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Abstract

We introduce intentional idiosyncratic play in a standard stochastic evolutionary model of equi-
librium selection in a class of bargaining games. By intentional we mean non-best-response play of
mixed strategies that are supported only on the set of strategies that would give the idiosyncratic
player a higher payo¤ were su¢ ciently many others to do the same. This induces qualitatively dif-
ferent transitions between Nash equilibria and potentially di¤erent stochastically stable equilibria
than the standard dynamic. We show existence and uniqueness of a stochastically stable bargaining
outcome under intentional idiosyncratic play in a class of games that nests contract games and the
Nash demand game. In the contract game, the intentional idiosyncratic play dynamic selects the
equilibrium that implements the Nash bargain as the stochastically stable state, while the standard
dynamic selects the Kalai-Smorodinsky bargain.
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1 Introduction
We extend the Binmore-Samuelson-Young (Binmore et al., 2003) approach to equilibrium selection
in contract games and related bargaining games by imposing empirically plausible restrictions on
the process generating idiosyncratic (non-best-response) play. (By contract game, (Young, 1998)
means an asymmetric pure coordination game played by randomly matched players from two sub-
populations.) Our modi�cation to the standard dynamic(Kandori et al., 1993; Young, 1993a) is
motivated by our belief that agents who act idiosyncratically in economic con�icts are behaving
intentionally, and thus do not �accidentally� experiment with contracts under which they would
do worse, should the contract be generally adopted. We have in mind such idiosyncratic play as
refusing to exchange under the terms of a contract that awards most of the joint surplus to the
other party (for example locking out overly demanding employees). Like Bergin and Lipman (1996),
who conclude that �models or criteria to determine �reasonable�mutation processes should be a
focus of research in this area," and Van Damme and Weibull (2002), our idiosyncratic play is state-
dependent. But while these authors make error rates state dependent, we make the distribution of
idiosyncratic play across the strategy space state-dependent, as in Bowles (2004).
The resulting dynamic based on intentional idiosyncratic play provides a more plausible account

of historical real world transitions between economically important conventions, such as customary
crop shares or the de facto recognition of collective bargaining by businesses. First, when non-best-
response play is intentional transitions between contracts are induced only by the idiosyncratic
play of those who stand to bene�t from the switch, in contrast to the standard (unintentional)
approach. Second, as one would expect, in the intentional dynamic where sub-population sizes
and idiosyncratic play rates di¤er, the sub-population whose interests are favored is that whose
members who engage in more frequent idiosyncratic play and who are less numerous.
We �nd that the contracts that are selected as stochastically stable under the intentional idio-

syncratic play dynamic di¤er from those selected under the standard dynamic. Our dynamic selects
the convention that implements the Nash bargain, while the standard dynamic selects the Kalai-
Smorodinsky bargain (Young, 1998; Kalai and Smorodinsky, 1975). The di¤erence is illustrated
in the example in Table 1. The Kalai-Smorodinsky bargaining solution equates the ratio of the
payo¤s to the ratio of the players� best possible payo¤, and thus is the contract pair (1; 1), as
12=20 = 36=60. In contrast, the Nash solution is (0; 0), since the Nash solution is that which
maximizes the product of the payo¤s and 5� 60 > 12� 20 > 36� 1.

Table 1: Example 1

Contract 0 1 2
0 5,60 0,0 0,0
1 0,0 12,20 0,0
2 0,0 0,0 36,1

In section 2 we introduce intentional idiosyncratic play, present the main proposition of the
paper, and characterize the stochastically stable state under intentional dynamics for a variety of
cases.
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2 The Model

2.1 Setup
We consider a large population divided into two sub-populations, denoted R and C for row and
column, playing an asymmetric bargaining game. This has K strategies, with payo¤ functions given
by �R(i; i) = ai; �C(i; i) = bi with i 2 S = f1; 2; :::;Kg. We order the strategies such that if i < j
then aj > ai and bj < bi, so the contracts are ordered such that the row player favors contracts
with higher indices, and the column player favors contracts with lower indices. The o¤-diagonal
payo¤s are given by �R(i; j) = �C(i; j) = 0 if i > j and �R(i; j) = �ai; �

C(i; j) = �bj if i < j,
where 0 � � � 1. That is, agents receive some fraction of their demands if the demands together
do not exhaust the surplus, and receive 0 otherwise. This formulation excludes some variants of
non-cooperative bargaining games, such as the cushioned Nash Demand game, but the contract
game (Young, 1998) corresponds to � = 0 and the Nash Demand game corresponds to � = 1.
Clearly the diagonal of the game matrix constitutes the set of pure Nash equilibria, and they are
all strict and Pareto-optimal.
The dynamic is a familiar myopic best-response dynamic with inertia. Each period, all players

are matched to play the contract game. Each time they are matched, agents revise their strategy
with probability v and play the strategy they played last period with probability 1 � v and . We
represent this dynamic by a stochastic dynamic system, where the states represent the number of
each sub-population playing each strategy. The state space is given by � = �R ��C ,

�R = fn = (n1; n2:::; nK)j
X

i
ni = Ng

�C = fm = (m1;m2; ::;mK)j
X

i
mi =Mg

where N is the size of the row sub-population and M is the size of the column sub-population, and
each ni and mi is the number of the row and column sub-population, respectively, that is playing
strategy i. Given a state, (n;m) 2 � we de�ne best response functions as follows:

BRR : �C ! S; m 7! argmax
i2S

X
j2S

�R(i; j)
mj

M

BRC : �R ! S; n 7! argmax
i2S

X
j2S

�C(i; j)
nj
N

where we break ties by choosing the higher indexed strategy. To model intentional idiosyncratic
play, we consider a discrete time process indexed by t = 1; 2; � � � . Following Kandori et al. (1993)
and Binmore et al. (2003), we de�ne a random best response dynamic:

Xt+1 = �
R
t

�
ZR0t eBRR(Yt) + Z

R
t

�
+ (1� �Rt )Xt (1)

Yt+1 = �
C
t

�
ZC0t eBRC(Xt) + Z

C
t

�
+ (1� �Ct )Yt (2)

where Xt = (X1t; X2t; � � � ; XKt)T , Yt = (Y1t; Y2t; � � � ; YKt)T ; T denotes a transpose, ei denotes K
dimensional vector with 1 in the i th position and 0 elsewhere. �Rt ; �

C
t are independent Bernoulli

random variables taking value 1 with probability �, which captures inertia. (ZR0t; Z
R
1t; � � � ; ZRKt);

(ZC0t; Z
C
1t; � � � ; ZCKt) are multinomial random variables with N draws and a probability vector � and

we use notations, ZRt = (ZR1t; � � � ; ZRKt)T ; ZCt = (ZC1t; � � � ; ZCKt)T . The variables, ZRt and Z
C
t ;

specify the numbers of agents playing each strategy idiosyncratically, while ZR0t and Z
C
0t represent

the numbers of agents playing best responses. When v = 0; the dynamic is characterized by full
inertia, and we see that �Rt = �Ct = 0, Xt+1 = Xt;and Yt+1 = Yt: On the other hand in case
of v = 1; the dynamic is solely driven by the �rst two terms in (1) and (2). In particular, when
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�R = �C = (1; 0; � � � ; 0) so we have ZR0t = N; ZC0t = M and ZRt = Z
C
t = 0; and the best response

functions completely determine the dynamics.
We de�ne �R; �C which will specify the probability vector for a multinomial random variable,

(ZR0t; Z
R
1t; � � � ; ZRKt); (ZC0t; ZC1t; � � � ; ZCKt) as:

�Ri (b) =

�
0 if 1 � i < b
�

K�b+1 if b < i � K (3)

�Cj (b) =

�
�
b if 1 � j � b
0 if b < j � K

and �R0 (b) = 1 �
KP
i=1
�Ri (b) and �

C
0 (b) = 1 �

KP
j=1

�Cj (b), where �
R = (�R0 ; � � � ; �RK) and �C =

(�C0 ; � � � ; �CK): We write Z � MN (N; �) if Z follows a multinomial variable with N draws and a
probability vector � : Now we de�ne an intentional idiosyncratic dynamic. Given a strategy b, we
note that fi : b � i � Kg is the set of strategies that row population prefers to b because of the
indexing of strategies and we consider fi : b � i � Kg as a set of strategies from which an idiosyn-
cratic player draws. The idiosyncratic play distribution is state-dependent; row only experiments
with strategies which are favorable to the row population.

De�nition 1. � We say (Xt; Yt)t2Z+ in (1) and (2) is an unperturbed process if (ZR0t; ZRt ) �
MN (N; �R(K + 1)) and (ZC0t; Z

C
t ) �MN (M; �C(0))

� We say (Xt; Yt)t2Z+ in (1) and (2) is an U-process if (ZR0t; Z
R
t ) � MN (N; �R(0)) and

(ZC0t; Z
C
t ) �MN (M; �C(K + 1))

� We say (Xt; Yt)t2Z+ in (1) and (2) is an I-process if (ZR0t; ZRt ) �MN (N; �R(BRR(Yt))) and
(ZC0t; Z

C
t ) �MN (M; �C(BRC(Xt)))

It is clear that both the U-process and I-process are �nite state space Markov chains and that
the transition probability matrix of U-process is irreducible and aperiodic, so the chain admits a
unique stationary distribution �(�). We are interested in the stochastically stable states that have
positive weight in the distribution ��; where �(�) ! �� following Young (1993a). We show that
I-process is irreducible and aperiodic in the appendix.

2.2 Unintentional vs Intentional Idiosyncratic Dynamics
The U-process de�ned above is the standard mutation dynamics encountered in the literature
(Kandori et al., 1993; Young, 1993a) . Analyzing the I-process de�ned above is the contribution of
this paper. Binmore et al. (2003) show that the stochastically stable state in the U-process is the
Kalai-Smorodinsky Solution in the contract game, and the Nash bargain in the Nash Demand game.
It is also useful to describe the transitions between states in the U-process; in the contract game
they are driven by mistakes in the population who loses from the transition. Our I-dynamic, in
contrast, has agents only erring in the direction that could bene�t them; thus the subpopulations
driving transitions are the ones that stand to gain. This di¤erence in the relevant population
mutations drives the di¤erences in the stochastically stable state that the two processes select.
To analyze the I-dynamic we �rst identify the state where all individuals in both row population

and column population play the same strategy i with contract i; i.e. we identify (Nei;Mei) with
i: Then it is easily seen that i�s are the absorbing states in the unperturbed process. Following
Binmore et al. (2003) we compute the resistance Rij�minimum number of idiosyncratic players
playing k� between these absorbing states, contract i and contract j; in U-process, ignoring integer
considerations:
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Rij =

(
N

bi��bj
bi+(1��)bj if i < j

M
ai��aj

ai+(1��)aj if i > j

We call trees with Rij edge resistances I-trees. From theorem 1 in (Young, 1993a), we know that
the I-stable state is contained in the root of the minimal I-tree. In appendix A we show that
the U-stable state in example 1 is the Kalai-Smorodinsky solution(a1=b1 = amax=bmax), while
stochastically stable state under the I dynamic is the Nash Solution(a0b0 = maxiaibi). This is
a general di¤erence, as illustrated by the next proposition where we set bi = f(ai) and use the
notation, a�N = argmax

s2[0;1]
sf(s); and a�G = argmax

s2[0;1]
sM (f(s))N :We normalize f in a way that f(0) = 1

and f(1) = 0:

Proposition 2.1. Suppose the ai = i� and i 2 f1; :::1��� ;
1
�g; where � =

1
10n for some positive

integer n and f is positive, decreasing, and concave, satisfying f(0) = 1 and f(1) = 0. Then we
have
(i) If � � 1;a unique stochastically stable contract in the I-dynamic i� exists, and is increasing in
N=M
(ii) If � = 1 and � is su¢ ciently small, the stochastically stable contract i� in the I-dynamic ap-
proaches (a�G; f(a

�
G)).

(iii) If M = N and � is su¢ ciently small, the stochastically stable contract i� in the I-dynamic
approaches (a�N ; f(a

�
N )).

Proof. See Appendix B.

Note that if � = 1 (the Nash demand game) the I- and U- dynamics select the same outcome
(Young, 1993b). If N = M then the symmetric Nash bargain is I-stable. Note also that if � � 1
and N is not equal to M , the stochastically stable contract will be closer to the best contract for
the group with lower sub-population-size. Smaller groups are favored because the realized level
of idiosyncratic play is more likely to exceed the critical level to induce a transition, and in the I
dynamic groups bene�t from the transitions which their idiosyncratic play induces.
Thus we �nd that a natural and empirically motivated restriction on idiosyncratic play in

bargaining games may select di¤erent outcomes, as well as generating an empirically plausible
transition dynamic in which smaller group size is an advantage, and groups whose idiosyncratic
players induce transitions bene�t as a result. For example, N = M and � = 0 (Contract game).
Then the U-dynamic selects the Kalai-Smorodinsky solution (Young, 1998; Binmore et al., 2003),
and the I-dynamic selects the Nash solution. Our I-dynamic is thus another class of bargaining
interactions in which a standard result of axiomatic cooperative game theory is replicated by the
non-cooperative play of only minimally forward looking individuals with limited information. The
contrast between the I-dynamic and the standard model for the contract game illustrates the
economic intuitions underlying these results. The key di¤erences result from the fact that in the
former transitions are induced by the idiosyncratic play of those who stand to bene�t. In the U-
dynamic the opposite is the case because it will always take fewer idiosyncratic players to induce
best responders to shift to a contract that they prefer over the status quo than to induce them
to accommodate a shift to a less advantageous contract. In the U-dynamic, the deviations of one
subpopulation induce the other subpopulation to concede, coordinating on a contract that they
strictly prefer to the status quo; while in the I-dynamic deviations by one subpopulation must
induce the other subpopulation to coordinate on a strictly inferior contract.
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3 Appendix A (Not For Publication)
In Table 1, the I-stable contact is 0, while the U-stable contract is 1. Table 2, consisting of tree
resistances, which is the sum of transition resistances within each tree, illustrates the calculations
for the U-dynamic(3 trees for each root).

Table 2: U-Resistances for Example 1

Root/Trees
0 0.266 0.297 0.266
1 0.341 0.310 0:169
2 0.544 0.371 0.371

Table 3: I-Resistances for Example 1

Root/Trees
0 1.583 1:455 1.830
1 1.500 1.628 1.733
2 1.702 1.689 1.932

Thus the lowest tree, with resistance 7
41 +

1
21 = 0:169 has root 1. The actual tree is given below.

r Contract 0
rContract 1

rContract 2

?�
���
1
21

5
41

However, with intentional idiosyncratic play distributions(the I-dynamic), the tree resistances
are given in Table 3. The minimal I-tree has root 0, with resistance 1.455, shown in the tree below.

r Contract 0
rContract 1

rContract 2
�

��	

@
@@R
12
17

36
48
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4 Appendix B (Not For Publication)
We �rst show that I-process is irreducible and aperiodic. This is straightforward, albeit not triv-
ial, since our non-best-responses are not always supported on the entire strategy space. Given
an absorbing state (n;m) 2 � in the unperturbed process, how can we get to state (n0;m0) in
a �nite number of periods? It su¢ ces to point out that we can get to the state (n0;m0) =
((0; 0; :::; N); (M; 0; 0; :::; 0)), which is where the best responses of both populations are the con-
tract that would be worst for them were it to become an equilibrium, since then the error dis-
tribution is supported on the entire state space, and therefore any state is accessible from an
absorbing state (n;m). Then since any arbitrary state can reach one of absorbing states, the irre-
ducibility follows. The fact that the chain is aperiodic follows as the inertia of the system implies
Pr f(Xt+1;Yt+1) = (n;m)j(Xt;Yt) = (n;m)g > 0 for all n and m: We begin with proofs of parts
(ii) and (iii) and then prove part (i).

4.1 Proof of Proposition 2.1 (ii), (iii)
We note that the resistance from state i to j in I-dynamics is

Rij =

(
N

f(ai)��f(aj)
f(ai)+(1��)f(aj) if i < j

M
ai��aj

ai+(1��)aj if i > j
(4)

Also from the de�nition of ai and the concavity of f; we have a2i > ai�1ai+1 and (f(ai))2 >
f(ai�1)f(ai+1) for all i = 2; :::; 1��� : Since we will apply naive minimization test, we establish the
following inequalities for each case

Ri;i+1 > Ri�1;i for all i (5)

Ri;i�1 > Ri+1;i for all i (6)

Rij < Rik for all k > j > i (7)

Rij < Rik for all k < j < i (8)

Ri;i+1 < Ri;i�1 for all i < i� (9)

Ri;i�1 < Ri;i+1 for all i > i� (10)

where i� depends on the case that we prove (de�ned below). First for both cases (i) and (ii) we
observe that (5) and (6) follow from (f(ai))

2 > f(ai�1)f(ai+1) and a2i > ai�1ai+1 and (7) and (8)
follow from the de�nition of ai and the fact that f is decreasing.
Next we show (9)�(10) in case (i) ofM = N: Let � > 0:Then there exists i�N such that ai�N f(ai�N ) �
aif(ai) for all i: We set i� := i�N in (9) and (10). For i < i�, we have ai+1f(ai+1) > aif(ai): (9)
follows from ai+1f(ai+1) > aif(ai), and a2i > ai�1ai+1 since in case (i)

Ri;i+1 < Ri;i�1 if and only if ai�1f(ai) < aif(ai+1)

and
aif(ai+1)

ai�1f(ai)
>

a2i
ai�1ai+1

> 1

Similarly when i > i�; we have ai�1f(ai�1) > aif(ai), so (10) follows from ai�1f(ai�1) > aif(ai);and
(f(ai))

2 > f(ai�1)f(ai+1):
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We establish (9)�(10) in case (ii) of � = 1:Again �x � > 0 and choose i�G such that (ai�G)
M (f(ai�G))

N >

(ai)M (f(ai))N for all i: We set i� := i�G in (9) and (10), and de�ne

D�fi :=
f(ai+1)� f(ai)

�

Then we have the following lemma which is proved in the end of proof.

for i < i�; Mf(ai) +NaiD�fi > 0 (11)

and
for i > i�; Mf(ai) +NaiD�fi�1 < 0 (12)

Equation (9) follows from (11) and the fact that Ri;i+1 < Ri;i�1 if and only if NaiD�fi > �Mf(ai)
and similarly equation (10) follows from (12), thatRi;i�1 < Ri;i+1 if and only ifNaiD�fi < �Mf(ai)
in case (2) and D�fi�1 > D�fi (by the concavity of f):
Now (7)�(10) imply that the naive minimization tree consists of edges in the left of i� pointing to
the right and edges in the right of i� pointing to the left (see �gure below).Also (5)�(6) shows the
tree contains the unique cycle having maximal resistance over all edges. Since ai�N ; ai�N+1; ai�N�1 !
a�N (case (i)) and ai�G ; ai�G+1; ai�G�1 ! a�G (case (ii)) as � ! 0; we conclude the results of the
proposition.

Lemma 4.1. For i < i�G;Mf(ai) +NaiD�fi > 0 and for i > i
�
G;Mf(ai) +NaiD�fi�1 < 0

Proof. Let i < i�G: Then we have a
M
i (f(ai))

N < aMi+1(f(ai+1))
N , hence

�
i+1
i

�M �f(ai+1)
f(ai)

�N
> 1:

Also since f(ai+1) = f(ai) + �D�fi implies
f(ai+1)
f(ai)

= 1 + �D�fif(ai)
and x � log(1 + x); x 2 R; we have

Mf(ai) +NaiD�fi = if(ai)

�
M
1

i
+N

�D�fi
f(ai)

�
� if(ai)

�
M log

�
1 +

1

i

�
+N log

�
1 +

�D�fi
f(ai)

��
= if(ai)

�
M log

�
1 +

1

i

�
+N log

�
f(ai+1)

f(ai)

��
> 0

Now let i > i�G:Then we have a
M
i�1(f(ai�1))

N > aMi (f(ai))
N which gives

�
i�1
i

�M �f(ai�1)
f(ai)

�N
> 1:

Also since f(ai�1)
f(ai)

= 1� �D�fi�1f(ai)
; we have

�(Mf(ai) +NaiD�fi�1) = if(ai)

�
�M 1

i
�N �D�fi�1

f(ai)

�
� if(ai)

�
M log

�
1� 1

i

�
+N log

�
1� �D�fi�1

f(ai)

��
= if(ai)

�
M log

�
1� 1

i

�
+N log

�
f(ai�1)

f(ai)

��
> 0
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4.2 Proof of Proposition 2.1 (i)
Equations (5) � (8) still hold for � � 1 and M 6= N: First we de�ne a function ��:

��(t) :=
t� �(t� 1)

t+ (1� �)(t� 1)
f(�t) + (1� �)f(�(t+ 1))
f(�t)� �f(�(t+ 1)) for t 2 R+ (13)

Then it is easily seen that

Ri;i+1 < Ri;i�1 if and only if
N

M
< ��(i)

We �rst note that

��(1) =
1 + (1� �)f(�)
1� �f(�) > 1 and (14)

��(
1� �
�
) =

1� � � �(1� 2�)
1� � + (1� �)(1� 2�) < 1 (15)

Next we study the sign of derivative of (13)

�0�(t) = � 1

(1� 2t+ (t� 1)�)2 (f(�t)� �f(�t+1))2
�24f2(�t) + (1� 2�)f(�t)f(�t+1)� (1� �)�f2 (�t+1)| {z }

I

+

�
(2� 3�+ �2)t+ (�1 + 4�� 2�2)� 1

t
�(1� �)

�
| {z }

II

�
f 0(�t)f(�t+1)� f 0(�t+1)f (�t)

�| {z }
III

�t

37775
where we use notations �t := �t; �t+1 := �(t+ 1): Then using f(�t) > f (�t+1) ; we have

I = f2(�t) + (1� 2�)f(�t)f(�(t+1))� (1� �)�f2(�t+1)
> f(�t)f(�t+1) + (1� 2�)f(�t)f(�t+1)� (1� �)�f2(�t+1)
> 2(1� �)f(�t)f(�t+1)� (1� �)�f2(�t+1)
> (1� �)f2(�t+1)
> 0

Next for t � 1, since 2� 3�+ �2 > 0

II = (2� 3�+ �2)t+ (�1 + 4�� 2�2)� 1
t
�(1� �)

> (2� 3�+ �2) + (�1 + 4�� 2�2)� �(1� �)
> 0

Finally from the fact that f is decreasing and concave, we have �f 0(�t+1) > �f 0(�t) > 0 and so
�f 0(�t+1)f(�t) > �f 0(�t)f(�t) > �f 0 (�t) f(�t+1): Thus

III = f 0(�t)f(�t+1)� f 0(�t+1)f(�t) > 0

so we �nd �0�(t) < 0 for t > 1:Therefore from (14), (15) and �0�(t) < 0;there exists a unique t
� such

that

for t < t�;
N

M
< ��(t), and for t > t

�;
N

M
> ��(t)

and t� increases as M increases and decrease as N increases. The existence and properties of i� in
the proposition follow from the existence and properties of t�:
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