

0.2 1 2 0 1 0 1 1 1 1 1 0 1 
0.3 0 2 1 1 0 1 2 2 1 2 1 2 
0.4 2 2 1 2 1 2 2 2 1 2 2 2 
0.5 2 2 1 2 2 2 2 2 2 3 2 3 
0.6 2 2 2 3 2 2 2 2 3 4 2 4 
0.7 2 2 2 4 2 4 2 2 3 5 3 5 
0.8 2 2 3 5 2 4 4 4 4 7 4 6 

AR Case: (1 - pL)vt = et 

T =100 T =250 

k* k*fg1s kbic kaic k,nbic kiaic 
k* k*fg kbic kaic k,nbic kt?iaic 

-0.8 3 1 1 1 1 1 4 1 1 1 1 1 
-0.7 3 1 1 1 1 1 1 1 1 1 1 1 
-0.6 2 1 1 1 1 1 1 1 1 1 1 1 
-0.5 1 1 1 1 1 1 1 1 1 1 1 1 
-0.4 1 1 1 1 1 1 1 1 1 1 1 1 
-0.3 1 1 1 1 1 1 1 1 1 1 1 1 
-0.2 1 1 0 1 1 1 1 1 1 1 1 1 
-0.1 0 1 0 0 0 0 0 1 0 1 0 1 

0.0 0 0 0 0 0 0 0 0 0 0 0 0 

0.1 1 0 0 1 0 0 1 0 0 1 0 1 

0.2 1 1 1 1 0 1 1 1 1 1 0 1 
0.3 1 1 1 1 0 1 1 1 1 1 1 1 
0.4 1 1 1 1 1 1 1 1 1 1 1 1 
0.5 1 1 1 1 1 1 1 1 1 1 1 1 
0.6 1 1 1 1 1 1 1 1 1 1 1 1 
0.7 1 1 1 1 1 1 1 1 1 1 1 1 
0.8 1 1 1 1 1 1 1 1 1 1 1 1 

Note: The entries are the median values of the selected k using 5,000 replications. 

the MAIC improves the size to 0.107. The MAIC also yields a substantial size 
improvement over DFGLS(t), which has a size of .35 when 0 = -0.8. The results 
also confirm that the PT test constructed with k chosen by BIC suffers from sub- 
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TABLE V.A 

SIZE OF THE TESTS; p = 0 

MA Case: vt = et + Oeti , et - N(0, 1) 

ncii mL 
,IncS DEbic DFC 

DDF,G?/cS 
DFGL GLS MPG~LS 

MGLS MGLS S DFGLS DF PTbC TIC ,TiC 

100 -0.8 0.058 0.041 0.036 0.394 0.411 0.356 0.107 0.429 0.034 0.036 
-0.5 0.028 0.013 0.056 0.082 0.104 0.095 0.073 0.109 0.048 0.051 

0.0 0.018 0.005 0.043 0.072 0.077 0.072 0.050 0.094 0.036 0.040 
0.5 0.027 0.013 0.062 0.081 0.082 0.080 0.048 0.118 0.048 0.054 
0.8 0.042 0.018 0.067 0.095 0.097 0.091 0.039 0.145 0.054 0.062 

150 -0.8 0.034 0.018 0.026 0.407 0.390 0.304 0.095 0.420 0.025 0.027 
-0.5 0.025 0.009 0.054 0.085 0.093 0.086 0.066 0.091 0.047 0.049 

0.0 0.017 0.005 0.049 0.062 0.075 0.070 0.051 0.085 0.040 0.046 
0.5 0.028 0.011 0.054 0.066 0.072 0.071 0.046 0.090 0.047 0.050 
0.8 0.040 0.013 0.060 0.079 0.077 0.070 0.034 0.108 0.047 0.052 

250 -0.8 0.016 0.006 0.022 0.370 0.323 0.236 0.088 0.380 0.021 0.021 
-0.5 0.036 0.012 0.058 0.075 0.089 0.079 0.063 0.086 0.049 0.054 

0.0 0.021 0.006 0.047 0.059 0.062 0.062 0.045 0.069 0.039 0.042 
0.5 0.034 0.009 0.056 0.059 0.068 0.069 0.045 0.078 0.047 0.051 
0.8 0.044 0.014 0.059 0.066 0.062 0.058 0.042 0.081 0.050 0.053 

AR Case: Vt = pvtl +et, et - N(0, 1) 

T p M7liic MGLcS I7GLS DEbic DFGLS DFt DFGSc PTbic GLSC MPGLC 

100 -0.8 0.002 0.000 0.015 0.067 0.082 0.076 0.049 0.063 0.013 0.014 
-0.5 0.010 0.003 0.037 0.067 0.076 0.071 0.046 0.087 0.028 0.033 

0.5 0.029 0.012 0.064 0.082 0.087 0.082 0.053 0.108 0.051 0.057 
0.8 0.047 0.025 0.090 0.091 0.081 0.077 0.053 0.125 0.068 0.077 

150 -0.8 0.003 0.000 0.021 0.062 0.069 0.067 0.048 0.051 0.019 0.020 
-0.5 0.013 0.004 0.039 0.060 0.074 0.069 0.045 0.072 0.031 0.035 

0.5 0.030 0.010 0.055 0.063 0.069 0.066 0.047 0.081 0.046 0.051 
0.8 0.043 0.017 0.070 0.067 0.071 0.069 0.047 0.092 0.055 0.063 

250 -0.8 0.007 0.001 0.029 0.056 0.057 0.054 0.040 0.049 0.026 0.028 
-0.5 0.022 0.006 0.046 0.052 0.057 0.058 0.047 0.062 0.040 0.042 

0.5 0.028 0.008 0.052 0.056 0.061 0.061 0.045 0.070 0.043 0.046 
0.8 0.037 0.010 0.060 0.060 0.061 0.063 0.051 0.073 0.051 0.056 

Notes: The results reported for the M,7ic tests are those corresponding to MZ. Since the numerical results for MZa, MZt, 
and MSB are similar, we use the label M in the tables. Three variants of the M tests are considered. The Mt,,ic is the original 
MZa, the M,7GILS uses GLS detrended data to construct the statistic but uses least squares detrending in the estimation of s2 R and 

KIGiLcS uses GLS detrending at c = -7.0 when constructing sAR. When the BIC is used, km,a = 6 and km,n = 3 as in ERS. For the 
MIC, kmax = int(12(T/100)1/4), kmin = 0, and CT = 2, giving the MAIC. The DFGLS is based on the 10% sequential t test for the 
significance of the last lag. 

-GLS 

stantial size distortions. However, the PT and MPT show remarkably little size 
distortions when the MAIC is used to select k. 

To assess the relative power of the tests, we tabulate the rejection rates at 
a = 1 + C/T. For p = 0 and c = -7.0, the values of ar are 0.93, 0.953, and 0.972 
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TABLE V.B 

SIZE-ADJUSTED POWER OF THE TESTS; p = 0 

MA Case: vt = et + Oet-1, et - N(0, 1) 

T 0 Ms7c MzGnzLS MjmGLS DEbic DFbGcS DFtGLS DFG7LSc PTbic FLS IpGLS 

100 -0.8 0.193 0.237 0.311 0.241 0.419 0.412 0.385 0.313 0.326 0.311 
-0.5 0.253 0.351 0.344 0.191 0.448 0.429 0.385 0.414 0.362 0.355 

0.0 0.315 0.452 0.458 0.131 0.432 0.436 0.454 0.418 0.471 0.442 
0.5 0.259 0.332 0.324 0.122 0.414 0.402 0.370 0.402 0.351 0.347 
0.8 0.180 0.257 0.264 0.134 0.366 0.335 0.343 0.348 0.296 0.281 

150 -0.8 0.180 0.252 0.296 0.262 0.448 0.417 0.415 0.381 0.307 0.292 
-0.5 0.267 0.387 0.384 0.195 0.450 0.430 0.393 0.421 0.398 0.396 

0.0 0.339 0.463 0.460 0.152 0.422 0.405 0.454 0.413 0.467 0.453 
0.5 0.263 0.382 0.380 0.160 0.441 0.418 0.405 0.429 0.393 0.398 
0.8 0.233 0.346 0.363 0.147 0.382 0.362 0.404 0.387 0.377 0.374 

250 -0.8 0.190 0.319 0.334 0.287 0.441 0.420 0.437 0.419 0.335 0.327 
-0.5 0.264 0.404 0.396 0.201 0.477 0.455 0.428 0.458 0.425 0.409 

0.0 0.338 0.481 0.477 0.152 0.464 0.446 0.483 0.455 0.485 0.478 
0.5 0.258 0.411 0.411 0.169 0.439 0.424 0.431 0.441 0.422 0.413 
0.8 0.246 0.385 0.395 0.143 0.432 0.413 0.419 0.434 0.406 0.405 

AR Case: vt = pvt-1 + et, et - N(0, 1) 

T P Mttlic Ms7Gzz.LS 2 MGLS DFbic DFbGcS DFtGLS DFGzLS S Tb F GLS MPGTtLS Milc M 'ics inic biTbic Tic TrI c 

100 -0.8 0.246 0.349 0.350 0.154 0.433 0.429 0.404 0.384 0.362 0.342 
-0.5 0.330 0.437 0.432 0.145 0.428 0.420 0.455 0.405 0.452 0.437 

0.5 0.279 0.365 0.368 0.115 0.338 0.330 0.385 0.379 0.385 0.374 
0.8 0.196 0.251 0.241 0.084 0.297 0.292 0.298 0.261 0.276 0.269 

150 -0.8 0.275 0.398 0.416 0.161 0.477 0.437 0.432 0.442 0.419 0.409 
-0.5 0.332 0.453 0.454 0.161 0.404 0.390 0.468 0.423 0.463 0.458 

0.5 0.307 0.419 0.411 0.140 0.417 0.410 0.446 0.407 0.436 0.430 
0.8 0.232 0.333 0.330 0.103 0.341 0.324 0.362 0.325 0.349 0.353 

250 -0.8 0.325 0.479 0.472 0.157 0.485 0.480 0.493 0.468 0.477 0.471 
-0.5 0.300 0.452 0.447 0.179 0.493 0.477 0.466 0.469 0.459 0.460 

0.5 0.336 0.443 0.436 0.158 0.447 0.434 0.456 0.428 0.468 0.456 
0.8 0.279 0.375 0.366 0.131 0.386 0.382 0.381 0.381 0.387 0.383 

Note: Power is evaluated at a = 1 + c/T, c = -7.0. These are 0.93, 0.953, and 0.972 for T = 100, T = 150, and T = 250, respectively. 

for T = 100, 150, and 250, respectively.9 The size-adjusted power of the tests are 
reported in Table VB. Although the tests should reject the null hypothesis 50% 
of the time in large samples, none of the tests quite achieve the 50% (asymptotic) 
target for sample sizes less than 200. Thus, in finite samples, the need to account 
for serial correlation reduces the power of the tests across the board. However, 
the GLS based tests have more power than tests that do not implement GLS 

9 We also performed extensive power simulations with other values of a and T. The results are 
qualitatively similar and do not affect the conclusions concerning the relative performance of the 
different tests. 
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TABLE VI.A 

SIZE OF THE TESTS; p = 1 

MA Case: vt = et + Oet-I, et - N(0, 1) 

T 0 MZnic MszGliLMS MGLS DEbic DFS DFtGS DFGLS PTbic GLS MpGLSc 

100 -0.8 0.140 0.123 0.059 0.509 0.567 0.528 0.123 0.562 0.061 0.061 
-0.5 0.037 0.025 0.035 0.092 0.107 0.111 0.069 0.145 0.036 0.036 

0.0 0.011 0.005 0.018 0.075 0.074 0.078 0.039 0.161 0.017 0.018 
0.5 0.032 0.022 0.048 0.084 0.085 0.094 0.038 0.190 0.046 0.047 
0.8 0.048 0.033 0.056 0.096 0.105 0.109 0.017 0.250 0.053 0.056 

150 -0.8 0.074 0.061 0.027 0.581 0.586 0.477 0.082 0.570 0.028 0.028 
-0.5 0.032 0.017 0.028 0.087 0.103 0.104 0.049 0.114 0.028 0.029 

0.0 0.017 0.008 0.023 0.066 0.067 0.072 0.038 0.111 0.023 0.024 
0.5 0.025 0.016 0.032 0.068 0.084 0.085 0.029 0.142 0.032 0.034 
0.8 0.058 0.035 0.058 0.080 0.088 0.085 0.018 0.181 0.055 0.057 

250 -0.8 0.025 0.016 0.012 0.566 0.531 0.381 0.064 0.554 0.012 0.012 
-0.5 0.031 0.016 0.033 0.094 0.105 0.099 0.048 0.103 0.034 0.035 

0.0 0.023 0.011 0.029 0.056 0.059 0.065 0.038 0.083 0.030 0.031 
0.5 0.032 0.012 0.037 0.062 0.066 0.070 0.028 0.097 0.036 0.037 
0.8 0.059 0.032 0.059 0.062 0.067 0.060 0.026 0.119 0.059 0.060 

AR Case: vt = pvt_ +et, et - N(0, 1) 

T P M1721c MGiS MGLS DEbic DFbGcS DFtGLS DFGL S Tb* pGLS MpGLS T p Millic 
mIc mi c n 

t Sm Pbc 
c 

Trni~ C PTrn C 

100 -0.8 0.000 0.000 0.000 0.072 0.079 0.084 0.034 0.067 0.001 0.000 
-0.5 0.006 0.003 0.012 0.071 0.074 0.077 0.037 0.122 0.013 0.013 

0.5 0.033 0.021 0.042 0.076 0.083 0.088 0.038 0.178 0.040 0.043 
0.8 0.081 0.056 0.093 0.081 0.086 0.091 0.043 0.210 0.080 0.085 

150 -0.8 0.001 0.000 0.003 0.061 0.062 0.069 0.028 0.043 0.001 0.004 
-0.5 0.017 0.006 0.024 0.059 0.070 0.075 0.038 0.090 0.014 0.023 

0.5 0.037 0.018 0.044 0.056 0.070 0.074 0.039 0.127 0.041 0.043 
0.8 0.045 0.022 0.056 0.063 0.066 0.073 0.043 0.142 0.056 0.055 

250 -0.8 0.001 0.000 0.003 0.057 0.054 0.058 0.028 0.009 0.004 0.004 
-0.5 0.017 0.006 0.024 0.046 0.047 0.053 0.038 0.025 0.023 0.023 

0.5 0.037 0.018 0.044 0.059 0.063 0.068 0.039 0.046 0.042 0.043 
0.8 0.045 0.022 0.056 0.054 0.056 0.061 0.043 0.054 0.052 0.055 

Note: The results reported for the Mr..ic tests are those corresponding to MZ,. Since the numerical results for MZa, MZt, 
and MSB are similar, we use the label M in the tables. Three variants of the M tests are considered. The Mr7,ic is the original 
MZ, the MMGLS uses GLS detrended data to construct the statistic but uses least squares detrending in the estimation of s2 R and 

MG,S uses GLS detrending at c = -13.5 when constructing 52 When the BIC is used, kmaj = 6 and kmin = 3 as in ERS. For the 
MIC, kmax = int(12(T/100)1/4), k i = 0, and CT = 2, giving the MAIC. The DFGLS is based on the 10% t test for the significance 
of the last lag. 

detrending. Furthermore, the power increase from T = 100 to T = 150 is quite 
substantial, especially when we take into account the fact that we are evaluating 
at a closer alternative at T = 150 than at T = 100. 

For p = 1, the results for size are reported in Table VI.A. The size distortions 
are somewhat larger when there is a linear trend in the regression, but there are 
clearly gains from using GLS detrended data to construct S2R and selecting k 
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TABLE VI.B 

SIZE-ADJUSTED POWER OF THE TESTS; P = 1 

MA Case: vt = et + Oet-1, et - N(0, 1) 

T 0 Mn ic MGLS MGLs DFbic DFGLS DFtGLS DFGLS i Ll M pGLS nrc fle c I u PTbic ,nIC Tm IC 

100 -0.8 0.296 0.266 0.348 0.283 0.398 0.414 0.357 0.355 0.350 0.348 
-0.5 0.320 0.246 0.300 0.258 0.421 0.420 0.324 0.324 0.311 0.305 

0.0 0.450 0.266 0.439 0.175 0.362 0.341 0.432 0.488 0.448 0.442 
0.5 0.196 0.147 0.207 0.161 0.316 0.310 0.259 0.320 0.224 0.218 
0.8 0.149 0.166 0.154 0.169 0.282 0.269 0.254 0.260 0.163 0.155 

150 -0.8 0.236 0.269 0.316 0.309 0.444 0.416 0.354 0.326 0.316 0.314 
-0.5 0.283 0.348 0.325 0.291 0.434 0.415 0.358 0.384 0.333 0.330 

0.0 0.407 0.470 0.457 0.200 0.384 0.352 0.462 0.369 0.466 0.465 
0.5 0.312 0.347 0.348 0.212 0.365 0.365 0.375 0.354 0.344 0.348 
0.8 0.171 0.209 0.217 0.201 0.317 0.310 0.309 0.302 0.227 0.225 

250 -0.8 0.247 0.285 0.296 0.371 0.460 0.430 0.375 0.406 0.300 0.297 
-0.5 0.308 0.370 0.366 0.278 0.459 0.441 0.392 0.422 0.374 0.371 

0.0 0.380 0.458 0.451 0.250 0.437 0.418 0.447 0.432 0.455 0.456 
0.5 0.311 0.374 0.365 0.258 0.426 0.406 0.388 0.441 0.367 0.363 
0.8 0.225 0.268 0.271 0.233 0.364 0.354 0.310 0.388 0.280 0.282 

AR Case: Vt = pvt_l +et, et - N(0, 1) 

T P Mnlic M'GzI.Ls gCGLS DFbic DFGLS DFtGLS DFG7LSc PTbic TGLc MpTGLSc 

100 -0.8 0.257 0.308 0.296 0.204 0.380 0.372 0.385 0.256 0.301 0.299 
-0.5 0.332 0.396 0.382 0.205 0.367 0.366 0.431 0.303 0.398 0.393 

0.5 0.235 0.265 0.270 0.133 0.262 0.264 0.286 0.247 0.279 0.280 
0.8 0.114 0.127 0.129 0.098 0.167 0.165 0.206 0.144 0.150 0.144 

150 -0.8 0.311 0.363 0.349 0.240 0.435 0.409 0.409 0.345 0.351 0.347 
-0.5 0.388 0.433 0.423 0.240 0.404 0.376 0.437 0.385 0.438 0.429 

0.5 0.296 0.338 0.345 0.207 0.338 0.313 0.366 0.333 0.358 0.355 
0.8 0.189 0.211 0.218 0.133 0.239 0.228 0.251 0.211 0.228 0.224 

250 -0.8 0.379 0.452 0.441 0.245 0.472 0.456 0.468 0.464 0.446 0.442 
-0.5 0.372 0.453 0.451 0.300 0.509 0.484 0.445 0.445 0.452 0.457 

0.5 0.331 0.387 0.385 0.233 0.391 0.372 0.392 0.401 0.395 0.388 
0.8 0.259 0.280 0.288 0.189 0.314 0.292 0.289 0.312 0.285 0.284 

Note: Power is evaluated at a = 1 + cIT, c =-13.5. There are 0.865, 0.910, and 0.946 for T = 100, T = 150, and T = 250, 
respectively. 

with the MAIC. The resulting MGLS tests have size close to the nominal size for 
all parameter values, while the M and MGLS tests continue to have size close 
to .15. As well, the MAIC yields exact sizes for the DFGLS and the PT tests that 
are far more accurate than those obtained using the sequential t test and the 
BIC. 

The size-adjusted power of the tests for p = 1 are reported in Table VI.B. 
Power is again evaluated at ar = 1 + c/T. For c = -13.5, ar is 0.865 for T = 
100, 0.910 for T = 150, and 0.946 for T = 250. Compared to the size-adjusted 
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power reported in Table VB, all GLS based tests have lower power when p = 1. 
However, there are non-negligible power gains from GLS detrending. 

A feature of interest is that the MIC allows the MGLS tests to have an exact size 
that is closer to 5% than fixing k at k* assuming a known DGP. For example, 
in the MA case with 0 = -.8 and p = 1, the size is .059 using the MIC and .159 
using a value of k fixed at k* = 6. When T = 150, the corresponding values 
are .027 with the MAIC and .093 at k* = 8 (not reported). Hence, the MAIC 
chooses a k that adapts to the particular sample analyzed. Size improvements 
obtained using the MIC compared to fixing k at k* are even larger when the 
number of deterministic components increases (see Perron and Rodriguez (1998) 
for the case of a trend with a change in slope). 

The size reported for MGLS is remarkable, given that when 0 < 0, the Z tests 
based on kernel estimates of o2 reject with probability close to one under the null 
hypothesis. The DF tests have higher size-unadjusted power in the case of nega- 
tive MA errors. Such high probabilities of rejections are misleading, however, as 
they reflect size distortions. Although the DFGiLS has higher size-adjusted power 
than Mic for some parameter values, this result must also be put into perspec- 
tive. Consider 0 = -0.8, T = 100, and p = 1. While the size-adjusted power of 
the DFbicS is higher than the M'L by 5 basis points, its size is more distorted by 
45 basis points. This is a substantial increase in the probability of a Type I error. 
The DFGLs fares better, but there is still a size advantage in favor of the Mm. 

Overall, the MGiLfS tests have better sizes, while the DFGLs has better power. 
A drawback of the M,Gfr test is that it is substantially undersized for pure AR 
processes with a coefficient close to -1. Although economic time series rarely 
display such a property, this nonetheless translates into lower (size unadjusted) 
power. As discussed in Section 6.2, this is not due to a weakness of the MIC in 
selecting k, but rather is an inherent property of the MGLS tests. The trade-offs 
between the DFGLs and the MFGL are to be determined by the practitioner. 

8. EMPIRICAL ILLUSTRATIONS 

To illustrate the ease of application of our procedures and the differences in 
inference that can result, we consider inflation series from the G7 countries. Data 
for the GDP deflator are taken from the OECD International Sector Database. 
We constructed annualized quarterly inflation rate series covering the period 
1960:2 to 1997:2 (T + 1 = 149 observations) as (400 times) the logged differences 
of successive quarters. All estimation results are presented in Table VII. As a pre- 
liminary step, we first estimated the simple ARMA(1, 1) model for each series. 
The results show autoregressive roots that are indeed close to one (ranging from 
.92 for Germany to .98 for France). Also, the MA coefficients are negative for 
all series, ranging from -.27 for Italy to -.72 for France. This suggests that such 
series are likely affected by the types of problems we discussed. 

The first step to constructing the tests is to generate GLS detrended series 
as defined by (6) with c = -7 as the noncentrality parameter (since inflation 
series are nontrending; otherwise use c = -13.5). The next step is to estimate by 



1544 SERENA NG AND PIERRE PERRON 

TABLE VII 

EMPIRICAL RESULTS FOR INFLATION SERIES FROM THE G7 COUNTRIES 

USA Canada UK Japan Italy France Germany 

AR(a): .95 .95 .93 .87 .92 .98 .92 
MA(O): -.32 -.51 -.55 -.42 -.27 -.72 -.54 

BIC k 2 1 1 1 0 3 3 
zGLS -4.04 -9.63b _26.81a -34.12a _7.39C _5.70c -26.58a 

MZGLS -3.71 -8.13b -18.05a -23.95a -7.17c _3.49 -16.57a 
DFGLS -1.37 -2.07b -3.31a -3.85a _1.95c -1.36 -3.00a 

pGLS 7.39 3.36c 1.40a 1.01a 4.06c 7.92 1.96b 

MpGLS 6.60 3.12b 1.41a 1.02a 3.42c 7.01 1.98b 

MAIC k 2 2 8 12 5 7 5 
ZGLS -4.04 -6.98C - 14.75a -13.35a -2.71 -3.27 - 18.83a 

MZGLS -3.71 -5.48 -6.00C -3.17 -2.49 -1.07 -8.82b 
DFGLS -1.37 -1.69c 1.77c -1.33 -1.08 -0.77 -2.21b 

pGLS 7.39 4.92 4.13c 7.64 11.68 25.85 3.42c 
MpGLS 6.60 4.58 4.17c 7.73 9.83 22.89 3.44c 

Note: a, b, and c denotes a statistic significant at the 1%, 5%, and 10% level, respectively. 

OLS the autoregression (8) for all values of k ranging from 0 to some maximal 
order, say kmax. We use kmax = int(12(T/100)1/4) but other values are valid. In 
the model selection stage, each autoregression uses the same number of effective 
observations, namely T - kmax. The selected kmaic is obtained as the value of 
k that minimizes (12). Given k naic' the DFGLs is obtained as the t-statistic on 
go = 0 from re-estimation of (8) with T - kmaic effective observations. The same 
regression is used to construct S2R according to (5). Then, the MGLS tests are 
constructed from (3) and (4), the P`LS test from (7), and the MP.LS test from 
(9), all with GLS detrended series jt. Using the BIC, the steps are the same 
except that the term rT(k) is omitted from (12). 

The results show interesting differences between using the MAIC or the BIC 
to select the lag length. First, for all countries, except the U.S., the selected lag 
length is higher with MAIC than with BIC. Second, in all cases (except the U.S.), 
the evidence in favor of stationarity is weaker with the MAIC than with the BIC. 
For example, with the BIC, the MZGLS and DFbGLS tests suggest a rejection at 
the 1% significance level for Japan and Germany, at the 5% level for Canada, 
and at the 10% level for Italy. When using the MAIC, there are only rejections 
at the 5% level for Germany (showing that the tests still have power) and at 
the 10% level for the U.K. For Canada, the DFGLs is significant at the 10% 
level but barely. For the U.S. and France, there is no difference in outcome. Of 
interest also is the fact that the ZGLSaiC still shows strong rejections at the 1% 
level for Japan, the U.K., and Germany. This accords with the simulation results 
that the Z GLS test has high size distortions even when constructed using the 
MAIC. 
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9. CONCLUSION 

The analysis of ERS shows that detrending data by GLS yields power gains 
for unit root tests. We find that GLS detrending also allows for a more pre- 
cise autoregressive spectral density estimate and ensures that it is invariant to 
the parameters of the trend function. We also show that the BIC or AIC are 
not sufficiently flexible for unit root tests. We suggest a modification, the MAIC, 
which is evidently more robust when there are negative moving-average errors. 
Use of the MAIC in conjunction with GLS detrended data results in a class 
of MGLS tests that have good size and power. The key distinction between the 
MAIC and standard information criteria is that the former takes account of the 
fact that the bias in the estimate of the sum of the autoregressive coefficients is 
highly dependent on k. In this paper, we show that the MAIC is useful for the 
DFGLS test and the construction of the autoregressive estimate of the spectral 
density at frequency zero. We also expect the MAIC, or the more general MIC, 
to be useful in a broader range of applications because macroeconomic data are 
known to be highly persistent, and in such cases, the bias in the estimate of the 
sum of the autoregressive coefficients should depend on the order of the autore- 
gression. However, it should also be noted that while the suggested information 
criterion is useful in the context of unit root tests as we have shown, it may not 
be appropriate when selecting the lag order in other contexts. The general use- 
fulness of the MIC also awaits further investigation. 
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APPENDIX 

PROOF OF THEOREM 2: In this Appendix, for simplicity, we consider the derivations in the case 
where the DGP is (14) and no deterministic component is present in the regression (8), in which 
case Yt is used instead of ,t. All the results carry over to the more general case with least-squares 
or GLS detrending. With GLS detrending, the stated results remain exactly the same when p = 0 
and are as stated in the text with Vc c(r) replacing Jc (r) when p = 1. As a matter of notation, we 
let =X denote weak convergence in distribution and -+ convergence in probability. Also, to alleviate 
notational burden, we let N = T - kmax. Note that we can write the DGP as 

k k 

Ayt =- ,(-OT) AYt-i + T #(-T)iYt-i-1 + et - (-OT)k+'et-k-l- 
i=1 i=O 

Let 

k-j c k-j 

Zt_= ,(-T)iYt-i- = T Z(-OT)Yt-i-j-1 + et-j- (OT) ket-kl; 
i=O i=O 
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the DGP can also be written as 

(A.1) Ayt = Yt-l - (-OT)Zt-l + T (-OT)iYt-i-1 + et (0 )klet-k-1 

k 

= PoYt-1 + f3izt-i + etk 
i=l 

with go0 = c/T, 11 =OT, Pi = 0 for i > 1, and 

c k 
(A.2) etk = (-OT)iYt-i-1 +et - (-0T)klet-k-l 

i=1 

Since {zt-j, i = 1, . . ., k} is a linear function of {Ayt-i, i =1, . . ., k}, the OLS estimate of g0 and 
the sum of squared residuals from the regression 

k 

(A.3) Ayt = goYt-, + piAyt-i + etk 
i=l 

have the same properties as the corresponding quantities from estimating (A.1). We start with a 
Lemma that will be used extensively. 

LEMMA A.1: Let Jj(r) = fJ exp((r - s)c)dW(s), K3T = o(T), and 8ij = 1 if i = j and 0 other- 
wise with i, j = 1, . . ., k. Then, uniformly for i, j < kma < K3 = o(T): (a) N-1 ET k ?1 Y2-1 = 

2((1 + 82 foJc(r)2dr) + 0,(T- /2); (b) N-1 ET=kmx+l Yt-lZt-j = 81 + 0p(T-1/2); (c) 
N-1 Et=kmax +1 Zt-izt-j = (e (8ij + (-OT)2(k?l) i) + 0 (T1/2); (d) N-1 _T-k 1 2AYtYt1 
+ O(T-1/2); (e) N-1 ETT ?1 AYtZtJ = -81joe2 + OP(T -1/2). 

PROOF: From Nabeya and Perron (1994), we can write Yt = aTet + bTXt where Xt = (1 + 
c/T)Xt1 + et, aT = (-OT)(1 + cIT), bT = 1-(1 + c/T)(-OT), aT 1, T112bT 8 as T oo. Also, 
ET-1 Xt_et = Op(T). For part (a), we have: 

T T 

N-1 2 ~ N'1 2 
X21+ a T -e N-1 , Yt-i = N E (aTet-1 + bT t-1 + Tb Xt-l-1) 

t=kmax+l t=kmax+l 

= _e2 (1 + 82 J c(r)2dr) + O (T-1/2). 

For part (b), we have 

T 

N-1 Z Yt-lzt-j 
t=kmax+l 

T / c k-j 

N Y, (aTe-1 +bTXt-1) 
- 

Z(-OT)Yt-i-j-1 -(-OT) ek1 +tk1 
t=kmax+l i=O 

Since Xt =Et=1 exp((t-j)c/T)ej, Xt_1 = Xtk+1 E 1 exp((t-j)c/T)ejI We have ET-=kmax+lee = 

OP (Tl) for t 7 s, T112bT = Op (1), and ET=km?+l Xt-let = OP(T), hence, N-1 ET=km?+l YtlZti - 
j2 = Op(T-1/2) and N-1 ETkmax+1 Yt-lzt-j = Op(T-1/2) for j > 1 uniformly in 0 < i, j < kmax < K3T 
For part (c), 

T 

N-1 E zt-izt- 
t=kmax+l 

T 

N- AT ~, [et-i - et-k-1 (-OT) ][et-j t-k-1 (-OT)klJ] + (T12) 
t=kmax+1 

=o-r2(5 + (_0T)2(k+l)-i-j ) + O(T-1/2). 
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Part (d) follows using the fact that 

T T T 

N-1 Z AYtYt1- = cN t Yt- + N - (aTe_l + bTXt-l)(et + OTet-1), 
t=kmax+1 t=kmax+l t=kmax+l 

and part (e) using the fact that 

T T /C 
N-1 Z Aytzt = N-1 +e t Tyt-k+( m (-(-OT)etl) 

t=kmax+1 t=kmax+1 

(T j=o T)jYt-i-j-l1+et-i-et_ I _0T k+1-i) 

The proof of Theorem 2 follows directly from the following Lemma concerned with the limit of 

go0, the OLS estimate of go0 from the regression (A.1), which is equivalent to the OLS estimate of 
go0 from the autoregression (8). 

LEMMA A.2: Consider the OLS estimate of g0 from the autoregression (8). Let x = f2 Jo (r)2dr 
when p = 0 and x = f2R VCe(r)2dr when p = 1. Then, (i) uniformly in 0 < k < K1T: k(30 = -x-1; 
(ii) if kIT1/2 -+ K, T1/2p0 =: A, where A is a random variable with E(A) = -a(K)E(x-1), 9(K) = 

28 exp(-2K5)/(1 - exp(-2K8)); (iii) uniformly in K2T < k < K3T, T1/2/30 = OP(l). 

(i) Case 0 < k < K1T. Let Xt = (Yt-1, Z), Zt = (Zt-*1 Zt-k). Define the following two (k + 1) 
by (k + 1) matrices: 

- T T 2 
yt2_1 Yt-lzt, 

T t=kmax+l t=kmax +1 

RT= N-1 XtX = N-' , 
t=kmax +1 T T 

Lt=kmax +l t=kmax +l 

l+x el 

_ e Ik + CC'- 

where x f 82 J, (r)2dr, e' = (1, 0lxk) and c is a k x 1 vector of ones. The inverse of R is 

-k +l -k 1 1 1 
-k k(l +x) -(1+x) -(1+x) -(1 + x) 

R1=J21 1 -(l+X) k(l+x) -x _x 
1 k+1 x 

1 -(1 + x) -x k(l + x) -x 

L -(1 +x) -x -x -x k(l+x) 

In what follows, the structure of R-1 will be exploited. Let 

T T 
1Y VT = (N-i ? AYtYt1, -1 f AytZK) V = (-1, -1, ?' 

t=kmax +1 t=kmax +1 

Note that 0 1, . . .,3k) = RJT V 

LEMMA A.3: (a) maxo<k<KlT IIRT - RT| = Op(K1T/;), (b) maXO<k<KlT IIRT RI = 

?nP(K1 T1N1T)- 
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PROOF: Using Lemma A.1, we have Ri -Rij = Cij where Cij = Op (T-1/2) uniformly in 0 < k < KlT 
for i, j = 1, . . ., k + 1 and part (a) follows. To prove part (b), note that the lower k x k submatrix 
of R is, say, Rk = (Ik_+ tC). Then (Ik + W) -1 = Ik - (1 + C't)-1tc' has eigenvalues of 1 and (1 + L't)-1. 
Hence maxO<k<KlT IIR-1I = Op(l). Using arguments as in Perron and Ng (1998), the (k + 1) x (k + 1) 
matrix R also has eigenvalues of the same order as Rk. Hence maxo<k<KlT h1R-1 11 = Op(l). Let QT = 

I JRT- -Re 11. Then maXO<k<KlT QT < maXO<k<KlT iTi IRT-RII IR-1 ii = OP(K1T/17\;) by arguments 
analogous to Berk (1974). 

LEMMA A.4: (a) maxo<k<KlT IIVT - VI = OP(/KlT/T); (b) maXO<k<KlT IIVT II =Op(l) 

PROOF: Part (a) follows directly from Lemma A.1 (d, e). Since V = (-1, -1, Olxk-l)', 

maxO<k<KlT 1IvII = Op (l) and maxo<k<KlT I 1T I = Op(l) in view of part (a) of the Lemma. 
Let e' = (1, Olxk)- We have 

= e'RT VT = e'(R1 - R-1)(VT -17) + e'(RT1 - R-1)V + e'R- (VT - V) + e'R1- V 

= A+B+C+D. 

For a matrix M, denote the i, jth element of M-1 by me'. We now consider the limit of each of the 
four terms. For A, 

k 

max IIke(R+1 -R(VT - V)12 <KIT I1 -Fli 112 11T- II 
O m<ax jj|ke (RT R)(VTl)| < KlT 

p 
li 

P || i, T Vi 1 
O<k<KlT i=1 

K 2 k K' 
<1 KIT pIli - P112 < (Kl-T O- 

since i= r-r1-I2 < - R-1 12 = Op(k2/T) < Op(KlT/T). For the term B, we need 

maxO<k<KlT IIke'(Ri k-R1)VII. Recall that RT = R + C, where C3j = Op(T-1/2), i, j = 1.. , k + 1. 
Then R1 = R-1 + R-CR-1 + Op(T-1). We have (ignoring, without loss, the Op(T-1) term): 

k+1 k+1 

IIe'(RT1 - R-1)II = Ie'R-lCR-l1 - Z (Flj + F2j) Z FClic 
j=1 i=1 

k+1 k+1 k k+1 

< E 1 (Flj + F2j) F1E1 li 111Cij 11 < C* E 1(Flj + F2j) 11 11 Fli1, 
j=l i=1 j=1 i=1 

where c* = maxi, Cij. But the sum of the norms of the elements of the first row of R-1 is 
[2k + (k - 1)][1 + (k + 1)x1-l = OP(1), and the sum of the norms of the sum of the first two 
elements of each row of R-1 is given by (1 + kx + (k - 1)x)/(1 + (k + 1)x) = OP(l). Since c* = 

OP(T-1/2), maxO<k<KlT I ke'(RTl - K-)Flll = OP(KlT/T1/2). For the term C, first note that 

(VT -V) = 
NA( YtYt-1+1)( Yz-+1, 

T T 1 
Z 'YtZ,-2 Z, Y(Zt-kJ. 

t=kmax+1 t=kmax+1 
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Thus, 

max IIke'R-1(VT -V)jj 
O<k'KlT 

<+(KT+) [(KlT + 1) (N-1 ?, Atyty + i) 1 + (KIT + l)X 0 ( 1T + ) ( 
t=kmax +1 

For D,~~~~~~ KlT (N-1 ? AtZt1 +I) +N1Z ? AYtZt-U 

- K =kmaxjY tll j=2 t=kmax+l 

< (cK1 TIN1/2) 
__. 0 

For D, 

max (ke'R- V) K= T 1 -1 
O< KT 1 1KT + 1)X X=8 fo J, (r)dr 

Combining the results, we have kf3o = op(l) + op(l) + op(l) + Op(l) = Op(1). Thus, kf30 = 

(82 JJ(r)2dr)-1 uniformly in 0 < k < K1T. 

(ii) Case k/Ti/2 - K: 

For the case where kIT112 K, we first note that the relevant matrix R is given by 

1r +x Ie'4 I 
O- 

e Ik + AA J 

where_' = [(-OT)k . , (-OT)]. The limiting vector V remains unchanged. Now we have v7I3T = 

v-7e'R-' V + <7W, where W = A + B + C. It is easy to see that E(VYW) = 0 in large samples. So, 
we need to evaluate v/7e'RK-1, (minus) the sum of the first two elements of R-1. By partitioned 
matrix inversion, these are given by 

Ri: [(1 +x) -ee'(Ik +LtiL)ie]V, 

R-2 - [(1 +X) - e (Ik+/1/1 t)- e]-le'(Ik+ +/-qt) 1e. 

Since (Ik + /Lt')i = 'k- bb/A, A = 1 + b'4, e'(Ik + AA') ie = e'e - (e'AA'e/A) = 1 - [(-OT)2k/A]. 

Hence, 1- e'(Ik +y 1) e = (-OT)2k/A and substituting for A = (1- (-OT)2(k+l))/(l - OT ) 

(A.4) v~Ye/k1f~ _ 
(_ )2k(1 -_OT)2 _(_0)2k(1 

_ 
OT )2+~ (1/2), 

(A.4) v- = 
[1 - (-0)2(k+l)]X + (-0)2k(1 - OT)2=[1 - (-O)2(k?l) 

+ Ox (T- 

which converges to -a(K)/X setting k = KT1/2 and taking the limit as T oo. 

(iii) Case K2T < k < K3T. 

Note that (-OT)k -O 0 if k/ ;T -+ oc. Let 

2 1+x e' ] 

and note that 

- X-1 -X-1 Olxk-i 

- =(2 _ X-1 (1 + X)X-1 0 . 

? k-lxl ? Ik--1_ 
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Thus, I RII = Op(l) and IIR-111 = Op(l). From Lemma A.1 (a, b, c), maXK2T<k<K3T IT- 

RI = OP(K3T/T 1 ). Also, maXK2T<k<K3T IIRTII < maxK2T<k<K3T IRT1 RI + maxK2T<k<K3T RI= 

Op (K3TIT 12) since maXK2T<k<K3T I R I = Op(l) and K3T/T112 + c. Since maxK2T<k<K3T IIR1 < 

X <k<K3T IRT I, maXK2T<k<K3T II ll Op(T112/K3T). It follows that 

max glRT-II 1k1- < max IlRTl 1I JIRT-RIIIIJ-1II 
K2)T <k<K3T K2T<k K3T 

< Op(T 12/K3T)Op(K3T/T1/2)0p(j) = Op(l). 

We also have maxK2T<k<K3T IIp T-VF = Op(K12 /T 1/2) and I1 VII = Op(1). Thus, 

T1/2 -T1= T/22elR1-J PT 

= T/2e'(R1 - R-1)(J (T-V) + T1/2e'(RiTl - R-1) 

+ T1/2e'R-1 (VT- V) + T1/2e'R V 

= A + B + C + D. 

For A, we have 

k 

max IIT 1e'(R R)JT V) 12< max TZj Fl1 i 12I J"1, 112i 
K2Tk<K3T K2T_kKT i- 

k 
< max cL )71i-1i I2 

K2T<k<K3T i=1 

<KkaKC jlI- RT -I 112 = Op() 

For B, IIT112e'(Rk1-R-1)V1I = iIT12e'R-1CR-1V I + Op(T-1/2) for some R such that RT = R + C, 
where the matrix C has elements that are OP(T-1/2). Now 

-= [x-1, -x-l,0,0,, . . . ,0], 

-T= [0, -1, 0, O.. ]'. 

Therefore CR-V =-C2 where C2 is the second column of the matrix C. Then e'R1 CR1 V= 
x'1(-C12+C22). Since C12 and C22 = Op (T-1/2), maxK2T <k<K3T IITI/2e'Rk-CR-1 V11 = Op(l). For the 
third term C, 

max IT11 e (VT V)|| = max T1/2[X -](VT-V) 
K2T- -K3T K2T<k<K3T 

maxtK3 1l [(V1, T V)(P2, T-F2)] | 
=K2T<k<K3T X 

T 1/2 C 
<_ T12 = Op(l). x T1/ 

For D, 

T1/2 e'R-1 = T1/2[ x-1 +X-1] = 0. 

Combining the results, we have T1/2/30 = Op(l) uniformly in K2T < k < K3T. 
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PROOF OF LEMMA 1 

LEMMA A.5: Consider the estimated autoregression (8) when the DGP is given by (14). Let &k, = 
N-1 ET ; then uniformly over 0 < k < K3T, 

ln(&k2) = ln(o-e2) + 1 ( oT;2(k+1) (1 -T) + OP(T112). 

PROOF: Let Ek = 

(ekmax+lk. 

eTk), where etk = cT1 Ek 
1 
(-OT)iYt-i-1 +et - ( 

OT)k1 etkl. Let 
X = (X1, ... I XT)Y. Then 

61k2 = N-XE'Ek-N E'X(X'X) X'Ek. 

By direct calculations, 

T T 
(A.5) N-1E'Ek = N-1 e2 ? )2(k+l)N-1 e2 + (T ) Z e + (-OT)2(k?l)Nl1e+kl 

t=kmax+1 t=kmax+1 

(A.6) = C -2(1 + (_OT)2(k+l)) + O 1(T1/2). 

Consider N-1E.X = (N-1 EkT=kma +1 yt-, etk, N1 EjT=kma?+l Ztetk). Using results established in the 
proof of Theorem 2, 

T 
N 1 Yt- 1etk 

t=kmax +1 

T ( C k 
= N-1 (aT t-l+ bTXt-1) (et-(-OT) t-k-1 + T ( OT) Yt-i-iJ 

t=kmax+l i 

=Op(T-1/2) 

and 

T 
N1 E zt_etk 

t=kma +1 

T 

= N-1 , (et - (-OT)kljet-k-l) (et - (-OT)k1 et-k-1) + Op(T1/2) 
t=kmax1 

T 

= (_0 )2(k+l)-jN- E e21 + Op(T1/2), 
t=kmax+1 

= cr2( OT)2(k+l)-j + O (T-1/2). 

Therefore, 

N1 EX = cr-2[0, 02(k+l)-1 (. 0 )2(k+l)-k] + O (T- 

= e2(0T)k1 [0, / t] + Op(T1/2), 

where At' = [(-OT)k,. . ., (-OT)]. From Lemma A.1, 

(A.7) N-1 (X'X) = o-e2 [ + e 
] + OP (T-1/2) _ R + OP (T 1/2). 

In view of the properties of N-1E'X, 

N-1E'X(X'X)-fX'Ek = (-OT )2(k+l)t'R-l (k)4tt + Op(T-1/2), 
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where R-1 (k) is the lower right k x k submatrix of R-1. By partitioned matrix inversion, 

R-1 (k) = [Ik + AA'- e'e/(l + x)]-', 

= [Jk + ]1 t7, 

where Jk = Ik - ee'/(l + x). For a k x k matrix A and k x 1 vectors u and v, (A + uv')-1 = A - 
A 1it(1 + v'A-1u)-1 v'A-1. Hence, for A = 1 + 1 Jk 

R1(k) = Jk 1- J- /A, 

= ~1C 1 - 1 
'R-l (k) = ~_ _k- -(/_j _L )2 /A, 

1 + t'-1 h4/ 

Since Jk = Ik - ee'/(1 + x), J,-' = Ik + ee'/x, and 

I_'Jk = bt'u+ It'ee'u/x = b'A + (-OT) 2kX. 

We also have _i/p. = Ek (0T )2i hence 

(OT )2 (OT )2(k+l) 1 - (-OT )2(k+l) 

1 - (0T )2 ~1 -(_OT )2 

After some simplications, 

i tJ,7-1 tt (-OT)2[-l(OT)2k] + (_0T)2k[l _ (_OT)2]/X 

1 + 'J1 - [1- (oTO)2(k+l)] + (-OT)2k [1 - (OT)2]/X 

(T 2 1 - (_ OT )2k 1 
p(- /) 

= ( OT)2l - (_0T )2(k?1) 
J 

+ Ol(T ). 

Hence, 

N1 E'X(X'X)1 X'Ek = (_0)2( (kOTl )2 ( 1OT )2k + OP(T ) 

It follows that 

,r2= ,re 1 + (-OT )2(k?1)-(-OT ) ( [ 
(-0 )2(k+l)))( 

ln(rk2) = ln(o-e2) + [( o ( ?)2(k+l 
( 

(OT2 + Op(T 

Lemma 1 is a consequence of Theorem 2 and Lemma A.5. 

PROOF OF THEOREM 3 

The strategy of the proof is to first determine the rate of increase of k through a global minimiza- 
tion of the objective function. Once this rate is found, the proportionality factor is deduced. In the 
following, we use the notation k oc f (T) for the case where k/f (T) -+ c for some finite constant c 
strictly above 0. We also let d > 0 be a finite constant not necessarily the same throughout. 

For both the IC and MIC, it is readily seen that the objective function is Op(CT/T1/2) when 
kIT1/2 -+ K(> 0), and that it is Op(CTk/T) when kIT1/2 _+ oo. Hence, irrespective of the choice of 
CT, having kIT1/2 -+ K will always, in large samples, yield a smaller value of the objective function 
than with k/T1/2 _+ oo. Hence, we only need to compare the cases k/T1/2 -+ K(> 0) and k/T1/2 -+ 0. 



LAG LENGTH SELECTION 1553 

We start with the analysis for the IC. When kIT1l2 O 0, there are two cases of interest. The first 
is when k2CT/T -+ d in which case the objective function is Op(l/k). The minimal value is obtained 
if k is chosen as the maximal value permissible, which means k oc AIT/CT. The minimized objective 
function is then OP(,(/CT/v'7). The second case is when T/k2CT -+ d and the objective function 
is Op(kCT/T), which is minimized by taking the minimal permissible rate of increase for k, again 
k oc \IT/CT, and the minimized objective function is then OP(/ICT/v'7). So the case with kIT"/2 
K(> 0) yields an objective function of order Op(CT/T1/2) and the case k/T1/2 -+ 0 an objective 
function of order OP(I/CT/v'). Hence, k oc \IT/CT. To derive the constant of proportionality, note 
that if CT is fixed, k = KVY and the objective function is (ignoring constants) 

2- (K) + 
CT 

T TT 

Taking derivatives and equating to zero yields the stated solution. When CT ?-+ c as T o-+ c, the 
objective function (ignoring constants) is 

1 + CTIT/CT 

KA/TITCT T 

and the value of K that minimizes this expression is 1. Consider now the MIC(k). The first case is 
where 

CT CTk 2 
(A.8) k --+d and T d. 

Then the objective function when kIT1/2 + 0 is Op(k-1). Hence, the highest possible rate is chosen 
and is given by k oc \IT/CT and the minimized objective function is of order Op(NICT/T). Since 
the objective function when kIT1/2 -* K(> 0) is Op(CT/T1/2), we have k oc T1/2 if CT is fixed and 
k oc \IT/CT if CT o-+ c. However, in view of the requirement that CT/k -+ d this implies the need 
for CT/T -+ d. To obtain the constant of proportionality when CT is fixed, we substitute k = KIT 
in (16) and equate its first derivative to zero and solve for K. When CT is increasing, we substitute 
k = K\IT/CT in (15), and again equate the first derivative to zero and solve for K. 

Consider now the case where CI/T -+ oo. There are two cases to cover when either of the condi- 
tions in (A.8) is not satisfied. Suppose first that k3/T -+ d, in which case k/CT -+ d. The objective 
function in the case k/T1/2 O* 0 is Op(CT/k2) and the highest rate for k is chosen, namely k oc Tll3. 
The minimized objective function is then of order Op(CT/T2/3), which is of a smaller order than 
the case with k/T1/2 -+ K(> 0). Hence, k oc Tll3 is the resulting rate. If T/k3 -+ d, in which case 
CTk2/T -+ oo, the objective function is of order Op(kCT/T) and the smallest rate for k is optimal. 
So again, k oc T1l3 and the minimized objective function is also of order Op(CT/T2/3). To obtain the 
factor of proportionality, let k = KT13. The objective function is then (ignoring constants) 

1 CTZI CTK 
KT1/3 K2T213 T2/3 

When C3/T -+ oo, the first term is negligible compared to the last two. Hence, minimizing the last 
two terms with respect to K yields K = (2Z,)1/3 

REFERENCES 

BERK, K. N. (1974): "Consistent Autoregressive Spectral Estimates," The Annals of Statistics, 2, 489- 
502. 

DEJONG, D. N., J. C. NANKERVIS, N. E. SAVIN, AND C. H. WHITEMAN (1992): "The Power Prob- 
lem of Unit Root Tests in Time Series with Autoregressive Errors," Journal of Econometrics, 53, 
323-343. 



1554 SERENA NG AND PIERRE PERRON 

DICKEY, D. A., AND W. A. FULLER (1979): "Distribution of the Estimators for Autoregressive Time 
Series with a Unit Root," Journal of the American Statistical Association, 74, 427-431. 

DUFOUR, J. M., AND M. KING (1991): "Optimal Invariant Tests for the Autocorrelation Coefficient 
in Linear Regressions with Stationary and Nonstationary Errors," Journal of Econometrics, 47, 
115-143. 

ELLIOTT, G., T. J. ROTHENBERG, AND J. H. STOCK (1996): "Efficient Tests for an Autoregressive 
Unit Root, Econometrica, 64, 813-836. 

FRANSES, P. H., AND N. HALDRUP (1994): "The Effects of Additive Outliers on Tests of Unit Roots 
and Cointegration," Journal of Business and Economic Statistics, 12, 471-478. 

FULLER, W. A. (1976): Introduction to Statistical Time Series. New York: John Wiley. 
GOURIEROUX, C., AND A. MONFORT (1995): Statistical and Econometric Models, Vol. 1. Cambridge: 

Cambridge University Press. 
HANNAN, E. J., AND M. DEISTLER (1988): The Statistical Theoty of Linear Systems. New York: John 

Wiley. 
LOPEZ, J. H. (1997): "The Power of the ADF Test," Economics Letters, 57, 5-10. 
NABEYA, S., AND P. PERRON (1994): "Local Asymptotic Distribution Related to the AR(1) Model 

with Dependent Errors," Journal of Econometrics, 62, 229-264. 
NG, S., AND P. PERRON (1995): "Unit Root Tests in ARMA Models with Data Dependent Methods 

for the Selection of the Truncation Lag," Journal of the American StatisticalAssociation, 90, 268-281. 
(2000): "A Note on the Selection of Time Series Models," Manuscript, Department of Eco- 

nomics, Boston College. 
PANTULA, S.G. (1991): "Asymptotic Distributions of Unit Root Tests When the Process is Nearly 

Stationary," Journal of Business and Economic Statistics, 9, 63-71. 
PERRON, P., AND S. NG (1996): "Useful Modifications to Unit Root Tests with Dependent Errors 

and their Local Asymptotic Properties," Review of Economic Studies, 63, 435-465. 
(1998): "An Autoregressive Spectral Density Estimator at Frequency Zero for Nonstationar- 

ity Tests," Econometric Theory, 14, 560-603. 
PERRON, P., AND G. RODRIGUEZ (1998): "GLS Detrending, Efficient Unit Root Tests and Struc- 

tural Change," manuscript, Boston University. 
PHILLIPS, P. C. B. (1987): "Time Series Regression with Unit Roots," Econometrica, 55, 277-302. 
PHILLIPS, P. C. B., AND P. PERRON (1988): "Testing for a Unit Root in Time Series Regression," 

Biometrika, 75, 335-346. 
SAID, S. E., AND D. A. DICKEY (1984): "Testing for Unit Roots in Autoregressive-Moving Average 

Models of Unknown Order," Biometrika, 71, 599-607. 
SCHWERT, G. W. (1989): "Tests for Unit Roots: A Monte Carlo Investigation," Journal of Business 

and Economic Statistics, 7, 147-160. 
STOCK, J. H. (1990): "A Class of Tests for Integration and Cointegration," Manuscript, Harvard 

University. 


	Article Contents
	p. 1519
	p. 1520
	p. 1521
	p. 1522
	p. 1523
	p. 1524
	p. 1525
	p. 1526
	p. 1527
	p. 1528
	p. 1529
	p. 1530
	p. 1531
	p. 1532
	p. 1533
	p. 1534
	p. 1535
	p. 1536
	p. 1537
	p. 1538
	p. 1539
	p. 1540
	p. 1541
	p. 1542
	p. 1543
	p. 1544
	p. 1545
	p. 1546
	p. 1547
	p. 1548
	p. 1549
	p. 1550
	p. 1551
	p. 1552
	p. 1553
	p. 1554

	Issue Table of Contents
	Econometrica, Vol. 69, No. 6 (Nov., 2001), pp. i-vi+1403-1720
	Volume Information [pp.  i - vi]
	Front Matter
	Temptation and Self-Control [pp.  1403 - 1435]
	Interjurisdictional Sorting and Majority Rule: An Empirical Analysis [pp.  1437 - 1465]
	A Dynamic Equilibrium Model of International Portfolio Holdings [pp.  1467 - 1489]
	Sequential Equilibria in a Ramsey Tax Model [pp.  1491 - 1518]
	Lag Length Selection and the Construction of Unit Root Tests with Good Size and Power [pp.  1519 - 1554]
	Threshold Autoregression with a Unit Root [pp.  1555 - 1596]
	An Evaluation of Econometric Models of Adaptive Learning [pp.  1597 - 1628]
	Notes and Comments
	The Optimal Level of Experimentation [pp.  1629 - 1644]
	Combining Panel Data Sets with Attrition and Refreshment Samples [pp.  1645 - 1659]
	Asymptotic Optimality of Empirical Likelihood for Testing Moment Restrictions [pp.  1661 - 1672]
	The Value of Public Information in Monopoly [pp.  1673 - 1683]
	On the Failure of Core Convergence in Economies with Asymmetric Information [pp.  1685 - 1696]
	Household Gasoline Demand in Canada [pp.  1697 - 1709]

	Announcements [pp.  1711 - 1717]
	News Notes [pp.  1718 - 1720]
	Back Matter



