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Liquidity traps with global Taylor Rules

Stephanie Schmitt-Grohé∗ and Martı́n Uribe†

An important theme in the writings of Jess Benhabib is the global stability of equi-
librium in monetary economies. A key result emerging from his research is that
Taylor-type interest rate feedback rules that are bounded below by zero can lead to
unintended liquidity traps. The present paper shows that even if the interest rate
rule is not bounded below by zero, that is, even if the government could credibly
commit to a globally active Taylor rule, self-fulfilling liquidity traps cannot be ruled
out. This result is shown to obtain in models with flexible and sticky prices and under
continuous and discrete time.
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1 Introduction

One important theme in the writings of Jess Benhabib is the global stability of economies
in which monetary policy takes the form of interest rate feedback rules. The study of this
type of monetary policy rule is of interest because of its empirical relevance. Since the
work of Taylor (1993), several authors have documented that in the post-Volker era US
monetary policy is well described by a feedback rule whereby the nominal interest rate is set
as an increasing function of inflation and the output gap.1 Indeed, interest rate rules have
been found to be a good representation of actual monetary policy in the largest developed
economies (Clarida, Galı́, and Gertler 1998).

Theoretically, the appeal of interest rate feedback rules is founded on the argument
that active interest rate rules, or Taylor rules, are conducive to macroeconomic stability.
Active interest rate rules are those that stipulate an inflation coefficient larger than unity.2

Active interest rate rules are also known as Taylor rules after Taylor’s (1993) study of
monetary policy in the USA. In the context of a flexible-price model, Leeper (1991) shows
that active interest rate rules are stabilizing in the sense that they ensure uniqueness of
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1 See, for example, Sack (1998), Orphanides (2001), Clarida, Galı́, and Gertler (2000) and Taylor (1999).
2 The term “active” in referring to monetary policy was introduced by Leeper (1991).

International Journal of Economic Theory 5 (2009) 85–106 C© IAET 85



Liquidity traps Stephanie Schmitt-Grohé and Martı́n Uribe

the rational expectations equilibrium.3 A similar result has been derived in models with
nominal rigidities by Clarida, Galı́, and Gertler (2000) and Woodford (1996). Active interest
rate rules have also been advocated on the grounds that they minimize the variability of
output and inflation. For example, Levin, Wieland, and Willams (1999) show, in the context
of an ad-hoc model, that Taylor-type rules minimize a loss function that is quadratic in
deviations of inflation and output from target. Rotemberg and Woodford (1999) obtain
a similar result using a utility maximizing model and a welfare criterion for evaluating
monetary policy.

A common element present in the body of work described above is its focus on local
dynamics around the intended, or target, steady-state equilibrium. Benhabib, Schmitt-
Grohé, and Uribe (2001a) argue that this local approach leaves in obscurity a number of
important macroeconomic consequences of Taylor rules. Specifically, they point out that
if the interest rate feedback rule is bounded below by zero, then there emerges a second
(unintended) steady state. In this second steady state, inflation is low and possibly negative,
and the nominal interest rate is below target and possibly zero. More importantly, they
show that the rational expectations equilibrium is no longer unique. In particular, there
exist deflationary spirals connecting the target steady state with the unintended one.

The consequences of the zero lower bound on the interest rate feedback rule for the
number of steady-state equilibria can be conveyed by means of two basic relationships:
one is the steady-state Fischer equation R = r +π , where R denotes the nominal interest
rate, π denotes the rate of inflation, and r denotes the real interest rate. The other rela-
tionship is a non-negative interest rate feedback rule like the piecewise linear function R =
max[0, r +π∗ + γ (π −π∗)], where π∗ denotes the target rate of inflation and γ is a
parameter greater than one. Figure 1 plots both relationships. One solution to these two
equations is π = π∗ and R = R∗ ≡ r +π∗. At the inflation rate π∗ monetary policy is
active because γ > 1.

Most of the existing related literature that advocates the use of Taylor rules has been
built on the result that under plausible economic environments the intended steady state
(π∗, R∗) is locally the unique rational expectations equilibrium.4

However, the two equations plotted in Figure 1 admit another solution; namely,
π = −r and R = 0. The emergence of this second steady state is a direct consequence
of the imposed zero bound on the interest rate feedback rule. With low inflation, steady-
state monetary policy is passive. Benhabib, Schmitt-Grohé, and Uribe (2001a) show that
around this steady state, the rational expectations equilibrium is indeterminate. More-
over, Benhabib, Schmitt-Grohé, and Uribe show that there exist equilibrium trajectories

3 A requirement for Leeper’s result to hold is that fiscal policy be passive; that is, that it guarantee that the
government’s intertemporal budget constraint be satisfied under all possible (local) paths of the price level.

4 However, several recent papers call into question the plausibility of local stability under active interest rate
rules. For example, Benhabib, Schmitt-Grohé, and Uribe (2001b) show that local uniqueness of equilibrium
under active interest rate rules depends on preference and technology specifications. Dupor (2001) shows
that in production economies with sticky prices, active interest rate rules lead either to the inexistence or the
indeterminacy of local equilibria. Carlstrom and Fuerst (2001) show that in models with capital and flexible
prices, active forward-looking interest rate rules render the equilibrium locally indeterminate. Benhabib,
Schmitt-Grohé, and Uribe (2002b) show in the context of an economy with money demand by firms, that
active interest rate rules might open the door to equilibrium cycles and chaos.
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Figure 1 The zero bound and multiple steady-state equilibria.

originating arbitrarily close to the target steady state that converge to the unintended
steady state. They argue that these equilibrium dynamics have the essential characteristics
of liquidity traps because they represent situations in which the economy embarks on a
deflationary path, which the monetary authority is unable to stop in spite of its repeated
efforts to inflate the economy through aggressive cuts in interest rates.

The above discussion makes it clear that it is the imposition of a zero bound on the
interest rate feedback rule that opens the door to a second, undesired steady state and to
the possibility of self-fulfilling liquidity traps. Therefore, it is natural to ask whether the
removal of the zero bound in the feedback rule would eliminate the low-inflation steady
state and with it the undesired liquidity trap equilibria. This question is the central focus
of the present study.

Continuing with the linear example given above, the lifting of the zero bound in the
interest rate rule results in a globally active rule of the form R = r +π∗ + γ (π −π∗),
where γ > 1. The interest rate feedback rule and the steady-state Fisher equation then have
a unique solution given by the intended steady state π = π∗ and R = R∗ (see Figure 2). One
possible objection against the assumption that the Taylor criterion holds globally could be
that in reality agents might not find such a rule credible. In particular, one may question
whether agents will believe that the government adheres to the Taylor rule even in the case
where the inflation rate falls within the range for which the Taylor rule would stipulate a
negative interest rate. This is because when nominal interest rates are negative, an arbitrage
opportunity would arise allowing private agents to make unbounded profits on account of
the government. Of course, in equilibrium, negative nominal rates would never be observed
and, hence, the threat of charging negative nominal interest rates presents a commitment
regarding off-equilibrium behavior. This lack-of-credibility argument is of the same nature
as that put forth by those who question the logical possibility of non-Ricardian fiscal policy
in the context of the fiscal theory of price level determination (e.g. Buiter 1998, 1999).
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Figure 2 A globally valid Taylor rule.

In the present paper, we do not take a position on whether governments can credibly
commit to globally active interest rate rules or not. Rather, we ask whether, assuming that
the monetary authority can indeed maintain a global Taylor rule, equilibrium liquidity
traps are still possible. We find that the answer is yes. In the context of standard monetary
models, we show that if the Taylor rule takes the form shown in Figure 2, then there exists
a continuum of rational expectations equilibria in each of which the nominal interest rate
converges asymptotically to zero and the inflation rate converges to a constant greater than
−r (labeled π̃ in Figure 2). These are liquidity traps in which the economy converges to
a situation that does not represent a steady state. In particular, in the limiting state of the
economy, the steady-state Fisher equation is not satisfied. This result is of particular interest
because it establishes that the possibility of self-fulfilling liquidity traps under Taylor rules
is not necessarily the consequence of the presence of a second steady state induced by the
zero bound on the interest rate feedback rule.

We begin by demonstrating the existence of liquidity traps under global Taylor rules
using a simple continuous-time, flexible-price, money-in-the-utility-function model. This
task is accomplished in Sections 2 and 3. Section 3 also contains two important extensions.
Subsection 3.2 shows that liquidity traps might not exist under two particular prefer-
ence specifications: when consumption and real balances enter the utility function in an
additively separable fashion and when the instant utility index exhibits satiation in real
balances. Subsection 3.3 demonstrates that the possibility of liquidity traps under globally
active interest rate rules is robust to assuming that time is a discrete variable.

In Section 4, we consider a more realistic environment with endogenous labor supply,
production, and sluggish price adjustment à la Rotemberg (1982). We show that, as in the
endowment, flexible-price economy, self-fulfilling liquidity traps arise despite the fact that
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the interest rate feedback rule is globally active. Finally, Section 5 presents some concluding
remarks.

2 The model

In this section we use a simple economic environment to illustrate how a monetary–
fiscal regime frequently advocated on the basis of aggregate stability can in fact lead to
expectational traps. The difference between our analysis and that found in the related
published literature is twofold. First, we do not restrict the analysis to local dynamics
around a particular stationary state. Second, we assume that the central bank follows a
globally active interest rate feedback rule.

2.1 Households

Consider an endowment economy populated by a large number of identical infinitely-lived
households with preferences defined over consumption and real balances and described by
the utility function∫ ∞

0
e − r t u(c , m)dt, (1)

where r > 0 denotes the subjective rate of time preference, c denotes consumption, M
denotes nominal money balances, and P denotes the price level. The instantaneous utility
index u is assumed to be increasing in both arguments, concave, and to satisfy ucm > 0, so
that consumption and real balances are Edgeworth complements. We also assume that

lim
m→∞ uc (c , m) = ∞ ∀c > 0, (2)

and that

lim
m→∞

um(c , m)

uc (c , m)
= 0 ∀c > 0. (3)

This last assumption implies that money demand approaches infinity as the nominal interest
rate vanishes. All of the above assumptions are satisfied, for example, when the instant utility
function takes the constant relative risk aversion/constant elasticity of substitution form

u(c , m) = [acρ + (1 − a)mρ](1 − σ )/ρ

1 − σ
, (4)

with a ∈ (0, 1), σ ≥ 0, and ρ < 1.
In addition to fiat money, the representative household has access to nominal govern-

ment bonds, denoted by B, that pay the nominal interest rate R. The household is endowed
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with a constant stream of perishable goods y and pays real lump-sum taxes τ . Its instant
budget constraint is then given by

P c + P τ + Ṁ + Ḃ = R B + P y.

Letting m ≡ M/P denote real balances and a ≡ (M + B)/P real financial wealth, the
above constraint can be written as

c + τ + ȧ = (R − π)a − Rm + y, (5)

where π ≡ Ṗ /P denotes the instant rate of inflation. The right-hand side of this budget
constraint represents the sources of income: real interest on the household’s assets net of the
opportunity cost of holding money and the endowment. The left-hand side shows the uses
of income: consumption, tax payments and savings. Households are subject to a borrowing
limit of the form

lim
t→∞ e − ∫ t

0 [R(s ) − π(s )]ds a(t) ≥ 0, (6)

which prevents them from engaging in Ponzi games. This no-Ponzi-game constraint
stipulate that the household is not permitted to implement consumption and money-
holding plans that imply that its real debt position net of money holdings grows at a rate
higher than or equal to the real interest rate. Clearly, because the utility function is increas-
ing in consumption and real balances, the household will always find it optimal to satisfy
the above borrowing limit with equality.

The representative household chooses paths for consumption, real balances, and wealth
so as to maximize (1) subject to the instant budget constraint (5) and the borrowing limit
(6), given its initial real wealth, a(0), and the paths of taxes, inflation and nominal interest
rates. The associated optimality conditions are (5) and (6) holding with equality, and

uc (c , m) = λ (7)

um(c , m) = λR (8)

λ̇
λ

= r + π − R, (9)

where λ is the Lagrange multiplier associated with the instant budget constraint.

2.2 Monetary and fiscal policy

We assume that the monetary authority follows a Taylor-type interest rate feedback rule of
the form

R = r + π∗ + γ (π − π∗), (10)

where π∗ >−r denotes the central bank’s inflation target and γ > 1 defines the respon-
siveness of the interest rate to deviations of inflation from its target.5 Loosely speaking, the

5 Leeper (1991) refers to monetary policy as active if γ > 1 and as passive if γ < 1.
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central bank raises the real interest rate in response to an increase in inflation and lowers
it in response to a decrease in inflation. We assume that the central bank adheres to the
Taylor criterion (γ > 1) globally; that is, for all possible rates of inflation. As a consequence,
there exists an inflation rate π̃ ≡ π∗ − (r + π∗)/γ > − r such that whenever π < π̃ , the
interest rate feedback rule prescribes a negative nominal interest rate. This assumption
distinguishes the analysis of the existence of liquidity traps under interest rate feedback
rules presented in this paper from that contained in Benhabib, Schmitt-Grohé, and Uribe
(2001a) and Woodford (2003).

The government finances its secondary deficits by printing money and issuing nominal
bonds. We assume that public consumption is zero and that the government levies real
lump-sum taxes. Therefore, the instant budget constraint of the government is given by
Ḃ + Ṁ = R B − P τ , which can be written as

ȧ = (R − π)a − Rm − τ. (11)

By definition, the initial condition a(0) satisfies

a(0) = A(0)

P (0)
, (12)

where A(0) ≡ M(0) + B(0) > 0 denotes the initial level of total nominal government
liabilities. We will assume that fiscal policy is Ricardian in the sense of Benhabib, Schmitt-
Grohé, and Uribe (2001b). Ricardian fiscal policies are those that ensure that the present
discounted value of total government liabilities converges to zero; that is,

lim
t→∞ e − ∫ t

0 [R(s ) −π(s )]ds a(t) = 0 (13)

is satisfied under all possible, equilibrium or off-equilibrium, paths of endogenous variables,
such as the price level, the money supply, inflation, or the nominal interest rate. We restrict
attention to one particular Ricardian fiscal policy that takes the form

τ + Rm = α a , (14)

where the sequence α is chosen arbitrarily by the government subject to the constraint
that it is positive and bounded below by some α > 0. This policy states that consolidated
government revenues (i.e. tax revenues plus interest savings from the issuance of money)
are always higher than a certain fraction α of total government liabilities.

2.3 Equilibrium

Equilibrium in the goods market requires that consumption be equal to the endowment

c = y. (15)
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Given the assumptions regarding the form of the instant utility function, (7), (8) and (15)
define a decreasing function linking λ and R:

λ = L (R); L ′ < 0. (16)

Using this expression to eliminate λ from (7) yields the following equilibrium Euler
equation:

Ṙ = L (R)

L ′(R)
[r + π − R]. (17)

Finally, using the feedback rule (10) to eliminate inflation from this expression we obtain
a univariate first-order differential equation describing the equilibrium dynamics of the
nominal interest rate:

Ṙ = (1 − γ )L (R)

γ L ′(R)
[R − R∗], (18)

where R∗ ≡ r +π∗ is the nominal interest rate associated with the target rate of inflation
π∗.

In turn, combining the government budget constraint (11) with the monetary and
fiscal policy rules, (10) and (14), yields

ȧ = [(1 − γ −1)(R − R∗) + r − α]a. (19)

Finally, using (10) to eliminate π from (13), the transversality condition becomes

lim
t→∞ e− ∫ t

0 [(1 − γ −1)(R(s ) − R∗) + r ]ds a(t) = 0. (20)

A perfect-foresight competitive equilibrium is defined as an initial price level P (0) and
functions of time R and a satisfying (12) and (18)–(20), given the initial condition A(0).
Note that because of the assumed Ricardian nature of the fiscal policy regime, given a
function of time R satisfying (18), Equations (12) and (19) imply a path for a that satisfies
the transversality condition for any initial a(0). This fact has two implications. First, any
non-negative function of time R satisfying (18) constitutes a perfect-foresight equilibrium,
and, second, if an equilibrium exists, then the initial price level P (0) is indeterminate.
However, nominal indeterminacy is not the focus of our analysis. We are instead concerned
with real determinacy; that is, with the determinacy of the function R, which in turn governs
the determination of real balances and thus welfare.

3 Liquidity traps with global Taylor rules

Consider first the steady-state solutions to (18). Clearly, because γ �= 1, there is a unique
steady state R = R∗. The result that the steady-state equilibrium is unique is driven by
the assumption that the monetary authority can make it credible that it will follow an
active interest rate feedback rule globally. As shown in Benhabib, Schmitt-Grohé, and

92 International Journal of Economic Theory 5 (2009) 85–106 C© IAET
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Uribe (2001a), if instead the interest rate feedback rule is constrained to be non-negative,
then a second steady state emerges. This second steady state represents a liquidity trap
insofar that inflation is low and possibly negative and the nominal interest rate is below the
target rate.

Because R is a non-predetermined variable, the steady state R∗ is, in fact, a perfect-
foresight equilibrium. Furthermore, R∗ is locally the unique perfect foresight equilibrium.
To see this, note that, given our maintained assumption that the feedback rule is globally
active, (1 − γ )/γ L (R)/L ′(R) is always positive. This implies that the sign of Ṙ in (18) is
the same as the sign of R − R∗. It follows that trajectories starting near R∗ diverge from R∗.
Therefore, if one were to limit the analysis to equilibria in which R remains forever in an
arbitrarily small neighborhood around R∗, then the only perfect-foresight equilibrium is
the steady state itself. This local uniqueness result has served as a key theoretical argument
for advocating the use of active, or Taylor-type, interest rate feedback rules to ensure
aggregate stability (e.g. Leeper 1991; Clarida, Galı́, and Gertler 2000).

However, equilibrium dynamics might look quite different once one adopts a more
global perspective. Specifically, there exists a continuum of perfect foresight equilibria in
each of which R converges to zero. In each of these equilibria the economy is caught in an
expectations driven liquidity trap.

Suppose that the interest rate semi-elasticity of the equilibrium marginal utility of
consumption becomes unboundedly large as the nominal interest rate approaches zero.
Formally, assume that the function L (·) satisfies

lim
R→0

L ′(R)

L (R)
= ∞. (21)

Given assumption (3), it is straightforward to show that (21) is equivalent to assuming
that

lim
m→∞

umm(y, m)

ucm(y, m)
= 0. (22)

This assumption is satisfied, for example, when the instant utility index takes the form
given in (4).

Figure 3 depicts the phase diagram of R implied by (18) under (21). Clearly, if the
economy starts at R(0) = R∗, then it remains at the target rate forever. However, if the
initial interest rate satisfies 0 < R(0) < R∗, then R falls continuously and approaches zero
asymptotically.6

Trajectories like the one just described possess all the characteristics of a liquidity trap.
Namely, inflation is expected to follow a declining spiral. The central bank, in turn, attempts
to inflate the economy by lowering the nominal interest rate so aggressively that the real
interest rate falls. This continuous decline in the real interest rate induces a declining path in
desired consumption. However, because aggregate supply is fixed, the equilibrium response
is a further decline in prices.

6 It is worth noting that R = 0 does not represent a steady-state equilibrium, for at that level of interest rates
real balances cease to be finite.
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Figure 3 Phase diagram.

3.1 The dynamics of money, wealth, taxes and inflation

Because the linear Taylor rule is assumed to hold globally, inflation is linearly linked
to the nominal interest rate along the entire deflationary spiral. Therefore, π decreases
monotonically and converges asymptotically to π̃ . The declining path of the nominal
interest rate is accompanied by less than one-to-one declines in inflation. As a result, the
real interest rate, given by R −π , decreases monotonically and converges to −π̃ , which
might be positive or negative depending on the values taken by γ , π∗ and r.

Given assumption (3), real balances become unboundedly large as the nominal interest
rate vanishes. At the same time, the asymptotic evolution of total government liabilities is
given by ȧ = −(π̃ + α)a . Therefore, a converges to zero if −π̃ − α < 0 and to infinity
otherwise. In particular, if the long-run inflation rate π̃ is non-negative, total govern-
ment liabilities vanish asymptotically. Because real money balances grow without bounds,
it follows that if a converges to zero, then increases in the money supply are brought
about through open market operations. In the long run the stock of government bonds
becomes negative and unboundedly large in real terms.7 Note that if total government
liabilities converges to zero, then asymptotically the government rebates all seigniorage
revenue through lump-sum transfers, τ = −Rm. In turn, the evolution of seigniorage

7 Indeed, the stock of bonds becomes negative in finite time.
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Figure 4 Time path of key variables: (a) nominal interest rate, (b) inflation rate, (c) real interest

rate, (d) log of real balances, (e) real wealth and (f) taxes.

revenue depends exclusively on the specification of preferences. Specifically, mR =
mum(y, m)/uc (y, m). So, for example, if u(c , m) = (1 − σ )− 1[acρ + (1 − a)mρ](1− σ )/ρ ,
then mR is proportional to mρ . In the Cobb-Douglas case, ρ = 0, lump-sum transfers
are constant in the long run. If the elasticity of substitution between real balances and
consumption is less (greater) than unity, ρ <(>) 0, then lump-sum transfers converge
to zero (infinity). Figure 4 depicts the dynamics of the nominal interest rate, inflation,
the real interest rate, real wealth, real balances, and real lump-sum taxes for the case of
Cobb-Douglas preferences.

3.2 Separability and satiation

Thus far we have shown that when the Taylor criterion holds globally, the possibility of
liquidity traps emerges under a wide range of preference specifications. Preferences in this
class include, but are not limited to, the family of instant utility functions given in (4).

A commonly used preference specification under which liquidity traps are impossible
is one in which the instant utility index is additively separable in consumption and real
balances. To see why, note that in this case the marginal utility of consumption depends
only on consumption and, therefore, is constant in equilibrium. It then follows from (7)
that the equilibrium value of λ is constant. Thus, by the Euler equation (9), we have that
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in equilibrium R = r +π . Combining this expression with the Taylor rule (10), we obtain
the unique and constant equilibrium interest rate R∗.

It is important to note, however, that the impossibility of liquidity traps under additive
separability in preferences is unrelated to the assumption that the Taylor criterion holds
globally. Rather, the uniqueness of equilibrium is a consequence of the fact that under sep-
arable preferences the marginal utility is constant over time.8 Interestingly, in discrete time,
liquidity traps arise under separability provided the feedback rule respects the zero bound
on nominal rates (Woodford 2001, 2003). However, as we show in the next section, this
type of equilibrium is impossible in discrete time if the feedback rule is active everywhere.

Liquidity traps might also be impossible when preferences display satiation in real
balances. An example of an environment in which satiation occurs naturally is Lucas and
Stokey’s (1987) the cash-in-advance model with cash and credit goods. In this economy,
households have preferences defined over consumption of cash and credit goods, c 1 and
c 2, respectively. Suppose for simplicity that the instant utility function is of the form
ln c 1 + ζ ln c 2. Consumption of the cash good is subject to a cash-in-advance constraint of
the form m ≥ c 1. In turn, consumption is subject to the resource constraint c 1 + c 2 = y,
where y > 0 is an exogenous and constant endowment. This constraint implies a unit relative
price of c 1 in terms of c 2. The budget and borrowing constraints faced by the household are
(5) and (6), with c ≡ c 1 + c 2. It is straightforward to show that the optimization problem
of the representative household in this economy is identical to that of the representative
household in a money-in-the-utility-function economy with instant utility given by

u(c , m) =
{

ln m + ζ ln(c − m) if m < m∗

ln m∗ + ζ ln(c − m∗) if m ≥ m∗ , (23)

where m∗ ≡ y/(1 + ζ ).9

Consider first the existence of liquidity traps in which the nominal interest rate is
positive but converges asymptotically to zero. Combining the first-order conditions (7) and
(8) and replacing c by y yields the following equilibrium money demand function:

y − (1 + ζ )m

ζm
= R.

In deriving this liquidity preference function we are using the fact that if R > 0, then
m < m∗. It follows from this expression that as R vanishes, real money balances converge
to m∗. The evolution of the nominal interest rate is given by (18). Therefore, as in the case
of no satiation, the existence of a liquidity trap requires that assumption (21) is satisfied.
Under satiation, assumption (21) is no longer equivalent to (22) but instead to

lim
m→m∗

umm(y, m)

ucm(y, m)
= 0.

8 Benhabib, Schmitt-Grohé, and Uribe (2001a) discuss the case of separable preferences assuming that the
monetary authority’s interest rate feedback rule satisfies the non-negativity constraint.

9 The satiation point m∗ is given by argmaxc1 [ln c 1 + ζ ln(y − c 1)].
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Using the utility function (23) and taking into account that when R > 0, m < m∗, we have

umm(y, m)

ucm(y, m)
= − (1 + ζ ),

which clearly does not converge to zero as real balances converge to the satiation point m∗.
Therefore, in this economy, liquidity traps in which the nominal interest rate is positive but
converges to zero are impossible.

It remains to establish that liquidity traps in which R reaches zero in finite time are also
impossible. If R = 0, then the Euler equation (9) is violated. To see why, note that if R = 0,
then m ≥ m∗. Therefore, λ = uc (y, m∗) is positive and constant, so the left-hand side of (9)
is zero. However, the right-hand side of (9) becomes r + π̃ , which is different from zero.

We close this section by noting that if the (linear) Taylor rule (10) is required to satisfy
the zero bound, so that R = max{0, r +π∗ + γ (π −π∗)}, then liquidity traps exist when
preferences exhibit satiation as in (23). In these economies, liquidity traps are characterized
by interest rate dynamics that reach the value of zero in finite time. Benhabib, Schmitt-
Grohé, and Uribe (2002a) analyze this case in an economic environment like the one
presented here (see in particular the appendix). Schmitt-Grohé and Uribe (2000) derive
the result in a discrete-time model.10

3.3 Discrete time

The objective of this subsection is to briefly show that the basic result that liquidity traps
exist when the Taylor criterion is valid globally is robust to assuming that time is a dis-
crete variable. To this end, let the utility function take the form

∑∞
t=0 β t u(ct , mt ), with

β ∈ (0, 1). The period utility function u(·, ·) is assumed to be increasing in both arguments,
to be concave, and to satisfy ucm > 0. In addition, we assume that u satisfies assumptions
(2) and (3).

Letting fiscal policy be Ricardian, the equilibrium dynamics of inflation and the nominal
interest rate are governed by the discrete-time counterparts of the Taylor rule (10) and the
equilibrium Euler equation (17), which are given, respectively, by

Rt = R∗ + γ (πt − π∗) (24)

and

L (Rt ) = βL (Rt + 1)
1 + Rt

1 + πt + 1
, (25)

10 Schmitt-Grohé and Uribe (2000) conduct the analysis under the assumption that the government follows a
balanced-budget rule. They show that linear Taylor rules that satisfy the zero bound might lead to dynamics
in which the economy perpetually fluctuates between two states. In one the interest rate converges to a
strictly positive value. In the other the economy falls into a liquidity trap with a zero nominal interest rate.
See proposition 3 and in particular the case illustrated in the bottom right panel of figure 3. The result that
liquidity traps cannot last forever (i.e. R t = 0 for all t cannot be supported as a steady-state equilibrium) is
a consequence of the assumed balanced-budget requirement.
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where 1 + R∗ ≡ (1 +π∗)/β. The function L (·) is implicitly given by the solution for λ

to the equilibrium conditions λ = uc (y, m) and um(y, m)/uc (y, m) = R/(1 + R). The
assumptions imposed on the period utility function imply that L (R) > 0, L ′(R) < 0 for all
R > 0, and limR→0 L (R) = ∞. We assume that the inflation coefficient of the Taylor rule
satisfies βγ > 1, so that the elasticity of the gross nominal interest rate with respect to gross
inflation at the intended steady state is greater than one. Combining (24) and (25) yields
the following first-order difference equation describing the equilibrium law of motion of
Rt :11

L (Rt ) = βL (Rt + 1)
1 + Rt

1 + π∗ + γ −1(Rt + 1 − R∗)
. (26)

This difference equation admits a unique constant solution given by Rt = R∗ for all t . This
solution is, therefore, the unique steady-state equilibrium. Furthermore, this equilibrium
is locally the unique perfect-foresight equilibrium. To see this, log-linearize (26) around
R∗ to obtain:

R̂t + 1 =
[

η − R∗/(1 + R∗)

η − (γβ)−1 R∗/(1 + R∗)

]
R̂t ,

where R̂t ≡ ln(Rt/R∗) denotes the log-deviation of Rt from its intended steady-state value
and η ≡ L ′(R∗)R∗/L (R∗) < 0 denotes the steady-state elasticity of the marginal utility
of consumption with respect to the nominal interest rate. Because η < 0 and βγ > 1, we
have that the coefficient in square brackets in the above expression is greater than 1. It
follows that the only solution to (26) that originates in a small neighborhood around R∗

and converges to it is R∗ itself.
However, as in the continuous-time case, the discrete-time economy under study admits

other equilibria. In these equilibria, the nominal interest rate moves away from the intended
steady state and converges to zero. To see why, note that because L(R) converges to infinity
as R vanishes, (26) implies that if Rt converges to zero, so does Rt+ 1. Figure 5 depicts the
phase diagram associated with (26). The phase diagram crosses the 45◦ line at Rt = R∗

from below. Also, for Rt ∈ (0, R∗), the phase diagram is positive and lies below the 45◦

line. Thus, sequences {Rt}∞
t=0 with 0 < R0 < R∗ converge monotonically to zero. Along

such trajectories, inflation falls continuously, the real interest rate falls, and real balances
increase without bounds.

4 A sticky-price model

In this section we consider an economic environment with nominal rigidities. In addition,
unlike in the flexible-price economy, in the model analyzed here product markets are
imperfectly competitive and labor supply (and thus production) is endogenous. Price
stickiness, production and imperfect competition constitute three basic elements typically
present in theoretical evaluations of the stabilizing properties of Taylor rules (e.g. Rotemberg

11 This equation is the discrete-time version of (18).
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Figure 5 Phase diagram in the discrete-time model.

and Woodford 1999). Our goal continues to be to show that even in the absence of the zero
bound on the interest rate rule, that is, even if one believes that the monetary authority can
credibly threaten to set a negative interest rate, liquidity traps might arise as equilibrium
outcomes.

The economy is assumed to be populated by a continuum of household–firm units
indexed by j, each of which produces a differentiated good Y j . Firms have market power
and set prices so as to maximize profits. The demand faced by firm j is given by Y dd(P j /P ),
where Y d denotes the level of aggregate demand, P j the price firm j charges for the good
it produces, and P the aggregate price level. Such a demand function can be derived by
assuming that households have preferences over a composite good that is produced from
differentiated intermediate goods via a Dixit–Stiglitz production function. The function
d(·) is assumed to be twice continuously differentiable, decreasing, and to satisfy d(1) = 1
and d ′(1) <−1.12

12 The restriction imposed on d ′(1) is necessary for the firm’s problem to be well defined in a symmetric
equilibrium.
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The production of good j uses labor, h j , supplied by household j as the only input. For
simplicity, we assume a linear technology:

y(h j ) = h j .

Following Rotemberg (1982), we assume that households face convex costs of adjusting
prices. Specifically, the household’s lifetime utility function is assumed to be of the form

U j =
∫ ∞

0
e − r t

[
u(c j , m j ) − z(h j ) − θ

2

(
Ṗ j

P j
− π∗

)2
]

dt, (27)

where c j denotes consumption of the composite good by household j , m j ≡ M j /P
denotes real money balances held by household j, and M j denotes nominal money bal-
ances. The utility function u(·, ·) is assumed to be increasing, twice continuously dif-
ferentiable, weakly concave, and to satisfy ucm > 0 and assumptions (2) and (3). The
function z(·) measures the disutility of labor and is assumed to be twice continuously dif-
ferentiable, increasing and strictly convex. The parameter θ measures the degree to which
household–firm units dislike to deviate in their price-setting behavior from the target rate of
inflation π∗.

Let a j denote the real value of household j’s financial wealth which consists of the sum
of real money holdings and government bonds. Then a j evolves according to the following
law of motion:

ȧ j = (R − π)a j − Rm j + P j

P
y(h j ) − τ − c j . (28)

Households are also subject to the following borrowing constraint that prevents them from
engaging in Ponzi-type schemes:

lim
t→∞ e − ∫ t

0 [R(s ) − π(s )]ds a j (t) ≥ 0. (29)

Given the price firm j charges for the good it produces, its sales are demand determined
and equal to:

y(h j ) = Y d d

(
P j

P

)
. (30)

Household j chooses non-negative functions of time for the control variables c j , m j and
h j and functions of time for the state variables P j and a j so as to maximize (27) subject
to (28)–(30) taking as given a j (0), P j (0), and the time paths of τ , R, Y d and P. If the
household’s problem has an interior solution, then there exist functions of time λ j and μ j

such that the following conditions are satisfied:

uc (c j , m j ) = λ j (31)

um(c j , m j ) = λ j R (32)
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z′(h j ) = λ j P j

P
y ′(h j ) − μ j y ′(h j ) (33)

λ̇ j = λ j (r + π − R) (34)

λ j P j

P
y(h j ) + μ j P j

P
Y d d ′

(
P j

P

)
= θr (π j − π∗) − θπ̇ j (35)

lim
t→∞ e − ∫ t

0 [R(s ) −π(s )]ds a j (t) = 0, (36)

where π j ≡ Ṗ j /P j .

4.1 Equilibrium

We assume that the government follows a globally active interest rate feedback rule and a
Ricardian fiscal policy, as described in Section 2.2. In a symmetric equilibrium all
household–firm units choose identical functions for consumption, asset holdings, and
prices. Therefore, we can drop the superscript j. In addition, the goods market must clear;
that is,

c = y(h). (37)

Combining (31) and (32) yields a liquidity preference function of the form

m = m(c , R). (38)

Given our maintained assumption about the form of the instant utility index over consump-
tion and real balances, the liquidity preference function (38) is increasing in consumption
and decreasing in the nominal interest rate.

If u(·, ·) is strictly concave, then using (37) and (38) to eliminate c and m from (31)
yields the following expression for h:

h = h(λ, R), (39)

where hλ < 0, h R < 0.13 Let η ≡ d ′(1) <−1 denote the equilibrium price elasticity of the
demand function faced by an individual firm. Using (10), (33) and (39) to eliminate μ, π
and h from (34) and (35) yields the following vector differential equation describing the
equilibrium dynamics of (λ, R):

λ̇ = λ (γ −1 − 1)(R − R∗) (40)

Ṙ = r (R − R∗) − h(λ, R)λ

θγ

[
1 + η − ηz′(h(λ, R))

λ

]
. (41)

13 To see this, note that hλ = [umm − (um/uc )ucm]/[(ucc umm − u2
cm)] and that h R = −hλucmmR.
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A perfect-foresight equilibrium is a pair of functions {λ, R} satisfying (40) and (41).
Given the equilibrium functions {λ, R}, the corresponding equilibrium functions {h, c ,
π , m} are uniquely determined by (39), (37), (10) and (38), respectively. The assumed
Ricardian nature of the monetary–fiscal regime requires that the fiscal authority sets taxes
in such a way that, given paths for R, π , m and an initial condition a(0), the path for a
implied by (19) satisfies the transversality condition (20).

4.2 Steady-state equilibria

A steady-state equilibrium is defined as a pair of constant functions {λ, R} satisfying (40)
and (41); that is,

R = R∗ (42)

1 + η

η
λ = z′(h(λ, R∗)). (43)

Recalling that z(·) is strictly convex, it follows from (42) and (43) that there exists a unique
steady-state equilibrium (λ∗, R∗). At the steady-state equilibrium the nominal interest rate
takes its target value R∗. Aggregate output is such that firms equate marginal cost, given by
z′(h)/λ, to marginal revenue, (1 + η)/η.14 As in the flexible price case, the uniqueness of
the steady-state equilibrium is a consequence of the assumption that the Taylor criterion is
globally valid. Benhabib, Schmitt-Grohé, and Uribe (2001a) show that if the interest rate
rule is restricted to be non-negative, then at least two steady-state equilibria exist.

4.3 Local equilibria

We now consider perfect-foresight equilibria in which λ and R remain bounded in a
small neighborhood around the steady state (λ∗, R∗) and converge asymptotically to it.
Linearizing (40) and (41) around (λ∗, R∗), we obtain the system:(

λ̇

Ṙ

)
= J

(
λ − λ∗

R − R∗

)
, (44)

where

J =
[

0 uc (γ −1 − 1)
J21 J22

]

14 Note that because η is the elasticity of demand, η/(1 + η) represents the steady-state markup of prices over
marginal cost. Because all firms set identical prices in equilibrium, the relative price of each good j in terms
of the composite consumption good (the numeraire) is unity.
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Stephanie Schmitt-Grohé and Martı́n Uribe Liquidity traps

J21 = yη

θγ

[
z′′hλ − z′

λ

]
> 0

J22 = r + yη

γ θ
z′′h R > 0.

Because monetary policy is active (γ > 1), the trace and the determinant of J are positive.
This implies that both eigenvalues of J have positive real parts. It then follows from the fact
that both λ and R are jump variables that the equilibrium is locally determinate.

This result reproduces that basic message of a number of recent papers advocating the
stabilizing properties of Taylor rules in the context of neo-Keynesian models like the one
developed in this section (e.g. Rotemberg and Woodford 1997, 1999; Clarida, Galı́, and
Gertler 2000). However, by construction, this result is valid only if one restricts attention
to equilibria in which endogenous variables remain forever bounded in an arbitrarily small
neighborhood around the intended steady state. Benhabib, Schmitt-Grohé, and Uribe
(2001a) demonstrate that if the interest rate rule is bounded below by zero, then a second
steady state emerges. This second steady state is locally indeterminate and, as they argue, has
all the essential characteristics of a liquidity trap. More importantly, there exist equilibrium
trajectories emerging arbitrarily close to the intended steady-state that converge to the
liquidity trap. When the monetary authority is assumed to be able to credibly commit to
a globally active interest rate rule, then the second, unintended steady state disappears.
However, such commitment does not eliminate the risk of falling into a self-fulfilling
liquidity trap. We turn to this issue next.

4.4 Global equilibria

To illustrate the existence of liquidity traps, we limit attention to a particular preference
specification that implies interest rate dynamics identical to those arising in the flexible-
price economy. Specifically, assume that u(·, ·) is homogeneous of degree one in c and m.15

In this case, (37), (38) and (31) taken together imply that in equilibrium the marginal utility
of consumption is a decreasing function of the nominal interest rate alone. Therefore, a
relationship like (16) holds.16 The equilibrium dynamics are represented by the following
planar system in h and R:

Ṙ = L (R)

L ′(R)
(γ −1 − 1)(R − R∗) (45)

[
r − L (R)

L ′(R)
(γ −1 − 1)

]
(R − R∗) = hL (R)

θγ

[
1 + η − ηz′(h)

L (R)

]
. (46)

If L (·) satisfies assumption (21), then the scalar system (45) has a phase diagram like the one
depicted in Figure 3. In this case, there exists a continuum of trajectories for the nominal

15 The family of utility functions given in (4) belongs to this class if σ = 0.
16 To see why, note that in this case uc is homogeneous of degree zero in c and m, and the liquidity preference

function is linear in consumption.
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Figure 6 The liquidity trap in the sticky-price model: (a) nominal interest rate (annual) and (b)

hours (=output).

interest rate that satisfy (45) and converge to 0. These trajectories represent equilibrium
allocations if they imply, by the static equation (46), trajectories for h that are feasible.

Consider the special case that u(c , m) takes the Cobb-Douglas form c 1 − bmb . Then
L (R)/L ′(R) =− R/b, which converges to zero as R vanishes. Equation (45) becomes
Ṙ = R(R − R∗)(1 − γ −1)/b. The solution to this differential equation is R(t) = [1/R∗ +
exp[R∗(γ − 1 − 1)/b](1/R(0) − 1/R∗)]− 1. It is easy to verify that for any 0 < R(0) <R∗,
R(t) is strictly positive and converges asymptotically to zero. In general, it is difficult to
establish that given a function R that solves (45), the function h implied by (46) is well
defined. Here we limit our discussion to a parameterized example in which z(h) = ρ ln(1
− h), with h ∈ [0, 1). Under this assumption, (46) is a second-order polynomial in h,
whose coefficients are functions of R (and are, therefore, time varying). Figure 6 depicts the
equilibrium dynamics of the nominal interest rate and hours associated with an initial value
of R less than the intended steady-state R∗.17 The graph shows that a liquidity trap exists;
that is, there exist equilibrium trajectories in which the nominal interest rate converges to
zero. In addition, inflation keeps falling despite the central bank’s efforts to stimulate the
economy through low real rates. In the parameterized example, leisure converges to zero as
the economy approaches the liquidity trap. The reason for this lies in the behavior of the
representative household’s labor supply schedule. With the decline in nominal rates, real
balances increase. The increase in real balances is so strong that it increases the marginal
utility of income and in this way shifts the household’s labor supply schedule out.

17 The parameter values used to compute the equilibrium dynamics are as follows. The time unit is one quarter.
The intended nominal interest rate is 6 percent per year, which corresponds to the average yield on 3-month
T-bills from the first quarter of 1960 to the third quarter of 1998. We set the target rate of inflation at
4.2 percent per year. This number matches the average growth rate of the US gross domestic product deflator
from the first quarter of 1960 to the third quarter of 1998. Following Taylor (1993), we set the slope of the
interest rate rule at the intended steady state equal to 1.5. To calibrate b, we use the liquidity preference
function given by (38), which in the Cobb-Douglas case takes the form m = b/(1 − b)y/R, to express b
as the following function of the nominal interest rate and money velocity: b = R/(R + y/m). In the US
economy, average annual M1 velocity from the first period of 1960 to the fourth quarter of 1999 was 5.8.
This figure together with the assumed value for R∗ implies b = 0.0102. We assign a value to the preference
parameter ρ such that in the steady state households spend one-third of their time working.
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5 Conclusion

This paper contributes to a branch of the literature in monetary economics, greatly influ-
enced by the theoretical contributions of Jess Benhabib, that evaluates the consequences of
active interest rate feedback rules from a global perspective. Specifically, the paper builds on
a key result derived by Benhabib, Schmitt-Grohé, and Uribe (2001a); namely, that Taylor
rules that are bounded below by zero give room to unintended deflationary spirals. The
present study shows that the zero bound on the interest rate rule itself is not at the root of
the problem. For a number of standard model specifications, the paper shows that liquidity
traps emerge even if the government can commit to a globally active interest rate rule; that
is, even if the government can credibly threaten to set a negative interest rate at low enough
rates of inflation.

An important immediate issue that arises from the results of this paper is how liquidity
traps can be avoided while maintaining the desirable local properties of Taylor rules.
Benhabib, Schmitt-Grohé, and Uribe (2002a) and Woodford (2001, 2003) provide examples
of policies capable of eliminating liquidity traps when the Taylor rule is assumed to satisfy
the zero bound. The essence of their proposals is to build a fiscal regime whereby the
government embarks in aggressive fiscal expansions in the event that the economy slips
into a liquidity trap. This emergency fiscal policy must be aggressive enough so that near the
unintended steady state total government liabilities grow at a rate larger than the nominal
interest rate. It follows that under such fiscal policy, in the event of a liquidity trap, total
government liabilities grow without bounds in present discounted value. Equivalently,
private agents would find themselves holding long-run asset positions of positive present
discounted value, which is inconsistent with optimizing behavior if consumption and real
money holdings are to be finite at each point in time. Because such a situation cannot
be supported as an equilibrium outcome, the suggested policies effectively rule out self-
fulfilling liquidity traps.

Clearly, the proposals for avoiding liquidity traps contained in Benhabib, Schmitt-
Grohé, and Uribe (2002a) and in Woodford (2001, 2003) will also be effective when
the Taylor rule is globally active. Specifically, any fiscal policy that guarantees that total
government liabilities grow at all times at a rate that is lower than the target nominal rate
and bounded away from zero will eliminate self-fulfilling liquidity traps and ensure the
global uniqueness of the intended equilibrium.
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