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Partnering with a large online retailer, we consider the problem of sending daily personalized promotions

to a userbase of over 20 million customers. We propose an efficient policy for determining, every day, the

promotion that each customer should receive (10%, 12%, 15%, 17%, or 20% off), while respecting global allocation

constraints. This policy was successfully deployed to see a 4.5% revenue increase during an A/B test, by better

targeting promotion-sensitive customers and also learning intertemporal patterns across customers.

We also consider theoretically modeling the intertemporal state of the customer. The data suggests a simple

new combinatorial model of pricing with reference effects, where the customer remembers the best promotion

they saw over the past ℓ days as the "reference value", and is more likely to purchase if this value is poor. We

tightly characterize the structure of optimal policies for maximizing long-run average revenue under this

model: they follow an “ℓ-up-1-down” cycle, where each time the offered discount worsens, the new value is

repeated ℓ times to reset the customer’s reference, and each time the discount improves, the better value is

offered only once. As an example, if ℓ = 3 and there are four distinct discount values 10%, 15%, 12%, 20% in order,

then the corresponding ℓ-up-1-down cycle would offer (10%, 10%, 10%, 15%, 12%, 12%, 12%, 20%) repeatedly.
This structural characterization allows us to reduce an exponentially-sized MDP to a polynomially-sized

one, enabling the computation of the optimal policy. We also prove this characterization is tight: given any

ℓ-up-1-down cycle, we can construct an instance for which that cycle is the unique optimal policy.
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Fig. 1. Examples of personalized promotions on Lyft, Alibaba Livestream Shopping, and Meituan Bike.

1 Introduction
Personalized promotions have become increasingly prevalent, with Lyft offering them in its app as

early as 2019 [Shmoys and Wang, 2019], Alibaba Livestream Shopping offering highly personalized

deals in real-time to its users watching influencers shop [Liu, 2023], and Meituan explicitly dis-

criminating in the Bike pass discounts offered to different users [Dai et al., 2024]. These practices

are illustrated in Figure 1, and are generally allowed so long as they are not deceptive and do not

violate anti-discrimination or competition rules. Personalized promotions fall under the grander

movement toward gamified shopping, e.g. on Temu [Zhou, 2023], and AI-agent shopping assistants,

e.g. on Alibaba Taobao and TMall [Utley, 2024], which provide highly personalized journeys for

users on shopping platforms.

Optimizing these personalized promotions from the business’s end is a challenging problem,

due to context-dependent customer behavior, complex interactions with other (non-personalized)

promotions running at the same time, and longer-term reference effects where customers may

become insensitive to big discounts if they expect even better ones to come. Moreover, many

promotion teams face budget constraints on the total discount redeemed by customers, which

creates an allocation problem coupled across customers. Finally, the algorithm must be fast and

scalable, because these promotions are sent at a high-frequency (e.g., daily, or in real-time as the

user browses the app), and promotions may need to be computed at the individual user level.

To explore this personalized promotion problem, we partner with a large U.S. online retailer in

the home decor sector, whose annual revenue is in the billions. They send a daily marketing email

to their userbase, each containing a personalized coupon offering “X% off your entire order”, where

X is either 10%, 12%, 15%, 17%, or 20% and targeted toward the specific user. While the retailer’s

base prices are set at the product level, these personalized discounts serve as a customer-level tool

to drive incremental purchases that would not occur at full price.

Our paper has two main parts. The first, outlined in Subsections 1.1 and 1.2, describes our

transformation of the promotion algorithm at our partner retailer to use data and optimization,

where we develop a fast and scalable algorithm with one “shadow price” parameter that is manually

set every day based on the promotional budget that can be allocated. In an A/B test during May–

June 2024 to 20 million customers, we saw a significant 4.5% uplift in revenue, compared to

their incumbent algorithm that sent different discounts based on ad-hoc clustering instead of

granular personalization. From this excellent result, our algorithm became the default for allocating

personalized promotions at our partner retailer in August–September 2024.

The second part of our paper, outlined in Subsection 1.3, studies an abstract theoretical model

with the goal of improving upon the deployed algorithm that myopically optimizes for next-day
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revenue. Based on evidence from the data, we formulate a new model of pricing with reference

effects, where the customer remembers the best promotion they saw over the past ℓ days as the

“reference value”. We combinatorially characterize the structure of optimal policies for this model,

which allows us to computationally solve for optimal promotion cycles.

1.1 Practical Problem and Methodology (details in Section 2)
Data and decisions. The userbase consists of customers 𝑖 with static features 𝑧Cust𝑖 (e.g., join date,

shopping channel). Every day 𝑡 , the retailer offers each customer 𝑖 a personalized discount value

𝑣𝑖𝑡 ∈ V := {.10, .12, .15, .17, .20}. The customer then makes a purchase with pre-discount spend

value𝑤𝑖𝑡 ≥ 0 (𝑤𝑖𝑡 = 0 represents no purchase), while also exhibiting auxiliary behavior captured by

features 𝑧Obs𝑖𝑡 (e.g., website visits, shopping cart activity, email opens). The objective is to maximize

the long-run revenue ∑︁
𝑡,𝑖

(1 − 𝑣𝑖𝑡 )𝑤𝑖𝑡

while also facing a soft budget constraint on the total discounts redeemed

∑
𝑡,𝑖 𝑣𝑖𝑡𝑤𝑖𝑡 .

Solution approach. A customer 𝑖’s spend𝑤𝑖𝑡 depends (randomly) on the day 𝑡 , the personalized

discount value 𝑣𝑖𝑡 , as well as 𝑧
Cust
𝑖 and the entire history of (𝑣𝑖𝑡 ′ ,𝑤𝑖𝑡 ′ , 𝑧

Obs
𝑖𝑡 ′ )𝑡 ′<𝑡 . Because the exact

spends 𝑤𝑖𝑡 are noisy and difficult to predict, we focus on the binary purchase indicator 𝑦𝑖𝑡 =

1(𝑤𝑖𝑡 > 0) and normalize spend to𝑤𝑖𝑡 = 1 conditional on purchase. Maximizing long-run revenue

under this assumption is still difficult, and not even formally-defined given the exogenous changes

(e.g., the marketing team changing the e-commerce site) that could affect the purchase probabilities

on future days. Therefore, every day 𝑡 we myopically optimize the daily expected revenue∑︁
𝑖

(1 − 𝑣𝑖𝑡 ) · E[𝑦𝑖𝑡 |𝑣𝑖𝑡 ] .

A potential concern is that a myopic policy could assign the same discount to a customer

repeatedly, a pattern which our partner preferred to avoid. However, we ensured that our model

of E[𝑦𝑖𝑡 |𝑣𝑖𝑡 ] depends sufficiently on past decisions (𝑣𝑖𝑡 ′ )𝑡 ′<𝑡 to induce natural variation in the

offered promotions over time. Specifically, E[𝑦𝑖𝑡 |𝑣𝑖𝑡 ] becomes less sensitive to 𝑣𝑖𝑡 after a customer

has received many strong discounts in recent periods, with customers becoming “complacent” to

receiving good discounts (we provide empirical evidence of this in Subsection 2.2). In such cases,

the myopic rule naturally shifts the customer toward smaller discounts, generating within-customer

variation over time, which our partner viewed as a desirable property for deployment. This desirable

variation, driven by customers’ evolving sensitivity to discounts, inspires the reference effect model

studied in the second part of this paper.

Training the model for E[𝑦𝑖𝑡 |𝑣𝑖𝑡 ]. We extract features to construct a model for E[𝑦𝑖𝑡 |𝑣𝑖𝑡 ], account-
ing for the expert knowledge of our partner’s machine learning team, while also ensuring there

are features that depend on past decisions (𝑣𝑖𝑡 ′ )𝑡 ′<𝑡 to potentially induce the desired variation in

discounts received. To elaborate, we construct a mapping 𝜙 that extracts important context from

the feature information and history for a customer 𝑖 on day 𝑡 , resulting in the (processed) feature

𝑥𝑖𝑡 := 𝜙 (𝑡, 𝑧Cust𝑖 , (𝑣𝑖𝑡 ′ ,𝑤𝑖𝑡 ′ , 𝑧
Obs
𝑖𝑡 ′ )𝑡 ′<𝑡 ).

We then solve a supervised learning problem where the goal is to predict 𝑦𝑖𝑡 based on (𝑥𝑖𝑡 , 𝑣𝑖𝑡 ) over
all historical 𝑖, 𝑡 pairs. We impose structure on the prediction model to isolate how decision variable

𝑣𝑖𝑡 affects the probability that 𝑦𝑖𝑡 = 1, and find that the direction is intuitively correct (i.e., better

discount 𝑣𝑖𝑡 increases purchase probability) in 99.5% of historical 𝑖, 𝑡 pairs (see Subsection 2.2).
This approach lets us pool data across all customers, rather than fitting separate models for



Jackie Baek, Will Ma, and Dmitry Mitrofanov 3

each individual, while the processed feature representation enables a flexible mapping from 𝑥

to purchasing behavior. This approach is inspired by a similar methodology for personalizing

healthcare interventions [Baek et al., 2025].

Optimization method. After training our model, we let 𝑞(𝑥, 𝑣) denote the probability that it

estimates for a customer with context 𝑥 making a purchase if they are offered discount value 𝑣 . On

day 𝑡 , we then send to each customer 𝑖

𝑣𝑖𝑡 ∈ argmax𝑣∈V (1 − 𝜆𝑡𝑣)𝑞(𝑥𝑖𝑡 , 𝑣), (1)

where 𝑥𝑖𝑡 is their current context, and 𝜆𝑡 > 0 is a penalty parameter for giving too much discount.

The default value for 𝜆𝑡 is 1, in which case (1) corresponds to maximizing expected revenue, but 𝜆𝑡
can be decreased to give discounts more aggressively, or decreased to conserve the promotional

budget. In practice at our partner retailer, 𝜆𝑡 is manually set each day 𝑡 by an internal employee,

who is in touch with upper management on the budget to be allocated across customers.

We highlight that our method is fast and scalable: the prediction function 𝑞(𝑥, 𝑣) once trained is

fast to call, and the optimization problem (1) is separately solved for each customer. It is also easily

tunable: 𝜆𝑡 can be changed each day to adapt to changing business conditions.

1.2 Deployment and Impact (details in Section 3)
Collaboration details. We were given older data to use academically to develop the algorithm.

After testing on this data, we helped our partner write production-level code both for training

a model from their most-recent data and for optimizing daily based on the trained model. The

model is re-trained periodically, although the most-recent data is not shared with us. This code was

deployed in an A/B test during May–June 2024, and aggregate, relative results were shared with us

to report. In addition, a small group of customers were reserved to receive independently random

discount values every day, and this data was shared for the purpose of further academic testing.

Results from A/B test. In an A/B test on over 20 million customers that were randomly split 50/50

into treatment/control, our algorithm saw a massive 4.5% increase in average revenue per user. The

𝑝-value of such an observation if our algorithm was not better is < 0.01. We delve into where the

improvement is coming from, and find that our algorithm is able to correctly predict sensitivity to

discounts based on a customer’s intertemporal state, and thus target the right customers—offer

big discounts to customers who need incentive to make a purchase, and send stingy discounts to

customers who were going to purchase anyway. Our algorithm yields a more polarized promotion

distribution, where it sends either small or large discounts to most customers, compared to the

incumbent algorithm that offered more medium discounts.

In terms of who gets the best discounts, aside from the reference effect considerations, our

algorithm tends to offer them to the engaged customers who open the most emails, as it believes

that these customers are looking for bargains. Thus, our algorithm drives the right incentives for

customers to engage with the company’s emails. Our algorithm was rolled out to all customers and

became the default algorithm for sending personalized promotions during August–September 2024.

1.3 Theoretical Model and Results (details in Section 4)
Our deployed algorithm optimizes myopically each day, for simplicity, scalability, and to cope with

uncontrollable exogenous factors such as arbitrarily changing budgets from day to day. We now

formally study the long-run optimization problem in a theoretical model with a single customer

whose intertemporal context is one-dimensional, and no exogenous changes or budgets. Our model

is justified by our data, and its optimal solution provides an explanation for promotion cycling in

practice as well as provides structure for how it should be optimized.
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Reference value model. We study the problem of maximizing long-run average expected revenue

from a single customer 𝑖:

sup

(𝑣𝑖𝑡 )∞𝑡=1
lim

𝑇→∞

1

𝑇

𝑇∑︁
𝑡=1

(1 − 𝑣𝑖𝑡 )𝑞(𝑥𝑖𝑡 , 𝑣𝑖𝑡 )

with a one-dimensional context 𝑥𝑖𝑡 := max{𝑣𝑖,𝑡−ℓ , . . . , 𝑣𝑖,𝑡−1}. This should be viewed as a “reference

value”, where the customer remembers the best promotion they received over the past ℓ days, for

some fixed positive integer ℓ . It is assumed that this is the sole intertemporal state affecting the

customer’s purchase probabilities 𝑞(·, 𝑣) under different discounts 𝑣 , allowing us to construct a

deterministic Markov Decision Process (MDP) to model the customer.

We impose only one mild assumption on the function 𝑞(·, 𝑣), that it is reference-monotone: fixing
any offered discount 𝑣 ∈ V , the purchase probability 𝑞(𝑥, 𝑣) is decreasing in 𝑥 . That is, the bigger

the customer’s reference value 𝑥 , the more complacent they are to discounts and less likely they

are to purchase under any offered 𝑣 .

Model comparison and justification. In related literature on dynamic pricing with reference effects

(reviewed in Subsection 1.4), the reference price is often defined as the (exponentially-weighted)

average of past prices. Our definition based on the extremum over a fixed memory length ℓ yields a

more combinatorial model with only |V| possible reference values, which will allow us to derive

cleaner cycle structure results than most of this literature.

We also provide some empirical evidence for our definition in Subsection 3.1, using the data in

which customerswere sent randomdiscounts.We find that the reference valuemax{𝑣𝑖,𝑡−ℓ , . . . , 𝑣𝑖,𝑡−1}
is negatively correlated with purchases (𝑦𝑖𝑡 = 1), providing empirical evidence of the reference

effect. We also find that our definition of the reference value is a better univariate predictor for

purchases than using the average coupon value over the past ℓ days, 1

ℓ
(𝑣𝑖,𝑡−ℓ + · · · + 𝑣𝑖,𝑡−1).

Characterization of optimal policies. For our reference value model, the problem of maximizing

long-run average can be formulated as an infinite-horizon undiscounted MDP with |V|ℓ states,
where the state needs to include the sequence of past ℓ values offered. A priori, this exponential-sized

MDP is computationally intractable to solve. Fortunately, we are able to identify a key “ℓ-up-1-

down” structural result that both provides intuition about optimal cycle structure and allows us to

solve this infinite-horizon undiscounted MDP problem in polynomial time.

To elaborate, an “ℓ-up-1-down” policy is defined by a cycle of distinct values in V , which we

call its generator cycle. For each value in the generator cycle, we check if it results in a higher

price than the previous value (i.e., the discount is worse)—if so (i.e., price is going “up”), then we

repeat the value ℓ times; if not (i.e., price is going “down”), then we only offer the value once.

The final policy is to offer this cycle with repeats on the “up” values, ad infinitum. For example,

ifV = {.10, .12, .15, .17, .20} and ℓ = 3, then generator cycle (.15 .12 .20) would lead to the policy

cycling between values (.15 .15 .15 .12 .12 .12 .20), offering the best discount of .20 once a week. As
another example, generator cycle (.10 .15 .12 .20) would lead to the policy cycling between values

(.10 .10 .10 .15 .12 .12 .12 .20). The intuition behind ℓ-up-1-down policies is that if we were going

to make the price go up, then the purpose is to “reset” the reference value of the customer, in which

case we need to offer the higher price ℓ times.

We prove that under the reference-monotonicity assumption, there always exists an ℓ-up-1-down

policy that is optimal. This drastically reduces the search space, noting that many cycles are not

ℓ-up-1-down—e.g. if ℓ = 3, then (.10, .20) is not ℓ-up-1-down because the .10 is not repeated 3

times; (.10, .10, .10, .20, .20, .20) is not ℓ-up-1-down because the .20 should not be repeated; and

(.10, .10, .10, .15, .15, .15, .20, .15) is not ℓ-up-1-down because (.10, .15, .20, .15) is not a valid generator
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cycle, as it contains the duplicate value .15. To find an optimal policy, we only need to search

over generator cycles with distinct values, which we show can be formulated as maximizing

infinite-horizon undiscounted reward in a reduced MDP with only |V| states, a problem solvable

in polynomial time [Puterman, 2014].

Proof technique. General theory about finite deterministic MDP’s allows for a reduction to

stationary deterministic policies defined by cycles, but this is not enough. Leveraging reference-

monotonicity, we further derive a sequence of transformations, none of which worsens the long-run

average objective, that allows any policy to be eventually converted into an ℓ-up-1-down cycle.

To the best of our understanding, this requires a non-trivial argument that also uses the specific

combinatorial structure of our MDP with the “max over past ℓ” reference value. Along with the

proof, we provide an example illustrating the variety of transformations that may be needed.

Tightness. We also prove that ℓ-up-1-down is a tight characterization of optimal policies, in that

for any generator cycle of distinct values in V , there exists a reference-monotone instance for

which the ℓ-up-1-down policy implied by that generator cycle is the unique optimal policy.

1.4 Related Work
Dynamic pricing with reference effects. Early works used numerical methods to optimize price

sequences under reference effects, e.g. for peanut butter [Greenleaf, 1995]. Since then, structural

results have been established showing the non-necessity of dynamic pricing when customers are

loss-averse or loss-neutral [Nasiry and Popescu, 2011, Popescu and Wu, 2007]. Outside of these

settings, papers that have tried to formally optimize price sequences found the problem to be

generally difficult and exhibit little structure [Chen et al., 2017, Fibich et al., 2003, Hu et al., 2016].

By contrast, our theoretical result establishes a clean structure for optimal price sequences,

that moreover allows for efficient computation. This stems from our model being combinatorial

than most of these works, using a discrete but general demand function (instead of a specific

functional form), a “peak-end” reference model based on the maximum/minimum in recent memory

(instead of exponential smoothing), and a long-run steady state objective (i.e., infinite-horizon

undiscounted instead of finite-horizon or infinite-horizon discounted). We note that a combinatorial,

graph-theoretic approach to dynamic pricing with reference effects was also taken in Cohen et al.

[2020], but they do not derive structural results for optimal policies.

The “peak-end” reference model we study has also been considered in Cohen et al. [2020],

Cohen-Hillel et al. [2023], Nasiry and Popescu [2011], with Cohen-Hillel et al. [2023] establishing

optimality of a high-low pricing structure under certain conditions. Nonetheless, their model is

about pricing multiple products under business constraints and quite different in nature from our

parsimonious theoretical model, and their structure is also different from our characterization of

ℓ-up-1-down price sequences.

Finally, our paper provides some data-driven evidence of this “peak-end” reference model in the

context of personalized promotions (see Subsection 3.1), complementing the aforementioned papers,

which reference psychology evidence about people remembering peak experiences [Kahneman

et al., 1993]. For earlier papers showing empirical evidence of the reference price effect in general, we

refer to the survey by Mazumdar et al. [2005]. We should note however that our paper is motivated

by personalized reference effects, which may be starkly different from estimating reference effects

for aggregate demand [Hu and Nasiry, 2018]. Jiang et al. [2024] consider customer heterogeneity

when estimating reference effects.

Recently, the literature on dynamic pricing with reference effects has also incorporated having

multiple products with logit demand [Guo et al., 2025], and demand function learning [Agrawal

and Tang, 2024, den Boer and Keskin, 2022]. At an intuitive level, our ℓ-up-1-down policies that
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offer the unattractive value ℓ times to “reset” the reference resembles the ResetRef operation in

Agrawal and Tang [2024].

Revenue management with repeated engagements. Our “ℓ-up-1-down” characterization is more

similar to the theoretical results derived in the literature on “intertemporal” price discrimination

with forward-looking [Besbes and Lobel, 2015] or patient [Liu and Cooper, 2015] customers—see

also Lobel [2020], Wang [2016]. However, our state is determined by past instead of future prices,

and our model is in some sense simpler because it is personalized for a single customer instead of

dependent on population arrival rates. This allows for a more exact characterization of optimal price

cycles compared to most results in this literature (which only provide a bound on cycle length); we

are also able to prove our “ℓ-up-1-down” characterization is tight (see Theorem 4.10).

More broadly, our work relates to revenue management under models of repeated engagements

with the customer base or an individual customer. To this end, Calmon et al. [2021] study a model

where current prices affect customer goodwill, which in turn affects the future budget they spend

on the platform. Freund and Hssaine [2021] study a model where users can be given rewards

at each round to stay on the platform, but these rewards must satisfy fairness constraints. Jiang

et al. [2022] study a model where if the current price is too high, then customers can register

their willingness-to-pay and be alerted if/when the price drops below their registered price. Lei

et al. [2023] study how online service providers such as gaming platforms should rotate content to

maximize user engagement. Chang et al. [2024] study a model where users form usage habits, and

pricing can be used to both maximize revenue and curb addiction. Baek et al. [2026] empirically

study the impact of frequent user notifications on short-term revenue and long-term unsubscription

risk.

Personalized promotions in practice. Our work is based on a real-world deployment of personalized

promotions, which can be compared to the deployments in the following works. Personalized

promotion allocation under a promotional budget is formulated as a knapsack problem in Albert

and Goldenberg [2022], Shmoys and Wang [2019], which describe real-world applications at Lyft

and Booking.com respectively. Our application is similar, but approach is different, as we propose

a single “shadow price” parameter to (approximately) solve the allocation problem instead. A

similar method is in fact deployed to allocate personalized coupons at Meituan [Dai et al., 2024].

Jagabathula et al. [2022] propose a DAG-based framework for personalized retail promotions,

showing how retailers can tailor offers to individual customers in ways that better align with

their tastes. Finally, due to the challenges in cleanly modeling intertemporal customer state, Liu

[2023] proposes using Deep Reinforcement Learning to black-box learn the best personalized

promotion policies for the long-term, which was deployed in real-time at Alibaba Livestream

Shopping. However, we were forced to use a more structured and interpretable approach at our

partner retailer, which allows management to see which features cause customers to receive better

promotions (see Subsection 2.2).

2 Details of Practical Methodology
We provide details of our practical methodology outlined in Subsection 1.1.

We use historical data from 360,000 customers over 90 days. The raw dataset consists of time-

stamped customer-level activity logs that track marketing exposure and subsequent engagement

and shopping behavior over time. In particular, the data includes whether and when each customer

received marketing emails and coupons, and whether those emails were opened or clicked. The

dataset also includes transaction history (purchase occurrence, purchase amounts, and other order-

level details) and on-site browsing behavior, such as page views, cart views, and checkout-related

activity. We note that the promotion decisions in the historical dataset were made by the ad-hoc
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incumbent algorithm, which does not have access to any features unobservable to us. Therefore,

we do not expect any confounding as long as we control for the observable features.

In collaboration with our partner, we processed the raw data to generate a list of features to use

for our estimation model, to capture the majority of the relevant information that may influence a

customer’s purchasing behavior.We include information about customers’ purchasing and browsing

activity (recent purchase volume and transaction counts, site and cart views, and cart composition

and discounts), their engagement with emails (opens and clicks over multiple recency windows),

their coupon exposure and interaction history (coupon values received, and summary statistics

of coupons received, opened, and clicked), as well as a day-of-week indicator. Combined, these

processed variables yield a total of 61 features, listed in Appendix A.

2.1 Estimation Model and Method
Let D be the dataset of tuples (𝑥, 𝑣,𝑦) of processed features, coupon values, and purchase indicator

respectively. The size of dataset D is approximately 360, 000 × 90 (one for each customer, day pair).

We use D to estimate 𝑞(𝑥, 𝑣), the probability that a customer with processed features 𝑥 makes a

purchase when offered coupon value 𝑣 .

One approach to learn 𝑞(𝑥, 𝑣) would be to fit a flexible black-box machine learning model that

maps (𝑥, 𝑣) to 𝑦. However, since our downstream goal is to optimize the choice of 𝑣 rather than to

maximize predictive accuracy for 𝑦, we need a reliable estimate of how changes in 𝑣 impact 𝑦. A

black-box approach can yield unstable or even non-monotone responses to changes in 𝑣 . Therefore,

we impose a structure on 𝑞(𝑥, 𝑣) that makes the dependence of 𝑣 explicit, where we decompose the

purchase probability 𝑞(𝑥, 𝑣) into a baseline component 𝛼 (𝑥) and a coupon-sensitivity component

𝛽 (𝑥). Specifically, letting 𝜎 (𝑦) := 1/(1 + exp(−𝑦)) denote the logistic function, we impose the

structure

𝑞(𝑥, 𝑣) = 𝜎
(
𝛼 (𝑥) + (𝑣 − 0.15)𝛽 (𝑥)

)
, (2)

for learned functions 𝛼 (·) and 𝛽 (·). Here, 𝛼 (𝑥) captures baseline purchase propensity at the “nom-

inal” coupon value of 0.15, and 𝛽 (𝑥) captures coupon sensitivity: 𝛽 (𝑥) = 0 implies no effect of

the coupon value 𝑣 on purchase probability, while larger 𝛽 (𝑥) implies stronger responsiveness to

changes in 𝑣 .

We note that the structure (2) imposes that conditional on 𝑥 , the coupon value 𝑣 affects purchase

probability only through the linear term (𝑣 − 0.15)𝛽 (𝑥), so the marginal effect of increasing 𝑣 is

governed by a single term 𝛽 (𝑥) that does not vary with 𝑣 . While coupon sensitivity could depend

on 𝑣 in practice, this restriction serves as regularization that enforces a monotone response in 𝑣

and yields a more stable and interpretable estimate of coupon sensitivity.

We estimate𝛼 (·) and 𝛽 (·) usingD via a two-step procedure: we first learn𝛼 (𝑥) flexibly, then learn
𝛽 (𝑥) under a linear structure. That is, using the subset of D consisting only of observations with a

coupon value of 𝑣 = 0.15, we first fit a gradient-boosting classifier to predict 𝑦 from 𝑥 . Denoting

this classifier by GB(𝑥) as an estimate of 𝑞(𝑥, 0.15), and using the fact that 𝑞(𝑥, 0.15) = 𝜎 (𝛼 (𝑥)),
we set 𝛼 (𝑥) = 𝜎−1 (GB(𝑥)).

Then, we use the learned 𝛼 (𝑥) to estimate 𝛽 (𝑥). We impose a linear structure 𝛽 (𝑥) = 𝛽⊤𝑥 (where

𝛽, 𝑥 ∈ R61), which allows us to write

𝑞(𝑥, 𝑣) = 𝜎
(
𝛼 (𝑥) + 𝛽⊤ (𝑣 − 0.15)𝑥

)
= 𝜎

((
1

𝛽

)⊤ (
𝛼 (𝑥)

(𝑣 − 0.15)𝑥

))
.

That is, the term inside the logistic function has a linear dependence on the features 𝛼 (𝑥) and (𝑣 −
0.15)𝑥 . For each sample (𝑥, 𝑣,𝑦) ∈ D, we compute the corresponding features 𝛼 (𝑥) = 𝜎−1 (GB(𝑥))
and (𝑣 − 0.15)𝑥 , and then we estimate 𝛽 using logistic regression on these transformed features.
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Feature Sign of Coefficient

(a) # emails clicked in the last 28 days +
(b) # shopping cart visits in the last 3 days +
(c) # shopping cart visits in the last 7 days +
(d) Average site sale discount in the cart +
(e) Average percentage of all historical orders where a coupon was used +
(f) Average coupon use percentage of all orders in the last 30 days +
(g) Average coupon use percentage of all historical orders +
(h) Average coupon discount of a coupon clicked in the last 7 days +
(i) Average coupon discount of a coupon clicked in the last 30 days +
(j) Maximum coupon discount received in the last 7 days −

Table 1. The ten most predictive features for 𝛽 . A positive coefficient implies that a high value for the feature
is associated with having a higher sensitivity to the coupon value.

2.2 Empirical Observations of Estimated Model
We fit the model (2) to historical customer-day observations and summarize two empirical patterns.

First, across historical customer-day pairs, we find that the estimated coupon-sensitivity term

𝛽 (𝑥) is positive for 99.5% of samples. This is consistent with the basic monotonicity expectation

that a larger discount should weakly increase purchase probability.

Next, to understand which features are most strongly associated with 𝛽 (𝑥), we standardize the
61 processed features and fit an auxiliary L1-regularized logistic regression, tuning the penalty to

obtain a sparse set of predictors. Table 1 reports the ten most predictive features and the signs of

their coefficients, where a positive sign indicates that larger values of the feature are associated

with higher coupon sensitivity.

Features (a)–(c) capture recent engagement, through either email interactions or active cart

activity. The positive coefficients imply that customers who were more recently engaged with

emails or their shopping cart are more likely to respond to a better discount. Features (d)–(i) capture

past reliance on discounts, including frequent coupon use and recent interaction with higher-value

coupons. Customers with a high value of these features are ones constantly looking for good

discounts, and hence they are not likely to make a purchase with a low-value coupon (i.e., they are

price-sensitive customers). Our model associates these features with higher coupon sensitivity.

Finally, feature (j) has a negative sign: customers who recently received a high-value coupon

tend to be less responsive to additional increases in 𝑣 . This represents the reference price effect,

where receiving a large discount in the recent past decreases the customer’s reference price that

they need to pay, which makes a subsequent discount less effective. This mechanism also mitigates

repetition in the assigned coupons. If a customer recently received a good discount, their coupon

sensitivity decreases, and hence the myopic policy naturally shifts the customer toward worse

offers, generating within-customer variation over time.

We provide further evidence of this reference effect in Subsection 3.1. The fact that themaximum-
value recent coupon is the key predictor of diminished responsiveness motivates our theoretical

model in Section 4, where the reference value is defined as the maximum discount in recent memory.

2.3 Optimization Details
Recall from (1) that every day 𝑡 , our algorithm sends to each customer 𝑖 the discount value 𝑣𝑖𝑡 ∈ V
maximizing (1 − 𝜆𝑡𝑣𝑖𝑡 )𝑞(𝑥𝑖𝑡 , 𝑣𝑖𝑡 ), where 𝜆𝑡 is a parameter. We now elaborate on the tuning of 𝜆𝑡 .
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Let𝑊 denote the average pre-discount spend in a single shopping cart checkout, over all historical

orders. For any value of 𝜆𝑡 , we can compute the implied decisions (𝑣𝑖𝑡 )𝑖 , under which the expected

discount redeemed is ∑︁
𝑖

𝑣𝑖𝑡𝑊𝑞(𝑥𝑖𝑡 , 𝑣𝑖𝑡 ). (3)

The value of (3) is compared to a promotional budget 𝐵𝑡 . If it does not exceed 𝐵𝑡 , then the discount

values (𝑣𝑖𝑡 )𝑖 are sent to the customers. Otherwise, 𝜆𝑡 is increased until (3) does not exceed 𝐵𝑡 .

Proposition 2.1 (proven in Appendix B). Suppose 𝑞(𝑥𝑖𝑡 , 𝑣) is weakly increasing in 𝑣 for all 𝑖 .
Then (3) is weakly decreasing in parameter 𝜆𝑡 .

Recall from Subsection 2.2 that the predicted purchase probability 𝑞(𝑥𝑖𝑡 , 𝑣) is increasing in 𝑣 for

99.5% of contexts 𝑥𝑖𝑡 , due to the non-negative sign of 𝛽 (𝑥𝑖𝑡 ). Therefore, we can essentially think

of (3) as being decreasing in 𝜆𝑡 in practice.

At our partner retailer, an internal employee first evaluates (3) under 𝜆𝑡 = 1 (which would

maximize revenue), comparing it to the promotional budget 𝐵𝑡 for the day 𝑡 . If (3) exceeds 𝐵𝑡 , then

they use bisection search to increase 𝜆𝑡 to the smallest value for which (3) is no greater than 𝐵𝑡 .

We note that we tried to get a better prediction of the total discount redeemed by having𝑊

depend on the customer 𝑖 or the discount value 𝑣𝑖𝑡 . However, this failed because exact spend

amounts are highly idiosyncratic, which is why we focus on predicting purchase probabilities.

3 Details of Deployment and Impact
An A/B test was ran during May–June 2024, in which 20 million customers were randomly split

50/50 into treatment/control. Customers in the treatment group received personalized discount

values determined by our algorithm, while customers in the control group received discount values

determined by the incumbent algorithm that had been in production for a couple of years. Once

a customer was assigned to either the treatment or control groups, their assignment remained

unchanged throughout the experiment.

Overview of incumbent algorithm. The incumbent algorithm focused on what is the correct

distribution of promotions, i.e. what fraction of customers should receive each of the discounts 10%,

12%, 15%, 17%, and 20%, which could depend on the promotional budget. Meanwhile, the customers

were clustered in an ad-hoc fashion, based mostly on tenure and average spend. Customers in

the same cluster would generally be sent the same discount value, with arbitrary adjustments as

needed to fit the desired promotion distribution. Additional heuristics were inserted to ensure that

each customer saw variation in the discounts they received over time.

Overall, the incumbent algorithm processed data manually, to create coarse clusters of customers,

based on static features. By contrast, our algorithm used machine learning on the data, to create

personalized prediction models for each customer, that also accounted for their intertemporal state

including reference effects. To fairly compare our algorithm to the incumbent, the parameter 𝜆𝑡 in

our algorithm was tuned daily to match the promotional budget of the incumbent algorithm.

Results. Aggregate, relative results over an 11-day period from the A/B test were shared with us,

and displayed in Figure 2. During this 11-day period, our algorithm’s prediction model was not

re-trained. Our algorithm optimizes for revenue, and we indeed saw a 4.5% higher total revenue

over the 11-day period in the treatment group compared to the control group, which have the

same size. We also estimate the average treatment effect by regressing each customer’s 11-day total

revenue on a treatment indicator and conducting a one-sided test using heteroskedasticity-robust

standard errors, and observe a 𝑝-value less than 0.01 for the null that our algorithm does not

increase average revenue.
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Fig. 2. Deployment results: Left chart is overall % change in revenue and profit between treatment vs. control;
Middle chart is % change in total number of times each coupon rate was sent; Right chart is % change in
total revenue from coupons of each rate being redeemed.

Our algorithm does not account for cost of goods sold (i.e., the wholesale price our partner

retailer paid for its inventory), but we see an even bigger 5.6% increase in contribution margin (i.e.,

profit). This suggests that our promotion targeting could be enticing the customers to substitute to

higher-end goods which have higher margins, although we did not formally test this.

Regardless, the stark results on the Left chart of Figure 2 fully demonstrate the power of machine

learning, granular personalization, and intertemporal state—three new elements that our algorithm

introduced to our partner’s business. We also emphasize that these numbers pertain to overall

revenue and contribution margin, without any subdivision of the goods or customers, which

was very attractive to our partner’s management. We completely changed how they think about

allocating coupons, where instead of directly optimizing the distribution of coupon values sent,

one should learn individual customer models and personalize coupon values, with the distribution

of promotions being a by-product of the individual-level optimization.

Where is the money coming from? The Middle chart of Figure 2 shows how our algorithm changed

the distribution of promotions. In particular, there is an 11.56% increase in the number of 0.12

coupons sent, and a 2.91% increase in the number of .2 coupons sent, mostly at the expense of a

3.44% decrease in the number of .15 coupons sent. Overall, our algorithm seems to think that the

0.12 coupon rate strikes a nice balance, where it is not as unattractive to the customer as the 0.1

rate, but preserves more revenue than the 0.15 rate.

The Right chart of Figure 2 shows massive changes in the total revenue from coupons of each rate

being redeemed, suggesting that our algorithm is significantly shifting which customers receive

each coupon rate, and overall enticing more purchases. In particular, there is a 208% higher (i.e.,

tripled) revenue from 0.12 coupons being redeemed, with only an 11.56% increase in the number of

0.12 coupons sent, suggesting that our algorithm is correctly targeting this smaller discount toward

customers who were going to make a purchase regardless of the coupon rate. At the same time,

there is a 20.5% higher revenue from 0.2 coupons being redeemed, with only a 2.91% increase in

the number of 0.2 coupons sent, suggesting that our algorithm is also correctly targeting the best

discount at customers who need the bargain to make a purchase.

Which customers receive the best promotions? Generally, the structure of our estimation and

optimization is such that every day 𝑡 , customers 𝑖 in an intertemporal state 𝑥𝑖𝑡 with a higher value

of 𝛽⊤𝑥𝑖𝑡 tend to receive a bigger discount 𝑣𝑖𝑡 . Looking back at Table 1, this suggests that engaged

customers who have redeemed more coupons in the past would receive better coupons in the future.
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Fig. 3. Correlation between reference coupon metrics and the purchase indicator 𝑦𝑖𝑡 for various memory
lengths ℓ . The reference metric “max” uses max{𝑣𝑖,𝑡−ℓ , . . . , 𝑣𝑖,𝑡−1}, and “avg” uses 1

ℓ (𝑣𝑖,𝑡−ℓ + · · · + 𝑣𝑖,𝑡−1). We
note that the absolute magnitude of the correlation coefficient is generally small because over 99.9% of 𝑦𝑖𝑡
values are 0.

However, this may not happen if they have already received the biggest coupon in the past 7 days,

inducing some natural cycling in coupons received even for these customers.

3.1 Empirical Evidence for Theoretical Model
We provide empirical support for the key ingredients of our theoretical model (Section 4), including

reference effects and the reference-monotonicity assumption. We leverage data from a group of

150,000 customers who, for an 11-day period during the A/B test, were assigned an independent

random coupon each day, drawn uniformly from {0.12, 0.15, 0.17, 0.20}. The randomized assignment

allows us to directly measure correlations without controlling for any factors.

Evidence of reference effect. For various memory lengths ℓ , we define the reference value for

a customer 𝑖 on day 𝑡 as max{𝑣𝑖,𝑡−ℓ , . . . , 𝑣𝑖,𝑡−1}, and compute its empirical correlation with the

purchase indicator 𝑦𝑖𝑡 across customer-day observations from the randomized dataset. Figure 3

shows that this correlation is generally negative across ℓ , suggesting that a bigger recent-best

discount (a bigger reference value) is associated with a lower propensity to purchase, consistent

with a reference effect under our definition.

As a comparison, we also consider an average-based reference metric,
1

ℓ
(𝑣𝑖,𝑡−ℓ + · · · + 𝑣𝑖,𝑡−1). The

corresponding correlations are not as strong or negative, which suggests that the maximum over

recent history is a more predictive univariate proxy for intertemporal effects than the average.

Evidence for reference-monotonicity. Next, we test the reference-monotonicity assumption that,

under any discount 𝑣𝑖𝑡 offered today, purchase propensity is higher when the reference discount is

smaller. To do this, we group coupon values into small discounts (0.12, 0.15) vs. large discounts
(0.17, 0.20). For each case of 𝑣𝑖𝑡 being small or large, we consider different memory lengths ℓ ∈
{3, 4, 5, 7}, and report the percent change in purchase rate when the reference max{𝑣𝑖,𝑡−ℓ , . . . , 𝑣𝑖,𝑡−1}
lies in the small set (0.12, 0.15) instead of the large set (0.17, 0.20). Table 2 shows that the change is
positive in nearly all cases, providing support for the reference-monotonicity assumption.

4 Theoretical Model and Results
We provide the theoretical model and results outlined in Subsection 1.3. To be consistent with the

literature on dynamic pricing with reference effects, just for this section, we switch the language

from offering a sequence of discounts (where bigger is better for the customer) to offering a sequence
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ℓ 𝑣𝑖𝑡 ∈ {0.12, 0.15} 𝑣𝑖𝑡 ∈ {0.17, 0.20}
3 +7.1% -1.1%

4 +30.1% +16.5%

5 +70.3% +55.9%

7 +137.1% +12.6%

Table 2. Percent changes in purchase rate when the reference value max{𝑣𝑖,𝑡−ℓ , . . . , 𝑣𝑖,𝑡−1} lies in {0.12, 0.15}
instead of {0.17, 0.20}, reported separately for different memory lengths ℓ and different values of 𝑣𝑖𝑡 .

of prices (where lower is better for the customer). Therefore, the reference value is defined to be

the minimum (instead of maximum) of recent offerings. We omit the index 𝑖 of the single customer.

4.1 Model and MDP Formulation
Model. There is a finite set of feasible prices P from which an infinite sequence of prices (𝑝𝑡 )∞𝑡=1

is offered to the customer (P = {.80, .83, .85, .88, .90} would correspond to the discount values

V = {.10, .12, .15, .17, .20} from our partner retailer). At each time 𝑡 , the reference 𝑟𝑡 of the customer

is min{𝑝𝑡−ℓ , . . . , 𝑝𝑡−1}, the best price seen in the ℓ previous time steps (if 𝑡 ≤ ℓ , then 𝑟𝑡 is understood

to be min{𝑝1, . . . , 𝑝𝑡−1}, with 𝑟1 = 𝑝 where 𝑝 := max{𝑝 : 𝑝 ∈ P} denotes the highest price in P).

Here ℓ is a positive integer denoting the memory length of the customer.

We note that both the price 𝑝𝑡 and the reference 𝑟𝑡 always lie in P. We let 𝑔(𝑟, 𝑝) denote the
immediate “gain”, e.g. revenue, from offering price 𝑝 ∈ P to the customer when their reference is

𝑟 ∈ P. We allow for an arbitrary gain function 𝑔 as long as it satisfies the following assumption.

Definition 4.1. A gain function 𝑔 : P2 → R is said to be reference-monotone if for any fixed 𝑝 ∈ P,

the gain 𝑔(𝑟, 𝑝) is weakly increasing in 𝑟 .

Definition 4.1 is a mild assumption that is almost axiomatic in reference price models, where

regardless of what price 𝑝 the seller plans on offering, they are better off if the reference price 𝑟

they are competing against is higher (and hence worse in the customer’s mind). Importantly, we do

not make any assumptions on how 𝑔(𝑟, 𝑝) changes with 𝑝 , which allows for different objectives

such as market share (in which case 𝑔(𝑟, 𝑝) is generally decreasing in 𝑝) or revenue (in which case

𝑔(𝑟, 𝑝) is often increasing and then decreasing in 𝑝).

MDP formulation. The problem of maximizing long-run average gain

lim

𝑇→∞

1

𝑇

𝑇∑︁
𝑡=1

𝑔(𝑟𝑡 , 𝑝𝑡 ) (4)

can be formulated as the following MDP. The state space is Pℓ
, with a state 𝑠 = (𝑠1, . . . , 𝑠ℓ ) denoting

the ℓ previous prices seen by the customer, where 𝑠ℓ is most recent. (Although the reference only

depends on the minimum of the ℓ previous prices, the evolution of this minimum depends on

the exact sequence of ℓ previous prices, which must all be tracked in the state.) The action space

from any state is P, denoting the next price to offer. When any action 𝑝 ∈ P is taken from any

state 𝑠 ∈ Pℓ
, the reward is 𝑔(min{𝑠1, . . . , 𝑠ℓ }, 𝑝), and the state deterministically transitions to

(𝑠2, . . . , 𝑠ℓ , 𝑝). The starting state is 𝑠1 = (𝑝, . . . , 𝑝).
Standard theory for finite MDP’s [Puterman, 2014] confirms that (4) can be maximized using

a policy which is stationary and deterministic, defined by a mapping 𝜋 : Pℓ → P specifying the

price to offer from any state. However, optimizing over such policies is still difficult, because our

MDP is exponential-sized. Therefore, we consider the following reformulation instead.
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Reduction to optimization over price cycles. Because the transitions are deterministic in our

MDP, a stationary deterministic policy 𝜋 induces a periodic steady state, where for some cy-

cle length 𝑐 ≤ |P|ℓ , there exists a time 𝑇0 after which the states visited will cycle between

𝑠 (0), . . . , 𝑠 (𝑐 − 1). The prices offered would cycle between 𝜋 (𝑠 (0)), . . . , 𝜋 (𝑠 (𝑐 − 1)), which we

denote using 𝜋0, . . . , 𝜋𝑐−1 respectively. Given 𝜋0, . . . , 𝜋𝑐−1, the cycle of states can be reconstructed

to be 𝑠 (𝑡) = (𝜋𝑡−ℓ mod 𝑐 , . . . , 𝜋𝑡−1 mod 𝑐 ) for all 𝑡 = 0, . . . , 𝑐 − 1 (noting that 𝑐 < ℓ is possible), and

hence the objective (4) (irrespective of starting state) equals

1

𝑐

𝑐−1∑︁
𝑡=0

𝑔

(
min{𝜋𝑡−ℓ mod 𝑐 , . . . , 𝜋𝑡−1 mod 𝑐 }, 𝜋𝑡

)
. (5)

4.2 Characterization of Optimal Policies
Maximizing objective (5) over positive integers 𝑐 and prices cycles (𝜋0, . . . , 𝜋𝑐−1) ∈ P𝑐

is still

computationally challenging, because a priori, 𝑐 could be as long as |P |ℓ , with the same price

appearing multiple times in different contexts. For an arbitrary gain function 𝑔 : P2 → R, this
could indeed be the case (see Example 4.6 below). However, under the reference-monotonicity

assumption, our main result drastically reduces the search space, to “ℓ-up-1-down” price cycles.

Definition 4.2 (Notation). We hereafter represent prices cycles using strings over the finite

alphabet P, and let 𝑝𝑘 denote the concatenation of 𝑘 copies of token 𝑝 , for any positive integer 𝑘

and 𝑝 ∈ P. For example, if P = {1, 2, 3}, then 12
3
denotes the string 1222, which is the price cycle

with 𝑐 = 4 and (𝜋0, . . . , 𝜋3) = (1, 2, 2, 2). We note that this cycle can be equivalently represented

using the strings 2221, 2212, or 12221222.

Definition 4.3. A price cycle is said to be ℓ-up-1-down if it can be represented by a string of the

form 𝜌
𝑘0
0
· · · 𝜌𝑘𝑑−1

𝑑−1 , where 𝑑 ≤ |P| is a positive integer, 𝜌0, . . . , 𝜌𝑑−1 are distinct prices in P, and

𝑘𝑡 =

{
ℓ, 𝜌𝑡 > 𝜌𝑡−1 mod 𝑑

1, 𝜌𝑡 < 𝜌𝑡−1 mod 𝑑

∀𝑡 = 0, . . . , 𝑑 − 1.

We call (𝜌0, . . . , 𝜌𝑑−1) the generator cycle, with length 𝑑 . The price cycle itself has length 𝑐 =∑𝑑−1
𝑡=0 (1 + (ℓ − 1)1(𝜌𝑡 > 𝜌𝑡−1 mod 𝑑 )).

Example 4.4 (Examples of ℓ-up-1-down Price Cycles). Let P = {1, 2, 3} and ℓ = 3. Then 1222,

1222333, and 13332 represent ℓ-up-1-down price cycles, induced by generator cycles (𝜌0, 𝜌1) = (1, 2),
(𝜌0, 𝜌1, 𝜌2) = (1, 2, 3), and (𝜌0, 𝜌1, 𝜌2) = (1, 3, 2) respectively. Meanwhile, 12 does not represent

an ℓ-up-1-down price cycle because the “2” does not have ℓ copies despite being greater than 1.

Also, 111222 does not represent an ℓ-up-1-down cycle because the “1” has multiple copies despite

being less than 2. Finally, 12223332 has the correct number of copies but does not represent an

ℓ-up-1-down cycle because copies of “2” occur on two different occasions in the cycle.

Theorem 4.5. For any finite P, memory length ℓ , and reference-monotone gain function 𝑔, there
exists an ℓ-up-1-down price cycle that maximizes (5).

Theorem 4.5 shows that the optimization problem can be restricted to ℓ-up-1-down price cycles,

and we will use this result in Subsection 4.4 to construct polynomial-time algorithms. We first

provide some intuition for Theorem 4.5 by showing that without the reference-monotonicity

assumption, the unique optimal price cycle can be quite complex.
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𝑔(𝑟, 𝑝) 𝑝 = 1 𝑝 = 2 𝑝 = 3 𝑝 = 4

𝑟 = 1 0 1 0 1

𝑟 = 2 0 0 1 1

𝑟 = 3 1 0 0 1

𝑟 = 4 0 0 0 0

Table 3. The gain function 𝑔 used for Example 4.6. A reference-monotone 𝑔 would be weakly increasing down
each column; this gain function is not.

Example 4.6 (Necessity of Reference-monotonicity). Let ℓ = 2, P = {1, 2, 3, 4}, and𝑔(𝑟, 𝑝) be defined
as in Table 3. The optimal price cycle for this example is 414243, whose objective (5) equals

1

6

(
𝑔(3, 4) + 𝑔(3, 1) + 𝑔(1, 4) + 𝑔(1, 2) + 𝑔(2, 4) + 𝑔(2, 3)

)
= 1.

It is easy to check that no other price cycle (ℓ-up-1-down or not) can have an average gain of 1.

4.3 Proof of Theorem 4.5
Our goal is to prove that for any given 𝑐 and price cycle 𝜋0, . . . , 𝜋𝑐−1, its objective value (5) can be

upper-bounded by that of an ℓ-up-1-down price cycle. Although our proof is non-constructive, the

result of Theorem 4.5 itself can be used formulate a reduced MDP that allows for polynomial-time

algorithms, as we show in Subsection 4.4.

Our proof proceeds in two steps. Lemma 4.8 first reduces the given price cycle to an intermediate

form, and the proof then repeatedly applies Lemma 4.9 until we end up with an ℓ-up-1-down price

cycle, whose objective value has not decreased. To aid the reader, we provide the following example

illustrating the two steps of the reduction, that can be referenced while reading the proofs.

Example 4.7. Let P = {1, 2, 3, 4, 5, 6}, ℓ = 3, and suppose we are given the price cycle below. Its

low points (as defined in the proof of Lemma 4.8) are underlined.

12345342653453

The substrings between the low points are replaced in the following way:

• Substring 2345 between the first two low points is replaced with either 222555, 333, or 444;

• Substring 4 is replaced with the empty string, or it is concluded that the objective value of

the price cycle is worse than that of constantly offering price 4;

• Substring 65345 is replaced with either 666444, 555555, or 333;

• The empty substring between the final 3 that wraps around to the initial 1 is unchanged.

Lemma 4.8 shows that at least one combination of these replacements would not decrease the

objective value. Suppose for illustration this replacement is

1222555326664443

where the original low points are still underlined and now we have also bolded the reset points (as
defined in Lemma 4.9).

The second part of the proof finds two distinct reset points with the same number, and breaks

the cycle into two starting from these points, wrapping around as necessary. For example, taking

the 3’s as the reset points, we can consider the two shorter cycles below:

32666444; 31222555.

By Lemma 4.9, the better of these cycles has objective value no less than that of the original cycle.

We take the better cycle and repeat this process until there are no distinct reset points with the
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same number. For example, if the better cycle was 32666444, then we might end up with the cycle

326664, or just 4 (both of which are ℓ-up-1-down price cycles). On the other hand, if the better

cycle was 31222555, then there is no further reduction. In either case, the process must terminate

with an ℓ-up-1-down price cycle. □

We now proceed with the formal proof.

Lemma 4.8. For any price cycle 𝜋0, . . . , 𝜋𝑐−1, its objective value (5) is upper-bounded by that of a
price cycle represented by a string of the form 𝜌

𝑘0
0
· · · 𝜌𝑘𝑑−1

𝑑−1 , where 𝑑 is a positive integer, and for all
𝑡 = 0, . . . , 𝑑 − 1 we have 𝜌𝑡 ∈ P, 𝑘𝑡 ∈ {1, ℓ}, and 𝑘𝑡 = 1 implying 𝜌𝑡 ≤ 𝜌𝑡−1 mod 𝑑 .

Proof of Lemma 4.8. In the initial price cycle 𝜋0, . . . , 𝜋𝑐−1, define a time 𝑡 ∈ {0, . . . , 𝑐 −1} to be a
low point if 𝜋𝑡 ≤ min{𝜋𝑡−ℓ mod 𝑐 , . . . , 𝜋𝑡−1 mod 𝑐 }. That is, 𝑡 is a low point if it is at most the reference

price at time 𝑡 . Let 𝑡1, . . . , 𝑡𝑚 denote the low points in the initial cycle, with 0 ≤ 𝑡1 < · · · < 𝑡𝑚 ≤ 𝑐−1,
noting that there must be at least one low point.

We consider the substrings of prices between low points:

𝜋𝑡𝑚+1 mod 𝑐 · · · 𝜋𝑡1−1 mod 𝑐 ; 𝜋𝑡1+1 mod 𝑐 · · · 𝜋𝑡2−1 mod 𝑐 ; . . . ; 𝜋𝑡𝑚−1+1 mod 𝑐 · · · 𝜋𝑡𝑚−1 mod 𝑐 .

Note that there are𝑚 such substrings, some of which may be empty. We iteratively replace these

substrings with new substrings in which every token appears ℓ consecutive times, showing that the

objective value (5) does not go down, and that all low points are preserved. This would complete

the proof because after the𝑚 replacements, all tokens would either appear ℓ consecutive times, or

be a low point which implies that it is no greater than the immediately preceding price.

To ease notation, at each iteration we re-index (rotate) the cycle so that the current substring

under consideration is 𝜋0 · · · 𝜋𝑡 ′−1, preceded by a low point at time 𝑐−1 and succeeded by a low point

at time 𝑡 ′. None of 0, . . . , 𝑡 ′ − 1 being low points guarantees that 𝜋𝑡 > 𝜋𝑐−1 for all 𝑡 = 0, . . . , 𝑡 ′ − 1,

because otherwise the smallest 𝑡 ∈ {0, . . . , 𝑡 ′ − 1} for which 𝜋𝑡 ≤ 𝜋𝑐−1 would be a low point.

Case 1: 𝑡 ′ < ℓ . Because 𝑡 ′ < ℓ , the reference price for each time 𝑡 = 0, . . . , 𝑡 ′ − 1 is at most (in fact

equal to) 𝜋𝑐−1. Therefore, we can express the objective value of the current price cycle as

1

𝑐

(
𝑡 ′−1∑︁
𝑡=0

𝑔(𝜋𝑐−1, 𝜋𝑡 ) +
𝑐−1∑︁
𝑡=𝑡 ′

𝑔(min{𝜋𝑡−ℓ mod 𝑐 , . . . , 𝜋𝑡−1 mod 𝑐 }, 𝜋𝑡 )
)

≤
∑𝑡 ′−1

𝑡=0 𝑔(𝜋𝑡 , 𝜋𝑡 ) +
∑𝑐−1

𝑡=𝑡 ′ 𝑔(min{𝜋𝑡−ℓ mod 𝑐 , . . . , 𝜋𝑡−1 mod 𝑐 }, 𝜋𝑡 )
𝑡 ′ + (𝑐 − 𝑡 ′)

≤ max

{
𝑔(𝜋0, 𝜋0), . . . , 𝑔(𝜋𝑡 ′−1, 𝜋𝑡 ′−1),

∑𝑐−1
𝑡=𝑡 ′ 𝑔(min{𝜋𝑡−ℓ mod 𝑐 , . . . , 𝜋𝑡−1 mod 𝑐 }, 𝜋𝑡 )

𝑐 − 𝑡 ′

}
where the first inequality follows from reference-monotonicity because 𝜋𝑡 > 𝜋𝑐−1 for all 𝑡 =

0, . . . , 𝑡 ′ − 1, and the second inequality follows elementarily
1
. If the max in the final expression is

attained at any of the first 𝑡 ′ arguments, then Lemma 4.8 would be immediately proven, because

we have upper-bounded the objective value by a price cycle that is the constant price 𝜋𝑡 for some

𝑡 ∈ {0, . . . , 𝑡 ′ − 1}.
Otherwise, if the max in the final expression is attained at the final argument, then we claim this

is equal to the objective value of the price cycle 𝜋𝑡 ′𝜋𝑡 ′+1 · · · 𝜋𝑐−1 (formed by replacing 𝜋0 · · · 𝜋𝑡 ′−1
with the empty substring). To see this, note that the reference price at any time 𝑡 ≥ 𝑡 ′ + ℓ is

unchanged. For time steps 𝑡 = 𝑡 ′, . . . , 𝑡 ′ + ℓ − 1, the reference price is still 𝜋𝑡 ′ because 𝜋𝑡 ′ ≤ 𝜋𝑐−1 by
virtue of 𝑡 ′ < ℓ and 𝑡 ′ being a low point, and 𝜋𝑐−1 ≤ min{𝜋𝑐−1−ℓ mod 𝑐 , . . . , 𝜋𝑐−2 mod 𝑐 } by virtue of

1
For real numbers 𝑎1, . . . , 𝑎𝑛 and 𝑏1, . . . , 𝑏𝑛 > 0, it holds that (𝑎1 + · · · + 𝑎𝑛 )/(𝑏1 + · · · + 𝑏𝑛 ) ≤ max{ 𝑎1

𝑏1
, . . . ,

𝑎𝑛
𝑏𝑛

}.



Jackie Baek, Will Ma, and Dmitry Mitrofanov 16

𝑐 being a low point (which can be checked to hold under the new cycle even if 𝜋𝑐−1−ℓ mod 𝑐 wraps

around). That is, both 𝑡 ′ and 𝑐 − 1 are still low points in the new price cycle. This completes the

proof of Case 1.

Case 2: 𝑡 ′ ≥ ℓ . We consider replacing 𝜋0 · · · 𝜋𝑡 ′−1 with a substring of the form

𝜋 ℓ
𝑗𝜋

ℓ
ℓ+𝑗𝜋

ℓ
2ℓ+𝑗 · · · 𝜋 ℓ

⌊ (𝑡 ′−1− 𝑗 )/ℓ ⌋ℓ+𝑗 , 𝑗 ∈ {0, . . . , ℓ − 1}. (6)

For each substring 𝑗 = 0, . . . , ℓ − 1, note that it has length (1 + ⌊(𝑡 ′ − 1 − 𝑗)/ℓ⌋)ℓ . The reference
price for the ℓ copies of its first price 𝜋 𝑗 is 𝜋𝑐−1 = min{𝜋𝑐−1, 𝜋 𝑗 }, because 𝑐 − 1 is a low point and

𝜋 𝑗 > 𝜋𝑐−1. Meanwhile, for all 𝑗 ′ = 1, . . . , ⌊(𝑡 ′ − 1 − 𝑗)/ℓ⌋, the reference price for the ℓ copies of its
price 𝜋 𝑗 ′ℓ+𝑗 is at least min{𝜋 ( 𝑗 ′−1)ℓ+𝑗 , 𝜋 𝑗 ′ℓ+𝑗 }. Finally, for any replacement substring 𝑗 the reference

prices at all times 𝑡 ≥ 𝑡 ′ remain unchanged, because 𝜋𝑡 ′ ≤ 𝜋⌊ (𝑡 ′−1− 𝑗 )/ℓ ⌋ℓ+𝑗 by virtue of 𝑡 ′ being a
low point and 𝜋⌊ (𝑡 ′−1− 𝑗 )/ℓ ⌋ℓ+𝑗 existing (where ⌊(𝑡 ′ − 1 − 𝑗)/ℓ⌋ ≥ 0 due to 𝑡 ′ ≥ ℓ). Therefore, the

objective value under each replacement substring 𝑗 = 0, . . . , ℓ − 1 is at least

ℓ𝑔(𝜋𝑐−1, 𝜋 𝑗 ) + ℓ
∑⌊ (𝑡 ′−1− 𝑗 )/ℓ ⌋

𝑗 ′=1 𝑔(min{𝜋 ( 𝑗 ′−1)ℓ+𝑗 , 𝜋 𝑗 ′ℓ+𝑗 }, 𝜋 𝑗 ′ℓ+𝑗 ) +
∑𝑐−1

𝑡=𝑡 ′ 𝑔(min{𝜋𝑡−ℓ , . . . , 𝜋𝑡−1})
(1 + ⌊(𝑡 ′ − 1 − 𝑗)/ℓ⌋)ℓ + 𝑐 − 𝑡 ′

.

Now, the objective value of the current price cycle with substring 𝜋0 · · · 𝜋𝑡 ′−1 can be bounded:

1

𝑐

(
ℓ−1∑︁
𝑡=0

𝑔(𝜋𝑐−1, 𝜋𝑡 ) +
𝑡 ′−1∑︁
𝑡=ℓ

𝑔(min{𝜋𝑡−ℓ , . . . , 𝜋𝑡−1}, 𝜋𝑡 ) +
𝑐−1∑︁
𝑡=𝑡 ′

𝑔(min{𝜋𝑡−ℓ , . . . , 𝜋𝑡−1}, 𝜋𝑡 )
)

≤ 1

𝑐

(
ℓ−1∑︁
𝑡=0

𝑔(𝜋𝑐−1, 𝜋𝑡 ) +
𝑡 ′−1∑︁
𝑡=ℓ

𝑔(min{𝜋𝑡−ℓ , 𝜋𝑡 }, 𝜋𝑡 ) +
𝑐−1∑︁
𝑡=𝑡 ′

𝑔(min{𝜋𝑡−ℓ , . . . , 𝜋𝑡−1}, 𝜋𝑡 )
)

=
1

𝑐

(
ℓ−1∑︁
𝑗=0

(
𝑔(𝜋𝑐−1, 𝜋 𝑗 ) +

⌊ (𝑡 ′−1− 𝑗 )/ℓ ⌋∑︁
𝑗 ′=1

𝑔(min{𝜋 ( 𝑗 ′−1)ℓ+𝑗 , 𝜋 𝑗 ′ℓ+𝑗 }, 𝜋 𝑗 ′ℓ+𝑗 )
)
+

𝑐−1∑︁
𝑡=𝑡 ′

𝑔(min{𝜋𝑡−ℓ , . . . , 𝜋𝑡−1}, 𝜋𝑡 )
)

=
1

𝑐

(
1

ℓ

ℓ−1∑︁
𝑗=0

(
ℓ𝑔(𝜋𝑐−1, 𝜋 𝑗 ) + ℓ

⌊ (𝑡 ′−1− 𝑗 )/ℓ ⌋∑︁
𝑗 ′=1

𝑔(min{𝜋 ( 𝑗 ′−1)ℓ+𝑗 , 𝜋 𝑗 ′ℓ+𝑗 }, 𝜋 𝑗 ′ℓ+𝑗 ) +
𝑐−1∑︁
𝑡=𝑡 ′

𝑔(min{𝜋𝑡−ℓ , . . . , 𝜋𝑡−1}, 𝜋𝑡 )
))

=

∑ℓ−1
𝑗=0

(
ℓ𝑔(𝜋𝑐−1, 𝜋 𝑗 ) + ℓ

∑⌊ (𝑡 ′−1− 𝑗 )/ℓ ⌋
𝑗 ′=1 𝑔(min{𝜋 ( 𝑗 ′−1)ℓ+𝑗 , 𝜋 𝑗 ′ℓ+𝑗 }, 𝜋 𝑗 ′ℓ+𝑗 ) +

∑𝑐−1
𝑡=𝑡 ′ 𝑔(min{𝜋𝑡−ℓ , . . . , 𝜋𝑡−1}, 𝜋𝑡 )

)
ℓ (𝑐 − 𝑡 ′) + ℓ

∑ℓ−1
𝑗=0 (1 + ⌊(𝑡 ′ − 1 − 𝑗)/ℓ⌋)

≤ max

𝑗=0,...,ℓ−1

ℓ𝑔(𝜋𝑐−1, 𝜋 𝑗 ) + ℓ

⌊ (𝑡 ′−1− 𝑗 )/ℓ ⌋∑︁
𝑗 ′=1

𝑔(min{𝜋 ( 𝑗 ′−1)ℓ+𝑗 , 𝜋 𝑗 ′ℓ+𝑗 }, 𝜋 𝑗 ′ℓ+𝑗 ) +
𝑐−1∑︁
𝑡=𝑡 ′

𝑔(min{𝜋𝑡−ℓ , . . . , 𝜋𝑡−1}, 𝜋𝑡 )

1 + (⌊(𝑡 ′ − 1 − 𝑗)/ℓ⌋)ℓ + 𝑐 − 𝑡 ′
.

The first inequality uses the fact that 𝜋𝑡 > min{𝜋𝑡−ℓ , . . . , 𝜋𝑡−1} because 𝑡 is not a low point,

and hence 𝑔(min{𝜋𝑡−ℓ , . . . , 𝜋𝑡−1}, 𝜋𝑡 ) = 𝑔(min{𝜋𝑡−ℓ , . . . , 𝜋𝑡 }, 𝜋𝑡 ) ≤ 𝑔(min{𝜋𝑡−ℓ , 𝜋𝑡 }, 𝜋𝑡 ) (with the

inequality applying reference-monotonicity). The first equality partitions the integers 0, . . . , 𝑡 ′ − 1

based on their remainder 𝑗 when divided by ℓ , noting that ⌊(𝑡 ′ − 1 − 𝑗)/ℓ⌋ℓ + 𝑗 is the largest

integer less than 𝑡 ′ with a remainder of 𝑗 when divided by ℓ . The third equality holds because∑ℓ−1
𝑗=0 (1+ ⌊(𝑡 ′ − 1− 𝑗)/ℓ⌋) = 𝑡 ′, which is easiest to see from the fact that there are 1+ ⌊(𝑡 ′ − 1− 𝑗)/ℓ⌋

integers in {0, . . . , 𝑡 ′ − 1} with remainder 𝑗 when divided by ℓ . The final inequality follows from

Footnote 1.

Therefore, we can always replace 𝜋0 · · · 𝜋𝑡 ′−1 with one of the substrings from (6) without de-

creasing the objective value. Moreover, 𝑡 ′ remains a low point because it is now preceded by ℓ
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copies of ⌊(𝑡 ′ − 1 − 𝑗)/ℓ⌋ℓ + 𝑗 , which appeared in {𝜋𝑡 ′−ℓ , . . . , 𝜋𝑡 ′−1} and hence is at least 𝜋𝑡 ′ . This

completes the proof of Case 2 and the overall proof of Lemma 4.8. □

Lemma 4.9. In a price cycle 𝜋0, . . . , 𝜋𝑐−1, define a time 𝑡 ∈ {0, . . . , 𝑐 − 1} to be a reset point if
𝜋𝑡 = min{𝜋𝑡−ℓ+1 mod 𝑐 , . . . , 𝜋𝑡 mod 𝑐 }. Suppose the price cycle 𝜋0, . . . , 𝜋𝑐−1 contains two distinct reset
points with the same price, relabeled to be 𝑡 ′ − 1 and 𝑐 − 1 (i.e., 𝑡 ′ − 1, 𝑐 − 1 are both reset points with
𝑡 ′ < 𝑐 and 𝜋𝑡 ′−1 = 𝜋𝑐−1). Then the objective value (5) of the price cycle must be upper-bounded by
that of either the price cycle 𝜋0, . . . , 𝜋𝑡 ′−1 or the price cycle 𝜋𝑡 ′ , . . . , 𝜋𝑐−1.

Proof of Lemma 4.9. The objective value of the original price cycle 𝜋0, . . . , 𝜋𝑐−1 equals

1

𝑡 ′ + (𝑐 − 𝑡 ′)

(
min{𝑡 ′−1,ℓ−1}∑︁

𝑡=0

𝑔(min{𝜋𝑐−1, 𝜋0, . . . , 𝜋𝑡−1}, 𝜋𝑡 ) +
𝑡 ′−1∑︁

𝑡=min{𝑡 ′−1,ℓ−1}+1
𝑔(min{𝜋𝑡−ℓ , . . . , 𝜋𝑡−1}, 𝜋𝑡 )

+
min{𝑐−1,ℓ−1}∑︁

𝑡=𝑡 ′
𝑔(min{𝜋𝑡 ′−1, 𝜋0, . . . , 𝜋𝑡−1}, 𝜋𝑡 ) +

𝑐−1∑︁
𝑡=min{𝑐−1,ℓ−1}+1

𝑔(min{𝜋𝑡−ℓ , . . . , 𝜋𝑡−1}, 𝜋𝑡 )
)

where we have used the fact that both 𝑡 ′ − 1 and 𝑐 − 1 are reset points. Using the same fact, the

objective value of price cycle 𝜋0, . . . , 𝜋𝑡 ′−1 equals

1

𝑡 ′
©­«
min{𝑡 ′−1,ℓ−1}∑︁

𝑡=0

𝑔(min{𝜋𝑡 ′−1, 𝜋0, . . . , 𝜋𝑡−1}, 𝜋𝑡 ) +
𝑡 ′−1∑︁

𝑡=min{𝑡 ′−1,ℓ−1}+1
𝑔(min{𝜋𝑡−ℓ , . . . , 𝜋𝑡−1}, 𝜋𝑡 )

ª®¬
while the objective value of price cycle 𝜋𝑡 ′ , . . . , 𝜋𝑐−1 equals

1

𝑐 − 𝑡 ′
©­«
min{𝑐−1,ℓ−1}∑︁

𝑡=𝑡 ′
𝑔(min{𝜋𝑐−1, 𝜋0, . . . , 𝜋𝑡−1}, 𝜋𝑡 ) +

𝑐−1∑︁
𝑡=min{𝑐−1,ℓ−1}+1

𝑔(min{𝜋𝑡−ℓ , . . . , 𝜋𝑡−1}, 𝜋𝑡 )ª®¬ .
Because 𝜋𝑡 ′−1 = 𝜋𝑐−1, it follows from Footnote 1 that the objective value of the original price cycle

is upper-bounded by the maximum of the latter two expressions. □

Completing the proof of Theorem 4.5. Consider the upper-bounding price cycle that is the

result of the reduction in Lemma 4.8. For 𝑡 = 0, . . . , 𝑑 − 1, first suppose 𝑘𝑡 = 1. Then it is guaranteed

that 𝜌𝑡 ≤ 𝜌𝑡−1 mod 𝑑 , which means that 𝜌𝑡 corresponds to a reset point. Indeed, this is immediate

if 𝑘𝑡−1 mod 𝑑 = ℓ , and if 𝑘𝑡−1 mod 𝑑 = 1 then 𝜌𝑡−1 mod 𝑑 ≤ 𝜌𝑡−2 mod 𝑑 so we can iteratively apply

the same argument. On the other hand, now suppose 𝑘𝑡 = ℓ . In this case, if 𝜌𝑡 ≤ 𝜌𝑡−1 mod 𝑑 , then

the ℓ copies of 𝜌𝑡 all correspond to reset points, by the same argument as before; if otherwise

𝜌𝑡 > 𝜌𝑡−1 mod 𝑑 , then only the final copy of 𝜌𝑡 corresponds to a reset point.

All in all, we have proven that every 𝑡 = 0, . . . , 𝑑 − 1 corresponds to at least 1 reset point, and

corresponds to ℓ reset points if 𝑘𝑡 = ℓ and 𝜌𝑡 ≤ 𝜌𝑡−1 mod 𝑑 . We now iteratively apply Lemma 4.9

to reduce the price cycle whenever distinct reset points have the same price, noting that after

each reduction the upper-bounding price cycle still takes the form described in Lemma 4.8 and

the same properties still hold. Let 𝜌
𝑘0
0
· · · 𝜌𝑘𝑑−1

𝑑−1 represent the final price cycle which no longer has

distinct reset points with the same price. It must be the case that 𝜌0, . . . , 𝜌𝑑−1 are distinct prices
in P, and moreover, if 𝑘𝑡 = ℓ then we must have 𝜌𝑡 > 𝜌𝑡−1 mod 𝑑 , because otherwise all ℓ copies

of 𝜌𝑡 would be reset points. (In the case where ℓ = 1, this argument is irrelevant.) The original

property from Lemma 4.8 that if 𝑘𝑡 = 1 then 𝜌𝑡 ≤ 𝜌𝑡−1 mod 𝑑 also still holds; in fact we would have

𝜌𝑡 < 𝜌𝑡−1 mod 𝑑 , by distinctness. This shows that the the final price cycle must satisfy precisely the

definition of ℓ-up-1-down, completing the proof of Theorem 4.5. □
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4.4 Computational Consequences; Tightness of ℓ-up-1-down Characterization
Theorem 4.5 shows that to maximize long-run average gain (5) over all positive integers 𝑐 ≤ |P|ℓ
and price cycles (𝜋0, . . . , 𝜋𝑐−1) ∈ P𝑐

, it suffices to search over ℓ-up-1-down price cycles, which are

defined by a generator cycle of at most 𝑑 distinct prices in P (see Definition 4.3). We now show

that the latter problem can be formulated using a reduced MDP.

For any generator cycle 𝜌0, . . . , 𝜌𝑑−1 of distinct prices in P, its long-run average gain (5) equals∑𝑑−1
𝑡=0 𝑔(𝜌𝑡−1 mod 𝑑 , 𝜌𝑡 ) (1 + (ℓ − 1)1(𝜌𝑡 > 𝜌𝑡−1 mod 𝑑 ))∑𝑑−1

𝑡=0 (1 + (ℓ − 1)1(𝜌𝑡 > 𝜌𝑡−1 mod 𝑑 ))
, (7)

because the reference price is always 𝜌𝑡−1 mod 𝑑 while offering 𝜌𝑡 , for all 𝑡 = 0, . . . , 𝑑 − 1, due to

the ℓ-up-1-down structure that the previous price 𝜌𝑡−1 mod 𝑑 is repeated ℓ times if it is higher than

the price before it.

We now construct an MDP where both the state and action space is P. When any action 𝑝 ∈ P
is taken from any state 𝑟 ∈ P, the next state is always 𝑝 ; the reward is 𝑔(𝑟, 𝑝) if 𝑟 ≥ 𝑝 , and ℓ𝑔(𝑟, 𝑝)
if 𝑟 < 𝑝 but the transition takes ℓ steps (instead of 1 step, so the reward-per-step is still 𝑔(𝑟, 𝑝)).
The objective is to maximize long-run average reward per step. We again restrict without loss to

stationary deterministic policies
2
, to see that the optimal policy is defined by a cycle 𝜌0, . . . , 𝜌𝑑−1 of

distinct states in P. Moreover, the long-run average reward per step of this policy equals exactly (7).

Therefore, the optimization problem over ℓ-up-1-down price cycles is captured by this reduced

MDP, which can be solved via the following system of infinite-horizon undiscounted Bellman’s

equations:

ℎ(𝑟 ) = max

𝑝∈P

( (
𝑔(𝑟, 𝑝) − OPT

) (
1 + (ℓ − 1)1(𝑟 < 𝑝)

)
+ ℎ(𝑝)

)
∀𝑟 ∈ P . (8)

Here, variable OPT denotes the optimal long-run average reward, and ℎ(𝑝) denotes the bias for
each state 𝑝 , one of which can be normalized to 0 so that there are both |P | variables and equations.
The multiplication by the factor of 1 + (ℓ − 1)1(𝑟 < 𝑝) accounts for the transition times. For further

details and algorithms that solve this in polynomial-time, we defer to Puterman [2014].

We can use (8) to also prove that our characterization of ℓ-up-1-down policies is tight.

Theorem 4.10 (proven in Appendix C). Let 𝜌0, . . . , 𝜌𝑑−1 be any cycle of distinct prices in P.
Under any memory length ℓ , there exists a reference-monotone gain function 𝑔 : P2 → R for which the
unique optimal price cycle is 𝜌𝑘 (𝜌𝑑−1,𝜌0 )

0
𝜌
𝑘 (𝜌0,𝜌1 )
1

· · · 𝜌𝑘 (𝜌𝑑−2,𝜌𝑑−1 )
𝑑−1 , where 𝑘 (𝑟, 𝑝) := 1+ (ℓ − 1)1(𝑟 < 𝑝).

5 Conclusion and Post-mortem
Personalizing promotions is more possible than ever, yet optimizing them for the long-term remains

an unsolved business problem. Our paper combines a successful real-world deployment of person-

alized promotions with a theoretical model and structural results for optimizing promotion cycles.

Unfortunately, a change in management at our industry partner caused the department responsible

for personalized promotions to disperse at the end of 2024. The new management favored offering

the biggest discount every day, removing all personalization; this prevented us from testing a

more sophisticated ℓ-up-1-down policy, and our algorithm was phased out by early 2025. More

encouragingly, a growing literature on promotion fatigue and “annoyance” identifies the long-term

loss from overly myopic promotion offerings (see Subsection 1.4). We believe that our empirical

study and structural price cycling results will prove useful for researchers and practitioners.

2
Technically this is a Semi-Markov Decision Process due to the inhomogeneous transition times, but the optimality of

stationary deterministic policies still holds. We can alternatively have homogeneous transition times if for all transitions

from states 𝑟 to 𝑝 with 𝑟 < 𝑝 , we add ℓ − 1 dummy states in the middle with a single action for proceeding.
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A Processed Features for Prediction Model
B Proof of Proposition 2.1
Suppose 0 ≤ 𝜆 ≤ 𝜆′ and 𝑣, 𝑣 ′ ∈ V with 𝑣 ≤ 𝑣 ′. If for customer 𝑖 , the bigger discount 𝑣 ′ is preferred
over 𝑣 under 𝜆′, i.e. (1 − 𝜆′𝑣 ′)𝑞(𝑥𝑖𝑡 , 𝑣 ′) ≥ (1 − 𝜆′𝑣)𝑞(𝑥𝑖𝑡 , 𝑣), then we have

1 − 𝜆′𝑣 ′

1 − 𝜆′𝑣
≥ 𝑞(𝑥𝑖𝑡 , 𝑣)

𝑞(𝑥𝑖𝑡 , 𝑣 ′)
.

We know however that
1−𝜆𝑣′
1−𝜆𝑣 ≥ 1−𝜆′𝑣′

1−𝜆′𝑣 by the rearrangement inequality, which implies that (1 −
𝜆𝑣 ′)𝑞(𝑥𝑖𝑡 , 𝑣 ′) ≥ (1 − 𝜆𝑣)𝑞(𝑥𝑖𝑡 , 𝑣), i.e. 𝑣 ′ is also preferred over 𝑣 under 𝜆. Therefore, increasing 𝜆𝑡
from 𝜆 to 𝜆′ cannot cause 𝑣𝑖𝑡 to increase for any customer 𝑖 .

Under the assumption that 𝑞(𝑥𝑖𝑡 , 𝑣) is increasing in 𝑣 , it is clear that (3) is increasing in 𝑣𝑖𝑡 for all

𝑖 , and hence decreasing in 𝜆𝑡 .

C Proof of Theorem 4.10
We can without loss assume P = {𝜌0, . . . , 𝜌𝑑−1}, by creating arbitrarily negative values for 𝑔(𝑟, 𝑝)
when 𝑝 ∉ {𝜌0, . . . , 𝜌𝑑−1}. For convenience, we can denote the price set to be P = {1, . . . , 𝑑}.

Take any real values ℎ(1) < · · · < ℎ(𝑑). Define

𝑔(𝜌𝑡 ) :=
ℎ(𝜌𝑡−1 mod 𝑑 ) − ℎ(𝜌𝑡 )

𝑘 (𝜌𝑡−1 mod 𝑑 , 𝜌𝑡 )
+𝐶 ∀𝑡 = 0, . . . , 𝑑 − 1, (9)

where 𝑘 (·, ·) is defined as in the statement of Theorem 4.10, and 𝐶 is a large positive constant

that ensures 𝑔(𝜌𝑡 ) > 0 for all 𝑡 = 0, . . . , 𝑑 − 1 (it suffices if
ℎ (1)−ℎ (𝑑 )

ℓ
+𝐶 > 0). Finally, define the

reference-monotone gain function 𝑔 to be

𝑔(𝑟, 𝜌𝑡 ) = 𝑔(𝜌𝑡 )1(𝑟 ≥ 𝜌𝑡−1 mod 𝑑 ) ∀𝑡 = 0, . . . , 𝑑 − 1; 𝑟 ∈ P . (10)

We show for this gain function𝑔 that the unique optimal price cycle is 𝜌
𝑘 (𝜌𝑑−1,𝜌0 )
0

𝜌
𝑘 (𝜌0,𝜌1 )
1

· · · 𝜌𝑘 (𝜌𝑑−2,𝜌𝑑−1 )
𝑑−1 ,

as required for the statement of Theorem 4.10. It suffices to show that if substitute these values of

ℎ(1), . . . , ℎ(𝑑) into the optimality condition (8), along with OPT = 𝐶 (the long-run average gain of

the optimal price cycle), then the “max” is achieved if and only if 𝑟 = 𝜌𝑡−1 mod 𝑑 , 𝑝 = 𝜌𝑡 for some

𝑡 = 0, . . . , 𝑑 − 1. In other words, we need to prove

ℎ(𝜌𝑡−1 mod 𝑑 ) ≥ (𝑔(𝜌𝑡−1 mod 𝑑 , 𝜌𝑡 ′ ) −𝐶)𝑘 (𝜌𝑡−1 mod 𝑑 , 𝜌𝑡 ′ ) + ℎ(𝜌𝑡 ′ ) ∀𝑡, 𝑡 ′ ∈ {0, . . . , 𝑑 − 1}

https://eng.lyft.com/how-to-solve-a-linear-optimization-problem-on-incentive-allocation-5a8fb5d04db1
https://eng.lyft.com/how-to-solve-a-linear-optimization-problem-on-incentive-allocation-5a8fb5d04db1
https://www.alizila.com/taobao-and-tmall-upgrades-consumer-shopping-experience-and-merchant-support-through-ai/
https://www.alizila.com/taobao-and-tmall-upgrades-consumer-shopping-experience-and-merchant-support-through-ai/
https://restofworld.org/2023/temu-mobile-gaming/
https://restofworld.org/2023/temu-mobile-gaming/
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Category Features

Purchasing Total purchase amount in the last 30/360 days

Number of transactions in the last 3/7/30/360 days

Average site sale discount of purchases in the last 30/360 days

Number of items in the cart

Total value of products in the cart

Average site sale discount in the cart

Coupon Number of free shipping coupons in last 7/28 days

Number of stackable coupons in last 7/28 days

Coupon value received 1/2 day ago

Largest coupon in the last 3/7/28 days

Average coupon in the last 3/7/28/30 days

Median coupon in the last 28 days

Variance of coupon values in the last 7/28 days

Average coupon clicked in the last 7/30 days

Average coupon opened in the last 7/30 days

Average coupon discount of purchases in the last 30/360 days

Average coupon discount of all historical purchases

Percentage of historical orders where a coupon was used

Email
Email opened 1/2 day ago

Number of emails opened in last 3/7/28 days

Whether all emails were opened in the last 28 days

Email clicked 1/2 day ago

Number of emails clicked in last 3/7/28 days

Website
Number of times viewed webpage in the last 1/3/7/30 days

Number of times viewed cart in the last 1/3/7/30 days

Number of days viewed cart in the last 1/3/7/30 days

Number of times viewed a product in the last 7 days

Number of times viewed checkout in the last 7 days

Time
Day of week

Table 4. List of features used in the prediction model. Time windows written with slashes (e.g., 3/7/28 days)
indicate multiple distinct features, one computed for each listed window length.

or equivalently

𝑔(𝜌𝑡−1 mod 𝑑 , 𝜌𝑡 ′ ) ≤
ℎ(𝜌𝑡−1 mod 𝑑 ) − ℎ(𝜌𝑡 ′ )

𝑘 (𝜌𝑡−1 mod 𝑑 , 𝜌𝑡 ′ )
+𝐶 ∀𝑡, 𝑡 ′ ∈ {0, . . . , 𝑑 − 1} (11)

with equality if and only if 𝑡 ′ = 𝑡 .

If 𝑡 ′ = 𝑡 , then equality holds by the definitions in (9)–(10). Now suppose 𝑡 ′ ≠ 𝑡 , and first consider

the case where 𝜌𝑡−1 mod 𝑑 < 𝜌𝑡 ′−1 mod 𝑑 . We have

𝑔(𝜌𝑡−1 mod 𝑑 , 𝜌𝑡 ′ ) = 0 <
ℎ(1) − ℎ(𝑑)

ℓ
+𝐶 ≤ ℎ(𝜌𝑡−1 mod 𝑑 ) − ℎ(𝜌𝑡 ′ )

𝑘 (𝜌𝑡−1 mod 𝑑 , 𝜌𝑡 ′ )
+𝐶
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as desired, where the final (weak) inequality holds because the smallest possible value of
ℎ (𝜌𝑡−1 mod 𝑑 )−ℎ (𝜌𝑡 ′ )
𝑘 (𝜌𝑡−1 mod 𝑑 ,𝜌𝑡 ′ )

is
ℎ (1)−ℎ (𝑑 )

ℓ
. In the other case where 𝜌𝑡−1 mod 𝑑 > 𝜌𝑡 ′−1 mod 𝑑 , we have

𝑔(𝜌𝑡−1 mod 𝑑 , 𝜌𝑡 ′ ) = 𝑔(𝜌𝑡 ′ ) =
ℎ(𝜌𝑡 ′−1 mod 𝑑 ) − ℎ(𝜌𝑡 ′ )

𝑘 (𝜌𝑡 ′−1 mod 𝑑 , 𝜌𝑡 ′ )
+𝐶 <

ℎ(𝜌𝑡−1 mod 𝑑 ) − ℎ(𝜌𝑡 ′ )
𝑘 (𝜌𝑡−1 mod 𝑑 , 𝜌𝑡 ′ )

+𝐶

as desired, where the inequality holds because
ℎ (𝑝 )−ℎ (𝜌𝑡 ′ )
𝑘 (𝑝,𝜌𝑡 ′ ) is a strictly increasing function over the

prices 𝑝 ∈ P and 𝜌𝑡−1 mod 𝑑 > 𝜌𝑡 ′−1 mod 𝑑 . This completes the proof of Theorem 4.10.
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