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This paper is concerned with the limit laws of the extreme order statistics
derived from a symmetric Laplace walk. We provide two different descrip-
tions of the point process of the limiting extreme order statistics: a branching
representation and a squared Bessel representation. These complementary
descriptions expose various hidden symmetries in branching processes and
Brownian motion which lie behind some striking formulas found by Schehr
and Majumdar (Phys. Rev. Lett. 108 (2012) 040601). In particular, the Bessel
process of dimension 4 = 2 + 2 appears in the descriptions as a path de-
composition of Brownian motion at a local minimum and the Ray–Knight
description of Brownian local times near the minimum.

1. Introduction. Extreme values of a collection of correlated random variables have
found various applications in probability theory, statistics and physics of disordered systems.
Recently there has been growing interest in understanding not only the extreme of a collection
of random variables, but also the second extreme, the third extreme, and so on. This problem
amounts to studying the extreme order statistics of a large number of correlated random
variables. Examples include the extreme order statistics of a random walk [32, 40], the near-
extreme structure of a branching random walk or Brownian motion [1, 10], and the local
eigenvalue statistics of a random matrix near the spectral edge [46, 48].

The starting point of this paper is the works of Schehr and Majumdar [40, 41] concerning
the extreme order statistics of random walk models in the context of statistical physics. They
started from particular models of random walk such as symmetric walks with continuous
increment distributions, and made sustained calculations in these models. Many of their cal-
culations recover known results in the fluctuation theory of random walks. But some of their
calculations have led to new limit laws and asymptotic formulas, whose place relative to the
standard fluctuation theory is much less obvious. To describe some of these results in more
detail, let S = (Sk,0 ≤ k ≤ n), with S0 = 0, and Sk = ∑k

i=1 Xi with independent and identi-
cally distributed (i.i.d.) increments X1, . . . ,Xn. For 0 ≤ k ≤ n, let Mk,n := Mk({S0, . . . , Sn})
be the kth order statistic derived from the steps (S0, . . . , Sn) of the walk S. So

{0 = S0, S1, . . . , Sn} = {Mk,n,0 ≤ k ≤ n} with M0,n ≤ M1,n ≤ · · · ≤ Mn,n.(1)

Schehr and Majumdar [40] focused attention on the spacings or gaps between random walk
order statistics

Dk,n := Mk,n − Mk−1,n for 1 ≤ k ≤ n.(2)

Schehr and Majumdar observed that if the distribution of X has a symmetric density with
EX2 < ∞, then for each fixed k = 1,2, . . ., as n → ∞ the expected spacing EDk,n has
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a limit, for which they gave an integral expression involving the Fourier transform of the
density of X. This led them to conjecture that the distribution of Dk,n may approach that of
some limit random variable Dk as n → ∞, a result which was confirmed in greater generality
in [32], as discussed in the next paragraph. In the particular case of the symmetric Laplace
walk whose increments have density

P(X ∈ dx)

dx
= 1

2
e−|x|, x ∈ (−∞,∞).(3)

Schehr and Majumdar showed that such a limit distribution of Dk exists for each k, with
a sequence of densities pk(v) := P(Dk ∈ dv)/dv that they characterized by the following
generating function ([40], (15)):

∞∑
k=1

pk(v)zk = 8ze−2v u+(z) − u−(z)e−2v

(u+(z) + u−(z)e−2v)3 ,(4)

where u±(z) := √
1 − z ± 1. As they remarked, extracting an explicit formula for pk from

(4) is difficult. However, assuming that
√

k/2Dk has a limit in distribution as k → ∞, they
derived the formula

∫ ∞
0

√
xp(

√
x)e−λx dx = (1 + √

λ/2)−3, λ > 0 for a Laplace transform
related to the density p(x) of this limit distribution at x > 0, which they inverted to obtain
the formula [40], (1):

p(x) = 4
[√

2

π

(
1 + 2x2) − x

(
4x2 + 3

)
e−2x2

erfc(
√

2x)

]
for x > 0,(5)

where erfc(x) := 2/
√

π
∫ ∞
x e−t2

dt . This limit density formula invites an interpretation in
terms of Brownian motion, however, Schehr and Majumdar did not offer any explicit con-
struction of a random variable with this density.

In our previous work [32], we showed how known results in the fluctuation theory of ran-
dom walks imply that for every distribution of increments, there is the convergence of finite-

dimensional distributions of gaps between order statistics (D1,n,D2,n, . . .)
d−→ (D1,D2, . . .)

for a limiting joint distribution of consecutive spacings (Dk, k ≥ 1), which may be con-
structed from the Feller chains (S

↑
n , n ≥ 0) and (S

↓
n , n ≥ 0) generated by the random walk.

To be more precise, let Wk,n := Mk,n − M0,n = ∑k
j=1 Dj,n, and let 0 = W0 ≤ W1 ≤ · · · be

the order statistics

Wk := Mk

({−S↓
n , n ≥ 0

} ∪ {
S↑

n , n ≥ 1
})

,(6)

derived from the two Feller chains S↑ and S↓. Then

• For each finite K , there is the convergence in total variation of finite-dimensional distribu-
tions of order statistics

(Wk,n,1 ≤ k ≤ K)
tv−→ (Wk,1 ≤ k ≤ K) as n → ∞.

• For each fixed w > 0, there is the convergence in total variation of laws of counting pro-
cesses NW,n(v) := ∑n

k=1 1(Wk,n ≤ v) and NW(v) := ∑∞
k=1 1(Wk ≤ v)(

NW,n(v),0 ≤ v ≤ w
) tv−→ (

NW(v),0 ≤ v ≤ w
)

as n → ∞.

The purpose of this article is to expose the rich probabilistic structure of the symmet-
ric Laplace walk underlying the striking formulas (4) and (5). This structure involves some
hidden symmetries of branching processes and Brownian motion, such as Le Gall’s branch-
ing description of random walks stopped at the first descending ladder time [25], the Ray–
Knight description of Brownian local times [22, 37] and McKean’s description of the three-
dimensional Bessel process [28], lie behind these formulas. See also [23, 30] which contain
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useful explicit formulas for the Laplace walk. Recall that for a random walk S = (Sk, k ≥ 0)

with increments X1,X2, . . ., the upward Feller chain S↑ with S
↑
0 = 0 is the sequence of par-

tial sums of those increments Xk of the walk S with Sk > 0, and the downward Feller chain
S↓ with S

↓
0 = 0 is the sequence of partial sums of those increments Xk of the walk S with

Sk ≤ 0. See [32], Section 2, or Section 2.1 for further discussions on the Feller chains of a
random walk. The main result is stated as follows.

THEOREM 1.1. Let (Sk, k ≥ 0) be a random walk with i.i.d. symmetric Laplace in-
crements with density (3). Let (Wk, k ≥ 0) be defined by (6) as the limiting distribution of
(Wk,n, k ≥ 0) with Wk,n := Mk,n − M0,n. Then:

1. (Branching representation) (Wk, k ≥ 0) with W0 = 0 is constructed as

Wk =
k∑

j=1

εj

S
±↑
2j

for k ≥ 1,(7)

where (S
±↑
n , n ≥ 0) is the upward Feller chain derived from a simple symmetric random

walk, and (εj , j ≥ 1) is a sequence of i.i.d. standard exponential variables independent of

(S
±↑
n , n ≥ 0). Consequently, for each k = 1,2, . . . the distribution of Dk := Wk − Wk−1 =

εk/S
±↑
2k is determined by

P(Dk > v) =
k∑

i=1

iP 2k−2
0 (2,2i)e−2iv for v > 0,(8)

where P0 is the transition matrix of a simple symmetric random walk on the nonnegative
integers with absorption at 0. That is,

P0(i, j) = 1

2
1(i > 0, j = i ± 1) for i > 0, j ≥ 0 and P0(0,0) = 1.(9)

2. (Squared Bessel representation) The counting process (NW(v), v ≥ 0) with

NW(v) :=
∞∑

k=1

1(Wk ≤ v) for v ≥ 0,(10)

is a Cox process driven by (1
2Q4(2γ2, v), v ≥ 0), where Q4 is a squared Bessel process of

dimension 4, and γ2 is a gamma random variable with density xe−x , x > 0, independent of
Q4. Moreover, the tail probability generating function of (Dk, k ≥ 1) is

∞∑
k=1

P(Dk > v)zk−1 = (
√

1 − z coshv + sinhv)−2 for v > 0.(11)

The proof of Theorem 1.1, given in Section 6, combines ideas from branching processes,
excursion theory and path decompositions of Brownian motion. The key idea is to study the
point process

Ndes(v) :=
τ−−1∑
k=1

1(Sk ≤ v) for v ≥ 0,(12)

where τ− := inf{k : Sk < 0} is the first descending ladder time of S. It will be shown that
the point process NW can be identified either as a limit of Ndes conditioned on τ− > m as
m → ∞, or as an i.i.d. superposition of Ndes. That yields the two different descriptions of
the limiting order statistics (Wk, k ≥ 0). These two descriptions are also related to the time
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change between the squared Bessel process of dimension 4 and the three-dimensional Bessel
process, found by Biane and Yor [7].

From the formulas (7)–(8), we see that the limiting gap distribution of Dk is a probabilistic
mixture of exponential distributions with rates 2i for i = 1, . . . , k, where the mixing distribu-
tion of i is P(S

±↑
2k−2 = i) for S±↑ the Feller chain of a simple symmetric walk. It is known [36]

that the scaling limit of the upwardly conditioned simple symmetric random walk (S
↑
n , n ≥ 0)

is the three-dimensional Bessel process (Rt , t ≥ 0) starting from R0 = 0. By the branching
representation (7), we obtain √

k

2
Dk

d−→ ε

2χ3
,(13)

where ε is exponential with mean 1, independent of χ3 := R1 with χ2
3 is the sum of three

independent standard Gaussian variables. Using the integral formula for the density of a ratio
of independent random variables, it is easily verified that

P

(
ε

2χ3
∈ dx

)
/dx = p(x)

as in (5). Further information provided by this argument is the Mellin transform of the limit
density

E

(
ε

2χ3

)s

= 2−3s/2 �(s + 1)�(3/2 − s/2)

�(3/2)
=

∫ ∞
0

xsp(x) dx for − 1 < s < 3.(14)

As a check, it follows from [40], (6), or [32], (3.8), that

EDk,n = uk + un−k+1 for 1 ≤ k ≤ n,

where um := P(S±
2m = 0) = ( 2m

m

)
2−2m ∼ 1√

πm
as m → ∞, with (S±

k , k ≥ 0) a simple sym-

metric random walk. This shows that EDk = limn→∞EDk,n = uk ∼ 1√
πk

as k → ∞, which
agrees with the asymptotics of EDk as k → ∞ implied by the formulas (13)–(14). The gener-
ating function (4) is an easy consequence of the squared Bessel representation (11) by taking
derivative in v. Furthermore, the 2m-step transition probabilities of P0 defined by (9) are

P 2m
0 (2i,2j) = 1(i > 0)

22m

[(
2m

m − i + j

)
−

(
2m

m + i + j

)]
for i, j ≥ 0.(15)

Thus, the formulas (8) and (11) from two different descriptions of (Wk, k ≥ 0) give the fol-
lowing non-trivial agreement formula:

∞∑
k=1

k∑
i=1

ie−2iv

22k−2

[(
2k − 2

k − 2 + i

)
−

(
2k − 2
k + i

)]
zk−1

= (
√

1 − z coshv + sinhv)−2 for v > 0.

(16)

The remainder of the paper is organized as follows. Section 2 recalls some basic results
about the Feller chains, squared Bessel processes and Cox processes. Sections 3 and 4 provide
analysis of the Laplace walk through branching processes. In Sections 5 and 6, we establish
the squared Bessel representation of the point processes Ndes and NW by embedding the
Laplace walk into a Brownian motion. Theorem 1.1 is proved in Section 6. Finally, in Sec-
tion 7, we study the path decomposition at the minimum of Brownian motion in which the
Laplace walk is embedded. This provides further insight into how the squared Bessel process
of dimension 4 = 2 + 2 arises. Table 1 below highlights some main results in this paper.
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TABLE 1
A roadmap of the main results

Branching representation Squared Bessel representation Path decomposition

Corollary 4.1, Theorem 4.3 Theorem 5.1, Theorem 6.1 Theorem 7.1, Corollary 7.2

2. Background and preliminaries. This section provides background and a few useful
results about the Feller chains, squared Bessel processes and Cox processes.

2.1. Renewal cluster representation for the Feller chains. Let (Sk, k ≥ 0) be a ran-
dom walk with i.i.d. increments X1,X2, . . ., and (S

↑
k , k ≥ 0) and (S

↓
k , k ≥ 0) be the up-

ward and downward Feller chains. It is known that the Feller chains S↑ and S↓ can be
understood as the Doob-h transform of the walk S with respect to the harmonic func-
tions h↑(x) := E(

∑τ+−1
k=0 1(Sk > −x)) with τ+ := inf{k > 0 : Sk > 0} and x > 0, and

h↓(x) := E(
∑τ−0−1

k=0 1(Sk ≤ −x)) with τ−0 := inf{k > 0 : Sk ≤ 0} and x < 0. Here we present

a pathwise construction of (S
↑
k , k ≥ 0) and (S

↓
k , k ≥ 0) from the walk (Sk, k ≥ 0). This con-

struction with a finite time horizon n was introduced by Feller ([14], XII.8, Lemma 3) to
provide a combinatorial proof of Sparre–Andersen’s identity, and was extended to the in-
finite horizon in [5, 32]. Formally, the upward Feller chain S↑ is the sequence of partial
sums of those increments Xk of the walk S with Sk > 0, and the downward Feller chain
S↑ is the sequence of partial sums of those increments Xk of the walk S with Sk ≤ 0. Let
N+

n := #{k ≤ n : Sk > 0} and N−
n := n − N+

n . The above construction gives partial sum pro-
cesses (S

↑
k ,0 ≤ k ≤ N+

n ) and (S
↓
k ,0 ≤ k ≤ N−

n ) of random lengths N+
n and N−

n respectively,
and

N+
k = N+

k−1 + 1(Sk > 0), N−
k = N−

k−1 + 1(Sk ≤ 0), Sk = S
↑
N+

k

+ S
↓
N−

k

.(17)

By letting n → ∞, we obtain the two infinite horizon Feller chains with the convention that
S

↑
k = ∞ for k > N+∞ := limn→∞ N+

n , and −S
↓
k = ∞ for k > N−∞ := limn→∞ N−

n .

For each fixed n, let M
↑
k,n := Mk(S

↑
k ,0 ≤ k ≤ N+

n ) and M
↓
k,n := Mk(−S

↓
k ,0 ≤ k ≤ N−

n )

be the kth order statistics of (S
↑
k ,0 ≤ k ≤ N+

n ) and (−S
↓
k ,0 ≤ k ≤ N−

n ), respectively. All that

happens to ((M
↑
k,n,M

↓
k,n), k = 0,1, . . .) in incrementing from n to n + 1 is that one more

value is sampled from one or other of the two Feller chains, and either this value Sn+1 is
inserted into (M

↑
k,n, k = 0,1, . . .) if Sn+1 > 0, or −Sn+1 is inserted into (M

↓
k,n, k = 0,1, . . .)

if Sn+1 ≤ 0. To be more precise, when Sn+1 > 0 in the update from n to n+1, each value M
↑
k,n

with M
↑
k,n ≤ Sn+1 remains unchanged, and if there are j such values then M

↑
j+1 = Sn+1 and

M
↑
j+i = M

↑
j+i−1,n for each i ≥ 2. In terms of the counting process N

↑
n (v) := ∑N+

n

k=1 1(S
↑
k ≤

v), v ≥ 0, all that happens in incrementing from n to n + 1 is that an extra point is added
at S

↑
N+

n+1
= S

↑
N+

n +1
if Sn+1 > 0 while there is no change if Sn+1 ≤ 0. As is clear from this

description, for each v > 0,

the sequence N↑
n (v) is increasing to N↑(v) :=

∞∑
k=1

1
(
S

↑
k ≤ v

)
as n → ∞,
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which is known to be finite with probability one. A similar description for updating the count-

ing process N
↓
n (v) := ∑N−

n

k=1 1(−S
↓
k ≤ v), v ≥ 0 yields for each v > 0,

the sequence N↓
n (v) is increasing to N↓(v) :=

∞∑
k=1

1
(−S

↓
k ≤ v

)
as n → ∞.

A more precise description of these limiting point processes N↑ and N↓ on the positive half
line is given as follows.

A point process is a right-continuous nonnegative integer-valued counting process. Let
N0 := (N0(v), v ≥ 0) be a point process on [0,∞) and let 	0 be a random variable with
values in [0,∞] and P(0 < 	0 < ∞) > 0, defined on the same probability space as N0,
according to some joint distribution with N0. Call a point process (N(v), v ≥ 0) a renewal
cluster process driven by (N0,	0) if, for v ≥ 0,

N(v) =
∞∑

k=1

Nk(v − Tk)1(Tk ≤ v) =
∞∑

k=1

Nk(∞)∑
i=1

1(Tk + Vk,i ≤ v),(18)

where ((Nk,	k), k = 1,2, . . .) is a sequence of i.i.d. copies of (N0,	0), with points
(Vk,i,1 ≤ i ≤ Nk(∞)) and Tk := 	1 + · · · + 	k is the time of the kth renewal in a renewal
process with inter-arrival times distributed as 	0.

Renewal cluster processes were introduced by Lewis [26] with the additional assumption
that 	k is independent of Nk . But this is not always the case for the renewal cluster processes
generated by the order statistics of Feller chains, as in the following lemma. The results in
this lemma are largely due to Tanaka [45]. The connection to the Feller chains was provided
in [5], and some further clarifications and refinements have been drawn from [8] regarding
the renewal cluster process.

LEMMA 2.1 (Tanaka’s decomposition). Let (S
↑
k , k ≥ 0) and (S

↓
k , k ≥ 0) be the two Feller

chains of the random walk (Sk, k ≥ 0).

1. Define the sequence (T
↑
k , k = 0,1, . . .) of strictly ascending future minimum times of

S↑ by T
↑

0 = 0 and for k ≥ 1, T
↑
k := max{j > T

↑
k−1 : S

↑
j = min

i>T
↑
k−1

S
↑
i }. Then the counting

process

N↑(v) =
∞∑

k=1

1
(
T

↑
k < ∞) T

↑
k −T

↑
k−1−1∑

i=0

1
(
S

↑
T

↑
k −i

≤ v
)

for v ≥ 0,(19)

is a renewal cluster process driven by (N+, τ+) for N+(v) := ∑τ+−1
k=0 1(−Sk ≤ v) the occu-

pation process of −S prior to τ+.
2. Define the sequence (T

↓
k , k = 0,1, . . .) of weakly ascending future minimum times of

S↓ by T
↓

0 = 0 and for k ≥ 1, T
↓
k := min{j > T

↓
k−1 : S

↓
j = max

i>T
↓
k−1

S
↓
i }. Then the counting

process

N↓(v) =
∞∑

k=1

1
(
T

↓
k < ∞) T

↓
k −T

↓
k−1−1∑

i=0

1
(−S

↓
T

↓
k −i

≤ v
)

for v ≥ 0,(20)

is a renewal cluster process driven by (N−0, τ−0) for N−0(v) := ∑τ−0−1
k=0 1(Sk ≤ v) the oc-

cupation process of S prior to τ−0.
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2.2. Squared Bessel processes. For each fixed δ > 0 and a fixed or a random level X ≥
0, let (Qδ(X, t), t ≥ 0) denote a BESQδ(X) process, that is a squared Bessel process of
dimension δ with initial state Qδ(0) = X. It is known that (Qδ(X, t), t ≥ 0) is for each δ ≥ 0
and X ≥ 0 the unique strong solution to the stochastic integral equation:

Qt = X + 2
∫ t

0

√
Qs dBs + δt, t ≥ 0,(21)

where (Bt , t ≥ 0) is a standard Brownian motion independent of X. For each fixed δ ≥ 0 the
family of laws of BESQδ(x) indexed by x ≥ 0 is the family of laws of a strong Markov dif-
fusion process on [0,∞), whose infinitesimal generator acting on suitable smooth functions
is 2x d2

dx2 + δ d
dx

. The BESδ(X) process is the square root of the BESQδ(X
2) process.

For positive integer δ and X ≥ 0, the process (Qδ(X, t), t ≥ 0) may be constructed as
Qδ(X, t) = (

√
X +B1

t )2 +∑δ
i=2(B

i
t )

2 where (Bi
t , t ≥ 0) are independent standard Brownian

motions. Pythagoras’s theorem shows that for positive integer δ and δ̂ these processes en-
joy the additivity property that if Qδ(X) = (Qδ(X, t), t ≥ 0) and Q̂δ̂(X̂) = (Q̂δ̂(X̂, t), t ≥ 0)

are two independent squares of Bessel processes with the indicated dimensions and starting
states, then there is the identity in distribution of processes on the space C[0,∞) of continu-
ous real-valued paths:

Qδ(X) + Q̂δ̂(X̂)
d= Qδ+δ̂(X + X̂).(22)

It was shown by Shiga and Watanabe [42] that this property extends to all real δ, δ̂ ≥ 0 and
X, X̂ ≥ 0, which provides an alternative definition of the law of BESQδ(X) for δ /∈ {1,2, . . .}.

The BESQ0(X) process, started at some level X ≥ 0 plays an important role in under-
standing the extreme order statistics of the Laplace walk stopped at the first descending lad-
der time. According to the result of Shiga and Watanabe, the distribution of (Q0(X, t), t ≥ 0)

with continuous paths is uniquely determined by the identity in law (22) for δ̂ = 0, X̂ = x,
for any particular X ≥ 0 and δ ∈ {1,2, . . .}. The BESQ0(X) process is also called the Feller
diffusion. As shown by Feller [13], BESQ0(X) models the total population mass in a contin-
uous state critical branching diffusion process with initial mass X. It is also well known that
the BESQδ(X) process for δ > 0 models a similar branching diffusion process with an immi-
gration rate controlled by the parameter δ. See [34, 38] for further background and references
of squared Bessel processes.

From considerations as above and some further stochastic calculus, there is a sys-
tematic method, first developed in [35], to compute explicitly the Laplace transform of∫ ∞

0 Qδ(x, t)μ(dt) for all δ ≥ 0, x ≥ 0 and for any μ on [0,∞) such that the integral is
finite, in terms of suitable solutions to a Sturm–Liouville equation associated with the mea-
sure μ. In particular, for μ a mixture of uniform distribution on [0, v] and a Dirac mass at v,
there is the following formula for the joint Laplace transform of Qδ(x, v) and

∫ v
0 Qδ(x,u) du

[35], (2.k), which has many repercussions in this work:

E

(
exp

(
−αQδ(x, v) − β2

2

∫ v

0
Qδ(x,u) du

))

=
(

coshβv + 2α

β
sinhβv

)−δ/2
exp

(
−xβ

2

1 + 2α
β

cothβv

2α
β

+ cothβv

)
,

(23)

for α > 0 and β �= 0. See also [18, 29] and [38], Chapter XI, §1, for various derivations,
applications and developments of these formulas.

We also recall the Ray–Knight theorem [22, 37] for Brownian local time processes in
terms of squared Bessel processes. See [38], Chapter VI, and [27] for background and laws
of various Brownian local time processes.
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LEMMA 2.2 (Ray–Knight theorem). Let (Bt , t ≥ 0) be standard Brownian motion, and
(L(x, t), x ∈ R, t ≥ 0) be the bi-continuous local time process of (Bt , t ≥ 0), normalized as
occupation density and for each t ≥ 0,∫ t

0
g(Bs) ds =

∫ ∞
−∞

g(x)L(x, t) dx,

for all nonnegative measurable function g. Let Tx := inf{t > 0 : Bt = x} be the first time at
which Brownian motion hits the level x. Then for each fixed x > 0, the Brownian local time
process up to random time T−x is described as follows: the process (L(y,T−x), y ≥ −x) is
a Markov process with homogeneous transition probabilities on each of the intervals [−x,0]
and [0,∞), as a BESQ2 on [−x,0] and a BESQ0 on [0,∞):(

L(u − x,T−x),0 ≤ u ≤ x
) d= (

Q2(0, u),0 ≤ u ≤ x
)
,(24) (

L(u,T−x), u ≥ 0
) d= (

Q0(2xγ1, u), u ≥ 0
)
,(25)

where γ1 is a standard exponential variable. Consequently, the final state L(0, T−x) at level
x of the first local time process indexed by 0 ≤ u ≤ x is the initial state of the second one

indexed by u ≥ 0, with L(0, T−x)
d= Q2(0, x)

d= 2xγ1.

2.3. Cox processes. Let X := (X(t), t ≥ 0) be a nonnegative stochastic process with
right-continuous sample paths. Call a point process N := (N(t), t ≥ 0) a Cox process driven
by X if N and X are defined on the same probability space, and conditionally given X the
process N is a Poisson process with intensity measure X(t) dt . Call N a Cox process if N has
the same distribution as a process so constructed from some random intensity process X on a
suitable probability space. The cumulative intensity process generated by X is the continuous
increasing process

I (t) :=
∫ t

0
X(s) ds, t ≥ 0,(26)

which is assumed to be finite almost surely for each t > 0.
Let Nθ denote a Cox process with intensity θX, so the conditional distribution of Nθ(t)

given X is Poisson with mean θI (t). Thus, by conditioning on I (t), the probability generating
function of Nθ(t) is given by

E
(
zNθ (t)) = ψ

(
t, (1 − z)θ

)
for 0 ≤ z ≤ 1,(27)

where for each t > 0 the function ψ(t, θ) is the Laplace transform of I (t) with argument θ :

ψ(t, θ) := E
(
e−θI (t)) for θ > 0.(28)

By the uniqueness theorems for probability generating functions and Laplace transforms, this
formula, and its straightforward extension to linear combinations of increments of Nθ(t) and
I (t), imply the well-known fact ([19], Theorem 3.3) that the finite dimensional distributions
of a Cox process N determine those of its intensity process X, and vice versa. Let

0 < Tθ,1 < Tθ,2 < · · · with
∑
k≥1

1(Tθ,k ≤ t) = Nθ(t) for t ≥ 0,(29)

be a listing of the points in Nθ in increasing order, with the convention that Tθ,k = ∞ if
Nθ(∞) < k. Assume that X is defined on a probability space supporting also a Poisson pro-
cess N(t) = ∑

k≥1 1(γk ≤ t) with rate 1, which is independent of X. The nth point γn of

N can be represented as γn
d= ∑n

i=1 εi for a sequence of i.i.d. standard exponential variables
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ε1, ε2, . . . Then the Cox process Nθ may be constructed as in (29) from the points Tθ,k defined
by ∫ Tθ,k

0
X(s) ds = γk

θ
or Tθ,k = I−1

(
γk

θ

)
,(30)

where (I−1(t), t ≥ 0) is the right-continuous inverse of the cumulative intensity process I .
The basic duality relation between the random time Tθ,k and the counting process (Nθ(t), t ≥
0) gives

P(Tθ,k > t) = P
(
Nθ(t) < k

)
for k = 1,2, . . . and t ≥ 0.(31)

Hence for each fixed θ > 0, the distribution of the random sequence (Tθ,k, k = 1,2, . . .) is de-
termined by the family of finite dimensional distributions of Nθ , and vice versa. In particular,
for k = 1 the evaluation of (27) for z = 0 gives the basic formula

P(Tθ,1 > t) = P
(
Nθ(t) = 0

) = ψ(t, θ).(32)

The following lemma spells out some less well-known formulas for Cox processes.

LEMMA 2.3. Let Nθ be a Cox process driven by θX, with points Tθ,k , and ψ(t, θ) be
defined by (28).

1. For each fixed t ≥ 0 the sequence of tail probabilities P(Tθ,k > t) for k = 1,2, . . . is
determined by the generating function

∞∑
k=1

P(Tθ,k > t)zk−1 = ψ(t, (1 − z)θ)

1 − z
for |z| < 1.(33)

2. For each real r > 0, there is the generating function for r th moments of Tθ,k

∞∑
k=1

E
(
T r

θ,k

) = (1 − z)−1
∫ ∞

0
rtr−1ψ

(
t, (1 − z)θ

)
dt,(34)

where the identity holds for all |z| ≤ ε provided that one of the expressions is finite at z = ε

for some 0 < ε < 1.
3. For each k ≥ 1 the joint distribution of Tθ,k and X(Tθ,k) on the event {Tθ,k < ∞} is

determined by the following formula:

E
(
g
(
X(Tθ,k)

)
1(Tθ,k ∈ dt)

) = dt
θk

(k − 1)!E
[
X(t)g

(
X(t)

)
I (t)k−1e−θI (t)],(35)

for all nonnegative measurable functions g.
4. The Laplace transform of X(Tθ,k) restricted to {Tθ,k ∈ dt} for 0 < t < ∞ is given by

E
(
e−αX(Tθ,k)1(Tθ,k ∈ dt)

) = dt
θk

(k − 1)!
( −d

−dα

)(−d

dθ

)k−1
ψ2(t;α, θ),(36)

where ψ2(t;α, θ) := Ee−αX(t)−θI (t) is the bivariate Laplace transform of X(t) and I (t).
5. Assume that P governs X as a Markov process with homogeneous transition probabil-

ities and with some arbitrary initial distribution. Then for each t ≥ 0 the sequence of tail
probabilities of spacings between consecutive points of Nθ is determined by the generating
function

∞∑
k=1

P(Tθ,k < ∞, Tθ,k+1 − Tθ,k > t)zk−1

= E(ψ3(X(T(1−z)θ,1), t, θ)1(T(1−z)θ,1 < ∞))

1 − z
,

(37)
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where ψ3(x, t, θ) := E(e−θI (t)|X0 = x), and the distribution of X(T(1−z)θ,1) on the event
{T(1−z)θ,1 < ∞} is determined by either (3) or (4) above.

PROOF. Observe that after multiplying the left-hand side of (33) by (1 − z), we get

∞∑
k=1

P(Tθ,k > t)
(
zk−1 − zk) (31)=

∞∑
k=1

P
(
Nθ(t) < k

)(
zk−1 − zk) = E

(
zNθ (t)),

which gives ψ(t, (1 − z)θ) by (27). Alternatively, after multiplying both sides of (33) by
(1 − z), this identity gives two different expressions for P(Tθ,G(z) > t), where G(z) is a
random variable independent of X and Nθ , with the geometric distribution P(G(z) = k) =
zk−1(1 − z) for k ≥ 1. On the left-hand side this probability is computed by conditioning on

G(z). On the right-hand side it is recomputed using the well-known fact that γG(z)
d= γ1

1−z
,

which implies via (30) that Tθ,G(z)
d= T(1−z)θ,1. The identity (37) is proved in the same way

using the Markov property of X at time T(1−z)θ,1 to assist the evaluation on the right-hand
side. The remaining identities are easily checked by differentiating or integrating (33). �

3. The Laplace walk stopped at the first descending ladder time. In this section, we
study the order statistics of the symmetric Laplace walk stopped at the first descending ladder
time, which relies on Le Gall’s branching description [25] of random walks.

It is assumed throughout that we are working on the event of probability one that the values
of Sk are all distinct. Since the increment distribution of the random walk S is symmetric and
continuous, the laws of strictly/weakly ascending/descending ladder times are identical, so
we will not distinguish between strict and weak ladder times. The next lemma recalls from
[25] some known distributional properties of a symmetric Laplace walk prior to the first
descending ladder time.

LEMMA 3.1. Let (Sk, k ≥ 0) be a random walk with i.i.d. symmetric Laplace increments
X1,X2, . . ., and τ− := inf{k : Sk < 0} be the first descending ladder time of S. Then:

1. The probability generating function of τ− is

E
(
zτ−) = 1 − √

1 − z.(38)

2. τ− and Sτ− are independent, with −Sτ− d= ε1 the standard exponential distribution.
3. Conditionally given the event {τ− > 1}, let α be the unique random time at which S

attains its minimum on 1, . . . , τ− −1. Then (Sα+k −Sα,0 ≤ k ≤ τ− −α) and (Sα−k −Sα,0 ≤
k ≤ α) are two independent copies of (Sk,0 ≤ k ≤ τ−).

We consider the point process with (1 + τ−) points at {0 = S0, S1, . . . , Sτ−}. It is easy to
see that Sτ− < 0 is the smallest point, and S0 = 0 is the second smallest point of {S0, . . . , Sτ−}.
By Lemma 3.1, the exponential overshoot −Sτ− is independent of (Sk,0 ≤ k ≤ τ− − 1),
hence also independent of the remaining order statistics of {S0, . . . , Sτ−−1}. To describe the
distribution of these remaining order statistics, observe first that

P
(
τ− = 1

) = P
(
τ− > 1

) = 1

2
.

Given τ− = 1, there is two-point configuration (S0, S1|τ− = 1) = (S0, S1|S1 < 0)
d=

(0,−ε1), which is of little interest. So we will focus on the distribution of {S0, . . . , Sτ−−1}
after conditioning on the event {τ− > 1}.
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To simplify notation, let ν := τ− − 1, and on the conditional probability space {ν ≥ 1} let
Mk := Mk({S0, . . . , Sν}) for 0 ≤ k ≤ ν so that

M0 = 0 < M1 < · · · < Mν,

are order statistics of {0 = S0, S1, . . . , Sτ−−1} given τ− > 1. The following lemma provides
a recursive description of the order statistics (M1, . . . ,Mν).

LEMMA 3.2. Conditioned on the event {ν ≥ 1}:
1. The probability generating function of ν is given by

E
(
zν |ν ≥ 1

) = 2

z

(
1 − √

1 − z − z

2

)
.(39)

2. The distribution of M1 is exponential with mean 1/2, that is, M1
d= 1

2ε1. Moreover, inde-
pendently of M1, the configuration of the remaining points relative to M1,

{M2 − M1, . . . ,Mν − M1, }
has a distribution which is a mixture of three cases:

(i) empty with probability 1/4;
(ii) equal in distribution to {M1, . . . ,Mν} with probability 1/2;

(iii) equal in distribution to the union of two independent copies of {M1, . . . ,Mν} with
probability 1/4.

PROOF. For part (1), the probability generating function (39) is easily derived from (38)

by noting that ν
d= (τ−−1|τ− > 1). Part (2) is read from Le Gall [25], Remarque, page 261. It

is a consequence of Lemma 3.1 and the memoryless property of the exponential distribution.
Lemma 3.1 gives the branching probabilities 1/4, 1/2, 1/4 according to whether the split at
the minimum produces 0,1 or 2 non-trivial fragments, with one Bernoulli(1/2) trial for the
fragment before the minimum, and an independent Bernoulli(1/2) trial for the fragment after
the minimum. The point configuration {M2 − M1, . . . ,Mν − M1} is then seen to be the su-
perposition of a binomial(2,1/2) number of independent copies of the original configuration
{M1, . . . ,Mν}. �

Next, we consider the counting process (Ndes(v), v ≥ 0) defined by (12). Using the nota-
tions in this section, we write Ndes(v) = ∑ν

k=1 1(Sk ≤ v) = ∑ν
k=1 1(Mk ≤ v). The idea is to

connect the process (Ndes(v), v ≥ 0) with

Nexc(v) :=
ν∑

k=1

1(Sk−1 ≤ v,Sk > v, k ≤ ν),(40)

which is the number of excursions of the path (Sk,0 ≤ i ≤ ν) above level v. As indicated
by Le Gall ([25], Remarque (ii), page 266), it follows from Lemma 3.2 that the upcross-
ing counting process (Nexc(v), v ≥ 0) represents numbers of excursions in a critical binary
branching process, starting with Nexc(0) = 1, in which each excursion:

• splits in two at rate 2 × 1/4 = 1/2,
• dies at rate 2 × 1/4 = 1/2.

Moreover, along the branches of this tree of excursions, there is a Poisson process of marks
at rate 2 × 1/2 = 1, corresponding to levels Mk which have exactly one child. These levels
Mk are not noticed as jumps of the process (Nexc(v), v ≥ 0). This description is summarized
in the following theorem.
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THEOREM 3.3. Conditioned on the event {ν ≥ 1}, there is the identity in law of counting
processes (

Ndes(v), v ≥ 0|ν ≥ 1
) d= (

Ncount(v), v ≥ 0
)
,(41)

where (Ncount(v), v ≥ 0) is constructed as follows. Let (N±(v), v ≥ 0) be a birth and death
process with state space the nonnegative integers:

• initial state N±(0) = 1,
• transitions j → j + 1 at rate j/2, and j → j − 1 at rate j/2.

Write N±(v) = 1+Nbirths(v)−Ndeaths(v), where Nbirths(v) and Ndeaths(v) are the increasing
processes counting numbers of births and deaths in (N±(v), v ≥ 0). Then (Ncount(v), v ≥ 0)

is constructed as

Ncount(v) = Nbirths(v) + Ndeaths(v) + Nmarks(v), v ≥ 0,(42)

where (Nmarks(v), v ≥ 0) is a Cox process with intensity (N±(v), v ≥ 0).

PROOF. This follows from the preceding discussion using the basic jump-hold descrip-
tions of birth and death, Poisson and Cox processes. In particular, the birth and death process
(N±(v), v ≥ 0) is constructed so that it has the same distribution as (Nexc(v), v ≥ 0). �

It can be easily derived from Theorem 3.3 a branching description of (Ndes(v), v ≥ 0)

without conditioning on the event {ν ≥ 1}. The result will be spelled out in Corollary 4.1
with further discussions. Here we give another corollary of Theorem 3.3, which does not
seem to be obvious without a careful accounting of the distribution of the point process
{0 = M0,M1, . . . ,Mν}.

COROLLARY 3.4. Conditioned on the event {ν ≥ 1}, the spacings 	k := Mk − Mk−1,
1 ≤ k ≤ ν between points in the range of the stopped Laplace walk are reversible. That is, for
each n = 1,2, . . .,

(	1, . . . ,	n|ν = n)
d= (	n, . . . ,	1|ν = n),(43)

and hence for all 1 ≤ m ≤ n,

(	1, . . . ,	m|ν ≥ n)
d= (	ν, . . . ,	ν−m+1|ν ≥ n),(44)

PROOF. In terms of counting processes, with the notation in Theorem 3.3, the assertion
of the corollary is that(

Ncount(v),0 ≤ v ≤ Mν

) d= (
Ncount(Mν) − Ncount(Mν − v),0 ≤ v ≤ Mν

)
.

By Theorem 3.3, the process (Ncount(v),0 ≤ v ≤ Mν) is the sum of three counting processes,
the first two counting births and deaths in a birth and death process, and the third a Cox
process driven by that birth and death process. Note that the birth and death process starts
at 1, and its penultimate state is 1. It is well known that any birth and death process starting
and ending in the same state is reversible. It is also straightforward that after adding a Cox
process driven by such a reversible process, the resulting process is still reversible, and hence
the conclusion. �

One consequence of Corollary 3.4 is that the last spacing of the order statistics of
{S0, . . . , Sν} conditioned on ν ≥ 1 has the same exponential distribution as the first:

(	ν |ν ≥ 1)
d= (	1|ν ≥ 1)

d= 1

2
ε1.
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This identity in law also follows from the memoryless property of the exponential distribu-
tion. However, it is not easy to see the next level without calculation:

(	ν,	ν−1|ν ≥ 2)
d= (	1,	2|ν ≥ 2)

d=
(

1

2
ε1,

1

2Y ′ ε
′
1

)
,

where ε1, ε
′
1, Y

′ are independent, and ε1, ε
′
1 have standard exponential distribution and Y ′ ∈

{1,2} with P(Y ′ = 1) = 1 − P(Y ′ = 2) = 2
3 . So Theorem 3.3 exposes the hidden symmetry

presented in Corollary 3.4.
To connect with Theorem 1.1, we will show in Section 6 that the limiting distribution as

n → ∞ of Mk,n − Mk−1,n, the kth spacing from the bottom between the order statistics of
(Si,0 ≤ i ≤ n) coincides with the limiting distribution of 	k given ν ≥ m as m → ∞. By
Theorem 3.3, the spacings 	k are constructed as an explicit function of a birth and death
process which generates a total number of ν children. It is well known that conditioning a
critical branching process to create a large number of offsprings induces a limit process in
the early generations which may be described as a branching process with immigration; see,
for example, [20], Example 2.1, and [2, 3, 12, 24]. The simplest limit of this kind is the limit
distribution of the bottom spacing 	1 given that ν is large. According to Lemma 3.2, the
conditional distribution of 	1 given ν ≥ m is identically equal to that of 1

2ε1 for all m ≥ 1,
so the evaluation of this first limit is easy. The following lemma identifies further limit laws
of 	k given ν ≥ m for large m in terms of a Markov chain embedded in the birth and death
process.

LEMMA 3.5. Let (N±(v), v ≥ 0) be the birth and death process defined in Theorem 3.3,
and for k ≥ 1 let Yk := N±(Mk−1), that is, Yk is the number of excursions of the walk (Si,0 ≤
i ≤ ν) above level Mk−1. Conditioned on the event {ν ≥ 1}:

1. (Yk, k ≥ 1) is a homogeneous Markov chain with initial state Y1 = 1 and transition
matrix 1

2(I +P0) on the nonnegative integers, where I is the identity matrix and P0 is defined
by (9).

2. Given (Y1, . . . , Yk) with Yk > 0, the lowest k spacings (	1, . . . ,	k) between values of
(Si,0 ≤ i ≤ ν) are independent exponential variables with rate 2Yk . That is,

(	j ,1 ≤ j ≤ k|ν ≥ k)
d=

(
εj

2Yj

,1 ≤ j ≤ k|Yk > 0
)
,(45)

where (εj , j ≥ 1) is a sequence of i.i.d. standard exponential variables, independent of the
Markov chain (Yj , j ≥ 1).

Moreover, for each fixed k the limiting joint distribution of the first k spacings given ν ≥ m

for large m is given by

(	j ,1 ≤ j ≤ k|ν ≥ m)
d−→

(
εj

2Y
↑
j

,1 ≤ j ≤ k

)
as m → ∞,(46)

where (Y
↑
j ,1 ≤ j ≤ k) with Y

↑
1 = 1 is the homogeneous Markov chain obtained as the Doob-

h transform of (Yj ,1 ≤ j ≤ k) with respect to the harmonic function h(j) = j , whose m-step
transition probabilities are

P ↑
m(i, j) = 2−m(I + P0)

m(i, j)
j

i
for i, j ≥ 1.(47)

PROOF. For part (1), the branching probabilities are 1/4, 1/2, 1/4 according to whether
a point Mk splits into 0, 1 or 2 non-trivial fragments. Thus,

Yk+1 = Yk with probability
1

2
and Yk+1 = Yk ± 1 with probability

1

4
,
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provided that Yk > 0, which yields the transition matrix 1
2(I + P0). Part (2) is a consequence

of the jump-hold descriptions of the birth and death process and the Cox process of marks.
The second half of this lemma follows from the fact (see, e.g., [6]) that (Y

↑
j ,1 ≤ j ≤ k) is the

limit in distribution of (Yj ,1 ≤ j ≤ k) given Ym > 0 as m → ∞. �

4. Branching descriptions of the Laplace walk stopped at the first descending ladder
time. This section provides further discussions on the branching description of the order
statistics {M0, . . . ,Mν} of the Laplace walk before the first descending ladder time τ− :=
ν + 1. Throughout this section, let (Z(t), t ≥ 0) be a birth and death process which evolves
according to the total number of individuals alive at time t in a critical binary branching
process (CBBP) such that:

• it starts with Z(0) ≥ 0 individuals at time t = 0;
• each individual lives an exponential lifetime with mean 1/2, and according to a fair coin

toss independent of the lifetime, the individual dies and leaves either 0 or 2 children;
• each individual present at any given time continues according to the same branching mech-

anism, independent of all other individuals.

The counting process (Z(t), t ≥ 0) is then a birth and death process with transitions from j

to j − 1 at rate j , from j to j + 1 at rate j , and all other transitions at rate 0.
The following corollary of Theorem 3.3 gives a representation of {M0, . . . ,Mν} without

conditioning on {ν ≥ 1}.

COROLLARY 4.1. The order statistics {M0, . . . ,Mν} of (Si,0 ≤ i ≤ ν) have the same
joint distribution as if they were constructed as M0 = 0 and Mk for k = 1,2, . . . the time of kth
birth or death or mark generated by the critical binary birth and death process (Z(t/2), t ≥
0) according to the scheme

Mk := the kth t > 0 : Z
(

t

2

)
− Z

(
t−
2

)
= ±1 or Nmarks(t) − Nmarks(t−) = 1,(48)

with Z(0) assigned Bernoulli(1/2) distribution on {0,1}, and

Nmarks(t) := N

(∫ t

0
Z(v/2) dv

)
, t ≥ 0,(49)

the Cox process with intensity Z(t/2) at time t derived from Z and an independent standard
Poisson process N . Consequently, the probability generating function of ν is

E
(
zν) = z−1(1 − √

1 − z).(50)

Next, we will give an alternative branching description of the point process {M0, . . . ,Mν}.
We recall a lemma from Feller ([15], XVII.10, 11), which specifies the distribution of Z(t)

for any fixed Z(0). See also [47] for related discussions on the linear birth and death process.

LEMMA 4.2. For k ≥ 0, let Pk govern the critical binary branching process (Z(t), t ≥ 0)

with Z(0) = k. Then

P1
(
Z(t) = 0

) = t

t + 1
and P1

(
Z(t) = n

) = tn−1

(1 + t)n+1 for n ≥ 1,(51)

and for each k ≥ 0,

Pk

(
Z(t) = 0

) =
(

t

1 + t

)k

.(52)
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The following theorem is a consequence of Le Gall [25], which is also known as Geiger’s
lifeline representation of a CBBP [16], or the binary-(0,1) tree [33].

THEOREM 4.3. The order statistics {M0, . . . ,Mν} of (Si,0 ≤ i ≤ ν) have the same joint
distribution as if they were constructed as M0 = 0 and Mk for k = 1,2, . . . the time of kth
death in the critical binary birth and death process (Z(t), t ≥ 0):

Mk := the kth t > 0 : Z(t) − Z(t−) = −1,(53)

with Z(0) assigned the geometric(1/2) distribution on {0,1, . . .}, that is, P(Z(0) = n) =
2−n−1 for n ≥ 0. Consequently,

P(Mν > t) = 1

2 + t
for t > 0.(54)

PROOF. The construction of Mk’s is just a reformulation of [25], Theorem 3. Moreover,
for each t > 0,

P(Mν > t) = P
(
Z(t) > 0

)
= 1 − ∑

n≥0

P
(
Z(0) = n

)
Pn

(
Z(t) = 0

)
= 1 − ∑

n≥0

2−n−1
(

t

1 + t

)n

,

where the last equality follows from (52). This leads to (54). �

The construction of Theorem 4.3 differs from that of Corollary 4.1 in two ways which
compensate each other. In Theorem 4.3, the CBBP is started with a geometric(1/2) number
of initial individuals with E(Z(0)) = 1, but only deaths of individuals count towards the
counting process which generates a copy of Ndes. As deaths occur at rate j when Z(v) =
j , and E(Z(v)) ≡ 1 for all v, the mean rate of points of Ndes per unit level at level v is
therefore always 1. In Corollary 4.1, the CBBP is started with a Bernoulli(1/2) number of
initial individuals with E(Z(0)) = 1

2 . Moreover, when the driving process Z(v/2) = j , deaths
of individual only occur at rate j/2. However, this is compensated by the fact that birth times
are counted at rate j/2, as do additional marks at rate j . So at any particular level v, the mean
rate of points of Ndes per unit level is E(Z(v)) · (1

2 + 1
2 + 1) = 1 as expected. Furthermore,

for the CBBP started with 0 or 1 individual,

P(Mν > t) = P
(
Z(t/2) > 0

) = 1

2
0 + 1

2
P1

(
Z(t/2) > 0

) = 1

2 + t
,

where the last equality follows from (51). This is in agreement with the formula (54).
In contrast with Corollary 4.1, it is much less apparent from the representation of Mk’s

in Theorem 4.3 that the spacings (	1, . . . ,	ν) between these points are reversible. It is also
less obvious that M1 := min1≤i≤ν Si represented as the first death time in the CBBP started
with a geometric(1/2) number of individuals Z(0) given Z(0) ≥ 1 has the exponential dis-
tribution with mean 1/2. Recall that P1 governs the CBBP (Z(t), t ≥ 0) with Z(0) = 1. By
the agreement of the law of M1 in both constructions, we get

P(M1 > t) = e−2t (by Corollary 4.1),

= ∑
n≥0

2−n−1
P1(first death time > t)n (by Theorem 4.3),
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which yields the distribution of the first death time in the CBBP (Z(t), t ≥ 0) started with
one individual:

P1(first death time > t) = 2e−2t

1 + e−2t
.(55)

Clifford and Wei [11], extending earlier work [44], showed that the death times in a branch-
ing process may be described as a Cox process driven by some squared radial Ornstein–
Uhlenbeck process. But they only considered subcritical branching processes with immigra-
tion, so the formula (55) for the death times in a CBBP does not seem to be easily read from
these results. On the other hand, it is obvious from the representation in Theorem 4.3 that
given ν ≥ 1 the last spacing 	ν := Mν − Mν−1 has the exponential distribution with mean
1/2, because this random variable is the last holding time of (Z(t), t ≥ 0) in state 1, which
has an exit rate 2.

For the CBBP model with Z(0) distributed as geometric(1/2), it is also interesting to
consider the distribution of Z(0) given the event{

Z(t) > 0
} = {Mν > 0},

which has probability 1
2+t

. A simple Bayes calculation using (52) and (54) gives for n ≥ 1,

P
(
Z(0) = n|Z(t) > 0

) = 2−n−1(t + 2)

(
1 −

(
t

1 + t

)n)
−→ n2−n−1 as t → ∞.(56)

This is the negative binomial distribution with parameters 2 and 1/2 shifted up by 1. As a
result, (

Z(0)|Z(t) > 0
) d−→ 1 + Z(0) + Z′(0) as t → ∞,(57)

where Z′(0) is an independent copy of Z(0), distributed as geometric(1/2) on {0,1, . . .}. So
with conditioning on {Z(t) > 0} for large t , we get

E
(
Z(0)|Z(t) > 0

) −→ 3 as t → ∞.(58)

As mentioned in Section 3, conditioning a critical branching process on nonextinction in the
limit induces a single line of descent for an immortal particle which spins off particles con-
tinuing with the regular branching mechanism at some constant birth rate. The effect of this
conditioning is to introduce an immigration term into the branching process. In the present
context with a geometric(1/2) initial number of individuals, one of these individuals is des-
tined to be the immortal particle, while the trees generated by the other two will terminate in
finite time almost surely.

5. Squared Bessel representation of the Laplace walk stopped at the first descend-
ing ladder time. Corollary 4.1 and Theorem 4.3 provide descriptions of the point process
{M0, . . . ,Mν} with ν := τ− − 1 which are adequate in many aspects. For instance, for any
fixed v ≥ 0, they can be used to simulate all points Mk in this process with Mk ≤ v in finite
expected time, which cannot be done by naive simulation of all ν points of the process as
Eν = ∞. Still, these descriptions do not easily yield a formula for the distribution of Mk , or
of the count Ndes(v) := ∑ν

k=1 1(Mk ≤ v) for any fixed v, let alone the multivariate distribu-
tions of these statistics. In this section, we give some alternate description of {M0, . . . ,Mν},
which is more convenient for such computations.

The idea is to embed the symmetric Laplace walk S into a standard Brownian motion
(Bt , t ≥ 0):

Sn = B2γn for n ≥ 1,(59)
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where γn := ∑n
i=1 εi for a sequence of i.i.d. standard exponential variables ε1, ε2, . . . inde-

pendent of the Brownian motion (Bt , t ≥ 0). Equivalently, γn is the nth point in a Poisson
process N(t) := ∑

n≥1 1(γn ≤ t) with rate 1, and γn is gamma(n,1) distributed with density
fγn(x) = 1

(n−1)!x
n−1e−x , x > 0. We will use Brownian excursion theory to study the counting

process (Ndes(v), v ≥ 0).
Recall from Section 2.2 that (Qδ(X, t), t ≥ 0) is a squared Bessel process of dimension δ

with initial state X. The following theorem identifies the counting process (Ndes(v), v ≥ 0)

as a Cox process driven by some functional of the BESQ0 process. It is a variant of the
Ray–Knight identity (25) by embedding the symmetric Laplace walk into Brownian motion.

THEOREM 5.1. Let (Sn, n ≥ 0) be the symmetric Laplace walk represented as in (59),
where γn is the nth point in a Poisson process N with rate 1 independent of Brownian mo-
tion. Let (L(v, t), v ∈ R, t ≥ 0) be the local time process of Brownian motion defined in
Lemma 2.2, and let τ− := inf{k ≥ 1 : Sk ≤ 0}. Then:

1. There is the identity in law of processes on C[0,∞)(
L(v,2γτ−), v ≥ 0

) d= (
Q0(2γ1, v), v ≥ 0

)
.(60)

2. The counting process (Ndes(v), v ≥ 0) defined by (12) is a Cox process driven by
(1

2L(v,2γτ−), v ≥ 0) so that

(
Ndes(v), v ≥ 0

) d=
(
N

(
1

2

∫ v

0
Q0(2γ1, u) du

)
, v ≥ 0

)
,(61)

where on the right-hand side the BESQ0 process Q0 with initial state 2γ1 is independent of
the Poisson process N with rate 1.

3. For each fixed v > 0, the probability generating function of Ndes(v) is

E
(
zNdes(v)) = (1 + √

1 − z tanhv
√

1 − z)−1.(62)

PROOF. (1) Let (τ�, � ≥ 0) be the right-continuous inverse of (L(0, t), t ≥ 0). Accord-
ing to Itô’s excursion theory (see, e.g., [38], Chapter XII), when the excursion of |B| away
from 0 on the random interval (τ�−, τ�) is indexed by the constant value � of L(0, t) for all
t ∈ (τ�−, τ�), the point processes of positive and negative excursions are independent and
identically distributed copies of the Poisson point process of positive excursions. This asser-
tion remains true if the excursion of B on (τ�−, τ�) is embellished to include the increments
of the independent Poisson process (N(t/2), t ∈ (τ�−, τ�)) as an auxiliary marking process.
For any random time T such that BT < 0 with probability one, there is the excursion decom-
position of local time on the positive half line

L(v,T ) = ∑
�<L(0,T )

(
L(v, τ�) − L(v, τ�−)

)
1
(
Bt > 0 for t ∈ (τ�−, τ�)

)
,(63)

where the sum is over the random countable set of � with τ�− < τ�, and the only terms which
contribute to the sum are those corresponding to positive excursions.

Consider now a random time T contained in the first negative excursion of some particular
kind, whose rate per unit local time is say ξ , the way that

• the time T = T−x is contained in the first excursion to reach level −x < 0 with rate ξ = 1
2x

(see, e.g., [38], Chapter XII, Exercise 2.10);
• the time T = 2γτ− is contained in the first negative excursion to include an independent

Poisson mark at rate 1
2 per unit original time, which corresponds to some rate ξ of marked

excursions per unit local time, with ξ to be determined.
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By Itô’s description of Brownian excursion process and basic properties of Poisson processes,
there is the well-established argument ([39], Section 49) that L(0, T ) is exponentially dis-
tributed, and L(0, T ) is independent of all positive excursions and their marks. It then follows
from the decomposition (63) that the distribution of the local time process (L(v,T ), v ≥ 0)

is the same for all such random times T whose L(0, T ) has the same rate ξ per unit local
time. According to Lévy’s formula for the Laplace transform of τ� (see, e.g., [38], Chapter
II, Proposition 3.7), for λ > 0,

P
(
τ� < λ−1γ1

) = Ee−λτ� = e−�
√

2λ.

This formula shows that for the present choice of Poisson marking rate λ = 1/2, the rate per

unit local time is ξ =
√

21
2 = 1, hence the rate of negative marked excursions per unit local

time is 1
2 × 1 = 1

2 . As noted above, this is also the rate of excursions that reach −1 per unit
local time. Consequently, the local time process on the right-hand side of (60) has the same
distribution as the local time process described by the Ray–Knight identity (25) for x = 1,
hence the conclusion.

(2) Suppose first that T is either a fixed time, or a random time independent of B . Then
conditionally given T and the path of B on [0, T ], the points 2γn with 2γn ≤ T are the points
of a Poisson process with intensity 1

21(t ≤ T )dt on (0,∞). By definition of the local time
process as occupation density, the image of the measure 1

21(t ≤ T )dt via the continuous
mapping t → Bt is 1

2L(x,T ) dx on (−∞,∞). It follows from the mapping theorem for
Poisson processes ([21], page 18) that conditionally given T and the path of B on [0, T ], the
point process with points at Sn := B2γn for n with 2γn ≤ T is a Poisson process with intensity
1
2L(x,T ) dx on (−∞,∞). That is to say, the point process

NT (·) := ∑
n≥1

1(2γn ≤ T ,B2γn ∈ ·),

is a Cox process with random intensity measure which is the occupation measure of B on
[0, T ] with continuous density 1

2L(x,T ) dx, x ∈ (−∞,∞).
This assertion is false for random times T such that T = 2γτ− , the time of the first Poisson

sampling point 2γn with B2γn ≤ 0: the restriction of NT (·) to (−∞,0] is not a Cox process
since it has exactly one point. Still, by the independence of the processes of positive and
negative excursions and their associated Poisson marks, it can be argued as above that for
this T = 2γτ− , the only way in which the sampling rule affects the distribution of marks over
times t < T when Bt > 0 is through the occupation measure of B on (0,∞) up to time T , as
encoded by the local time process (L(v,T ), v ≥ 0). So for T = 2γτ− , the restriction of NT (·)
to (0,∞) is a Cox process as claimed. The identity in law (61) then follows from (60).

(3) It follows from part (2) and the generating function (27) for a Cox process that

E
(
zNdes(v)) = E

(
−1

2
(1 − z)

∫ v

0
Q0(2γ1, s) ds

)
.(64)

Specializing the joint Laplace formula (23) to δ = 0 and α = 0, we get

E

(
−β2

2

∫ v

0
Q0(2γ1, s) ds

)
=

∫ ∞
0

exp
(
−x

2
β tanhβv

)
· 1

2
e−x/2 dx

= (1 + β tanhβv)−1,

(65)

which by injecting into (64) with β2 = 1 − z yields the formula (62). �
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Now we provide several applications of (62) and derive explicit formulas for the point
process {M1, . . . ,Mν}. First by noting that ν = Ndes(∞), we get

E
(
zν) = lim

v→∞E
(
zNdes(v)) = lim

v→∞(1 + √
1 − z tanhv

√
1 − z)−1 = (1 + √

1 − z)−1,

which recovers the formula (50) for the probability generating function of ν. Further by
expanding (62) in powers of z, we obtain the probabilities for v ≥ 0,

P
(
Ndes(v) = 0

) = 1

2

(
1 + e−2v)

, P
(
Ndes(v) = 1

) = 1

8

(
1 + 4ve−2v − e−4v)

,

P
(
Ndes(v) = 2

) = 1

32

(
2 + (−1 + 4v + 8v2)

e−2v − (2 + 8v)e−4v + e−6v)
,

and so on. It develops that P(Ndes(v) = k) is for each k a signed linear combination of expo-
nentials e−2jv for j = 0, . . . , k + 1 with coefficients that are polynomials in v. But the exact
form of the coefficients involved does not seem to be obvious. These probabilities determine
the law of Mk’s by the basic duality relation

P(Mk > v) = P
(
Ndes(v) < k

) =
k−1∑
j=0

P
(
Ndes(v) = j

)
,

where by convention Mk = ∞ if ν < k, so the event {Mk > v} includes the event {Mk =
∞} = {ν < k}. Thus,

P(M1 > v) = 1

2

(
1 + e−2v)

, P(M2 > v) = 1

8

(
5 + 4(1 + v)e−2v − 4e−4v)

,

P(M3 > v) = 1

32

(
22 + (

15 + 20v + 8v2)
e−2v − (6 + 8v)e−4v + e−6v)

,

and so on, where the constant coefficients obtained in the limit as v → ∞ are the cumulative
probabilities in the distribution of ν, that is,

P(M1 = ∞) = P(ν = 0) = 1

2
, P(M2 = ∞) = P(ν ≤ 1) = 1

2
+ 1

8
= 5

8
,

P(M3 = ∞) = P(ν ≤ 2) = 1

2
+ 1

8
+ 1

16
= 22

32
,

and so on.
Note that the formula (65) is the instance x = 1, u = 0 of the following more general

consequence of the Ray–Knight identity (25): for −x < 0 ≤ u ≤ v,

E

(
−β2

2

∫ v

u
Q0(2xγ1, s) ds

)
= E

(
−β2

2

∫ T−x

0
1(u < Bt ≤ v) dt

)
= 1 + uβ tanh(v − u)β

1 + (u + x)β tanh(v − u)β
,

(66)

where the second equality is read from [9], page 203 (2.7.1). When evaluated at x = 1
and β = √

1 − z, this identity gives the probability generating function of Ndes(u, v] :=∑ν
k=1 1(u < Sk ≤ v) = ∑ν

k=1 1(u < Mk ≤ v), the number of steps of the symmetric Laplace
walk in (u, v] before its first step into the negative half line:

E
(
zNdes(u,v]) = 1 + u

√
1 − z tanh(v − u)

√
1 − z

1 + (u + 1)
√

1 − z tanh(v − u)
√

1 − z
.(67)



1666 J. PITMAN AND W. TANG

Expanding (67) in powers of z gives

P(Ndes(u, v] = 0) = 1 + u tanh(v − u)

1 + (1 + u) tanh(v − u)
,

P(Ndes(u, v] = 1) = tanh(v − u) + (v − u)(1 − tanh2(v − u))

2(1 + (1 + u) tanh(v − u))2 ,

and so on, with progressively more complex ratios of polynomials in u, v and tanh(v − u).
Similarly, by expanding in powers of 1 − z, we get

E
(
Ndes(u, v]) = v − u, E

(
N2

des(u, v]) = 2

3
(v − u)2(3 + 2u + v) + (v − u),

and so on. In the limiting case v = ∞, we derive the probability generating function of
Ndes(u,∞):

E
(
zNdes(u,∞)) = 1 + u

√
1 − z

1 + (u + 1)
√

1 − z
,(68)

which by expanding in powers of z gives

P
(
Ndes(u,∞) = 0

) = 1 + u

2 + u
, P

(
Ndes(u,∞) = 1

) = 1

2(2 + u)2 ,

P
(
Ndes(u,∞) = 2

) = 4 + 3u

8(2 + u)3 , P
(
Ndes(u,∞) = 3

) = 10 + 14u + 5u2

16(2 + u)4 ,

and so on. In particular, we recover the formula (54) for the law of Mν , the largest point of
{S1, . . . , Sν} by observing that P(Mν > t) = 1 − P(Ndes(t,∞) = 0).

6. Renewal cluster process, squared Bessel process and Laplace walk. In this section,
we study the counting process NW(v) := ∑

k≥1 1(Wk ≤ v), v ≥ 0 for (Wk, k ≥ 1) defined by
(6) as the sequence of limits in law of (Mk,n − Mk,0, k ≥ 1) for the symmetric Laplace walk
S. We also make a connection between (NW(v), v ≥ 0) and (Ndes(v), v ≥ 0), the counting
process of the Laplace walk before the first descending ladder time τ− := ν + 1, and then
prove Theorem 1.1 as a byproduct.

For a general random walk, the counting process (NW(v), v ≥ 0) is the sum of two inde-
pendent components

NW(v) = N↑(v) + N↓(v) for v ≥ 0,(69)

where N↑(v) := ∑∞
i=1 1(S

↑
i ≤ v) and N↓(v) := ∑∞

i=1 1(−S
↓
i ≤ v) are counting processes of

the upward and downward Feller chains (see Section 2.1). Moreover, if increment distribu-
tion of the walk is symmetric and continuous, these two counting processes are identically
distributed. By Tanaka’s decomposition of S↑ and S↓ (Lemma 2.1), each of the counting pro-
cesses N↑ and N↓ is a renewal cluster process. In general, the laws of these renewal cluster
processes may be complicated. For the symmetric Laplace walk, the structure of these count-
ing processes is greatly simplified because the underlying renewal processes are Poisson.

Recall that (Qδ(X, t), t ≥ 0) is a squared Bessel process of dimension δ with initial state
X, and γ1 < γ2 < · · · are points in a Poisson process with rate 1 on (0,∞). The following
theorem identifies the counting process (NW(v), v ≥ 0) as a Poisson cluster process, which
in turn is a Cox process driven by some functional of the BESQ4 process.
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THEOREM 6.1. For λ > 0, let (Nλ(v), v ≥ 0) be the Poisson cluster process, with cluster
centers at the points λ−1γ1 < λ−1γ2 < · · · of a Poisson process with rate λ on (0,∞), and a
cluster on [λ−1γk,∞) for each k that is a copy of Ndes. That is,

Nλ(v) :=
∞∑

k=1

νk∑
i=0

1
(
λ−1γk + Mk,i ≤ v

)
for v ≥ 0,(70)

where (Mk,i,0 ≤ i ≤ νk) for k = 1,2, . . . is a sequence of independent copies of (Mi,0 ≤ i ≤
ν), the process of order statistics of (Si,0 ≤ i ≤ ν) for the symmetric Laplace walk S. Then:

1. The Poisson cluster process (Nλ(v), v ≥ 0) is a Cox process driven by(
1

2
Q2λ(2γλ, v), v ≥ 0

)
d=

(
1

2
Q2λ(0,1 + v), v ≥ 0

)
,(71)

where γλ is understood as a gamma random variable with density 1
�(λ)

xλ−1e−x , x > 0. Con-
sequently, for each v > 0 the probability generating function of Nλ(v) is

E
(
zNλ(v)) = (coshv

√
1 − z + √

1 − z sinhv
√

1 − z)−λ.(72)

2. There are the identities in law of processes(
N↑(v), v ≥ 0

) d= (
N↓(v), v ≥ 0

) d= (
N1(v), v ≥ 0

)
,(73) (

NW(v), v ≥ 0
) d= (

N2(v), v ≥ 0
)
.(74)

So the probability generating functions of N↑(v) and NW(v) are given by (72) for λ = 1 and
λ = 2 respectively.

3. The points W1 < W2 < · · · of the Cox process NW driven by (1
2Q4(0,1 + v), v ≥ 0)

may be constructed as the differences T2 − T1 < T3 − T2 < · · · for 0 < T1 < T2 < · · · the
points of a Cox process driven by (1

2Q4(0, v), v ≥ 0).

PROOF. (1) Attaching i.i.d. clusters to the points of a Poisson process is a well-known
mechanism for generating an infinitely divisible point process, whose Lévy-Khintchine rep-
resentation is easily expressed in terms of the probability generating function of counts of
points in the clusters (see, e.g., [19], Section 3.3). For the Poisson cluster process Nλ, the
probability generating function of clusters is given by (62), so

E
(
zNλ(v)) = exp

(
−λ

∫ v

0

(
1 −E

(
z1+Ndes(u)))du

)
= exp

(
−λ

∫ v

0
1 − z(1 + √

1 − z tanhu
√

1 − z)−1 du

)
= (coshv

√
1 − z + √

1 − z sinhv
√

1 − z)−λ,

where in the first equation M0 = S0 is counted, hence
∑

0≤i≤ν 1(Si ≤ v) = 1 + Ndes(u), and
the last equation is obtained by elementary calculus

d

dv
log(coshvβ + β sinhvβ)|β=√

1−z = 1 − 1 − β2

1 + β tanhvβ

∣∣∣∣
β=√

1−z

.

Further by the Laplace transform (23), we get the generating function for a Cox process
driven by (1

2Q2λ(2γλ, v), v ≥ 0):

E

(
exp

(
−1

2
β2

∫ v

0
Q2λ(2γλ,u) du

))∣∣∣∣
β=√

1−z
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= (coshvβ)−λ
∫ ∞

0

1

2�(λ)

(
x

2

)λ−1
exp

(
−x

2
(1 + β tanhvβ)

)
dx

∣∣∣∣
β=√

1−z

= (coshvβ)−λ(1 + β tanhvβ)−λ|β=√
1−z,

which identifies the Poisson cluster process Nλ as a Cox process driven by (1
2Q2λ(2γλ, v),

v ≥ 0). The identity in law (71) follows from the Markov property of BESQ2λ, and the fact

that 2γλ
d= Q2λ(0,1) (see, e.g., [38], Chapter XI, Corollary 1.4).

(2) The fact that N↑ is a renewal cluster process follows from Lemma 2.1, Tanaka’s de-
composition of S↑. By Lemma 3.1, the cluster centers of N↑ are the points of a Poisson
process with rate 1. As a result, N↑ is a Poisson cluster process with rate 1. As a sum of two
independent copies of N↑, the process NW is a Poisson cluster process with rate 2.

(3) In view of the Markov property of BESQ4, to establish this representation it suffices to
show that the time of the first point T1 in a Cox process driven by (1

2Q4(0, v), v ≥ 0) is such
that

Q4(0, T1)
d= 2γ2

d= Q4(0,1).(75)

The second equality follows from the general fact that 2γλ
d= Q2λ(0,1), λ > 0 as proved in

part (1). By (36), the Laplace transform of Q4(0, T1) is

E
(
e−αQ4(0,T1)

)
= 1

2

∫ ∞
0

E
(
e−αQ4(0,t)Q4(0, t)e− 1

2

∫ t
0 Q4(0,v) dv)

dt

= 1

2

∫ ∞
0

∫
x>0

xe−αx
E

(
e− 1

2

∫ t
0 Q4(0,v) dv|Q4(0, t) = x

)
P

(
Q4(0, t) ∈ dx

)
dt

= 1

2

∫ ∞
0

∫ ∞
0

xe−αx

(
t

sinh t

)2
exp

(
x

2t
(1 − t coth t)

)
· x

4t2 exp
(
− x

2t

)
dx dt

= 2
∫ ∞

0

1

sinh2 t

1

(2α + coth t)3 dt = 1

(1 + 2α)2 ,

where in the third equality the expression for E(e− 1
2

∫ t
0 Q4(0,v) dv|Q4(0, t) = x) is read from

[35], (2.m). This proves the first equality in (75). �

Note that the key to the proof of Theorem 6.1(3) is the fact that Q4(0, T1)
d= 2γ2. This

identity in law can also be recognized by the Poisson embedding of the symmetric Laplace
walk in Brownian motion, the Williams decomposition of Brownian motion at its minimum,
and the Ray–Knight–Williams description of local times near a local minimum in terms of
the BESQ4 process. We will further discuss this aspect in Section 7.

The next corollary identifies the law of the point process {W1,W2, . . .} with that corre-
sponding to the order statistics of a “long” or a “high” excursion.

COROLLARY 6.2. Let NW(v) := ∑∞
k=1 1(Wk ≤ v), v ≥ 0 be the counting process of

(Wk, k ≥ 1) defined by (6) as the sequence of limits in law of (Mk,n − Mk,0, k ≥ 1) for the
symmetric Laplace walk S. Let Ndes(v) := ∑∞

k=1 1(Sk ≤ v, k < τ−) be the counting process
of the order statistics {M1, . . . ,Mτ−−1} of S prior to τ−. Then there is the convergence in
distribution (

Ndes(v), v ≥ 0|Am

) d−→ (
NW(v), v ≥ 0

)
as m → ∞,(76)
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where (Am,m ≥ 1) is either of the following two sequences of events: Am = {τ− > m} (‘long’
excursion) or Am = {maxk<τ− Sk > m} (‘high’ excursion). For each finite K , there is also the
convergence in distribution

(Mk, ,1 ≤ k ≤ K|Am)
d−→ (Wk,1 ≤ k ≤ K) as m → ∞.(77)

PROOF. Recall that the increments of the walk S are i.i.d. with continuous density. Let
α be the unique random time at which S attains its minimum on 1, . . . , ν. By Lemma 3.1(3),
(Sα+k − Sα,0 ≤ k ≤ ν − α|Am) and (Sα−k − Sα,0 ≤ k ≤ α|Am) are independent, and
converge in distribution to S↑ and −S↓, respectively as m → ∞ (see [6]). Consequently,
(Ndes(v), v ≥ 0|Am) converges in distribution to (NW(v), v ≥ 0) as m → ∞. This result is
reminiscent of [17] that for a long walk excursion or a high walk excursion, the contributions
to the counting process (Ndes(v), v ≥ 0) come from two ends of the excursion. In particular,
for each v ≥ 0, E(zNdes(v)|Am) −→ (EzN↑(v))2 as m → ∞, which is equal to EzNW (v) by
Theorem 6.1(1)(2). �

To conclude this section, we prove Theorem 1.1.

PROOF OF THEOREM 1.1. (1) According to Corollary 6.2 with Am = {τ− > m}, we
identify the distribution of (NW(v), v ≥ 0) with the limiting distribution of (Ndes(v), v ≥
0|ν ≥ m) as m → ∞. Now by Lemma 3.5 we get

Wk
d=

k∑
j=1

εj

2Y
↑
j

for k ≥ 1,

where (Y
↑
j , j ≥ 1) with Y

↑
1 = 1 is the Markov chain with transition probabilities (47), and

(εj , j ≥ 1) is a sequence of i.i.d. exponential variables independent of Y↑. We conclude by

noting that (2Yj , j ≥ 1)
d= (S

±,0
2j , j ≥ 1) where S±,0 is a simple symmetric random walk on

the nonnegative integers with absorption at 0, and thus (2Y
↑
j , j ≥ 1)

d= (S
±↑
2j , j ≥ 1) as the

Doob-h transforms. The tail distribution (8) follows from the representation Dj := Wj −
Wj−1 = εj/S

±↑
2j .

(2) The statements for NW follows directly from Theorem 6.1. By the formula (37), the
tail generating function for Dj ’s is

∞∑
j=1

P(Dj > v)zj−1 = 1

1 − z
E

(
−1

2

∫ v

0
Q4(X,u)du

)
,

where X is the time of the first point in a Cox process driven by (1−z
2 Q4(0, v), v ≥ 0). A sim-

ilar argument as for the first identity in (75) shows that X
d= 2√

1−z
γ2. Consequently,

∞∑
j=1

P(Dj > v)zj−1 = 1

1 − z
E

(
−1

2

∫ v

0
Q4

(
2√

1 − z
γ2, u

)
du

)

= 1

1 − z

∫
x>0

E

(
−1

2

∫ v

0
Q4(x, u) du

)
P

(
2√

1 − z
γ2 ∈ dx

)

= 1

1 − z

∫ ∞
0

(coshv)−2 exp
(
−x

2
tanhv

)
· 1 − z

4
x exp

(
−x

2

√
1 − z

)
dx

= (coshv)−2(
√

1 − z + tanhv)−2,

where the third equality follows from the Laplace transform (23). This yields (11). �
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7. Brownian embedding of the Laplace walk and path decomposition. In this final
section, we study the path decomposition of the symmetric Laplace walk embedded in Brow-
nian motion, which sheds light on previous constructions of (Wk, k ≥ 1) as the sequence of
limits in law of (Mk,n − Mk,0, k ≥ 1) for the walk S. It is well known [43] that every random
walk with mean zero and finite variance σ 2 per step may be embedded in a Brownian mo-
tion (Bt , t ≥ 0) as Sk := BTk

, where 0 = T0 ≤ T1 ≤ · · · is an increasing sequence of stopping
times of B , with the (Tk − Tk−1, k ≥ 1) i.i.d. as T1, and ET1 = σ 2. Three important examples
are:

(1) simple symmetric walk, with Tk = inf{t > Tk−1 : |Bt − BTk−1 | = 1};
(2) symmetric Gaussian random walk, with Tk = k;
(3) symmetric Laplacian random walk, with Tk = 2γk , where γk = ∑k

i=1 εi for (εk, k ≥ 1)

a sequence of i.i.d. standard exponential variables.

In our previous work [32], the Brownian embeddings of (1) the simple symmetric walk, and
(2) the Gaussian walk have been thoroughly studied.

In the sequel, it is assumed that the probability space on which the random walk (Sn, n ≥ 0)

is defined is rich enough to allow for an embedding in a Brownian motion (Bt , t ≥ 0) defined
on the same probability space. There is one more variable to be entered into the mix:

M−,n := min
0≤t≤Tn

Bt .(78)

So by definition, M−,n ≤ M0,n ≤ · · · ≤ Mn,n are ranked values of Brownian motion on [0, Tn]
evaluated at a grid of n + 2 random times, the times 0 = T0 ≤ T1 ≤ · · · ≤ Tn at which the
random walk Sk := BTk

is embedded, and one extra random time τ [0, Tn], the almost surely
unique random time at which B attains its minimum on [0, Tn]. It is a key observation that
the differences of the order statistics Mk,n − Mk,0 can be expressed in terms of the ranked
heights Mk,n − M−,n of the random walk sample points above the minimum of B on [0, Tn]:

Mk,n − M0,n = (Mk,n − M−,n) − (M0,n − M−,n).(79)

The distribution of M0,n − M−,n was studied in [4] for a Gaussian random walk, where
M0,n − M−,n was interpreted as the discretization error in the Euler scheme to approximate
a reflected Brownian motion. The main idea was that when the Gaussian walk S is embed-
ded in Brownian motion with Sk = BTk

for Tk = k, the discretization error M0,n − M−,n as
n → ∞ is determined by the behavior of Brownian motion around its minimum time, which
may be described as two independent copies of a BES3(0) process, joined back to back. Ex-
tending this argument, it was shown in [32] that for the symmetric Gaussian walk, there is
the convergence in joint distributions for each finite K ,

(Mk,n − M−,n,0 ≤ k ≤ K)
d−→ (Mk,∞,0 ≤ k ≤ K),

where (Mk,∞, k ≥ 0) is the point process of the order statistics of (ŘU+z, z ∈ Z), with Ř

a two-sided BES3(0) process, and U uniform on [0,1] independent of Ř. However, it is a
difficult problem to describe even the law of M0,∞ at all explicitly.

It has been known for a long time that computations in the fluctuation theory of random
walks are often surprisingly difficult in the Gaussian case, while surprisingly easy in the expo-
nential case. The good feature of exponentially distributed increments is that the memoryless
property of the exponential distribution implies that all overshoots of levels are exponentially
distributed. The simple structure of the path decomposition at the minimum of Brownian
motion up to an independent exponential time, first emphasized by Williams [49, 50], has en-
abled diverse developments of the rich probabilistic structure of Brownian motion sampled at
random times generated by an independent homogeneous Poisson process; see, for example,
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[31], Sections 7.7–7.8. In particular, as observed in [4], page 892, this structure provides a
simple algorithm for efficient sampling the values of a reflected Brownian motion at the times
generated by an independent homogeneous Poisson process. The following analog of [32],
Theorem 5.1, for Poisson sampling is also easily established by the method of [4].

THEOREM 7.1. Let (Sk, k ≥ 0) be a random walk with i.i.d. symmetric Laplace incre-
ments embedded in Brownian motion (Bt , t ≥ 0) as Sk := BTk

with Tk = 2γk for γk = ∑k
i=1 εi

for ε1, ε2, . . . a sequence of i.i.d. standard exponential variables independent of B . Let
(Mk,n,0 ≤ k ≤ n) be the sequence of order statistics of the n-step walk (Sk,0 ≤ k ≤ n), and
M−,n := min0≤t≤Tn Bt . Then for each finite K , there is the convergence of joint distributions

(Mk,n − M−,n,0 ≤ k ≤ K)
d−→ (Mk,∞,0 ≤ k ≤ K),(80)

where (Mk,∞, k ≥ 0) is the sequence of order statistics of values of (R3(2γk), k = 1,2, . . .)

and (R̂3(2γ̂k), k = 1,2, . . .), with two independent BES3(0) processes R3 and R̂3 assumed
to be independent of (γk, k ≥ 1) and (γ̂k, k ≥ 1), the points of two independent Poisson pro-
cesses with rate 1.

Since the BES3(0) process R is transient, its ultimate local time process (LR(v,∞), v ≥ 0)

is almost surely finite for each v ≥ 0. Theorem 7.1 then applies to show that the ultimate
point process of levels above the minimum derived from a symmetric Laplace walk is a Cox
process, whose intensity is described by the Ray–Knight–Williams description of Brownian
local times, as indicated in the following corollary. This result also gives a simplified proof
of Theorem 6.1(3), or equivalently the first identity in law in (75).

COROLLARY 7.2. Under the setting of Theorem 7.1, the limiting point process of levels
above the minimum with ordered points (Mk,∞, k ≥ 0) is a Cox process on the positive half
line driven by

1

2
Q4(0, v) := 1

2

(
LR(v,∞) + LR̂(v,∞)

)
, v ≥ 0,(81)

where Q4(0, ·) is a BESQ4 process starting at 0. The law of this point process is infinitely
divisible. In particular, the decomposition of the limit levels above the minimum provides a
decomposition of limit levels into the sum of two independent copies of the Cox process driven
by

1

2
Q2(0, v) := 1

2
LR(v,∞), v ≥ 0,(82)

where Q2(0, ·) is a BESQ2 process starting at 0.
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