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1. Introduction

Recently, there has been growing interest in guiding, or fine tuning pretrained diffusion
models for specific purposes, e.g., aesthetic quality of images, functional property of proteins,
and downstream tasks in operations and management. Existing approaches include:

• supervised fine-tuning with regularization [35, 50, 55] (or soft guidance);

• supervised fine-tuning by conditioning [14, 27] (or conditional guidance);

• reinforcement learning [18, 19, 23, 38, 65, 66];

• Diffusion-DPO (Direct Preference Optimization) [58, 63].

In this paper, we focus on the supervised fine-tuning by (endogenous) conditioning. The
idea is closely related to Doob’s h-transform, and the key is to learn the function h. Other
h transform papers [13, 16] rely on the stochastic control approach, while our viewpoint is
probability-theoretic (martingale, quadratic variation, etc.)

This work is in the context of classifier guidance [14], see also [64] for statistical theory,
and [3, 43] for further applications. It is crucial in the recent development of reinforcement
learning from human feedback (RLHF) [40]. There is also work on classifier-free guidance
[27] (see [61] for a study). Refer to [10, 42, 54, 60] for literature reviews of fine-tuning, or
guiding diffusion models.
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This work has also connections with pluralistic alignment [48] 1, in which a multidimen-
sional reward function is allowed for diffusion guidance (see Section 3.3). This is also related
to multi-task learning.(?)

Application to rare-event simulation [2, 8], which avoids importance sampling [6, 7]. There
is also recent work of diffusion models in operations research/simulation [41].

Organization of the paper: The remainder of the paper is organized as follows. We start
with background on diffusion models in Section 2. In Section 3, we build the foundations
for conditional diffusion guidance, leading to novel methodologies. In Section 4, we provide
theoretical results of the proposed methodologies. Numerical experiments are reported in
Section 5. We conclude with Section 6.

Notations: Below we collect a few notations that will be used throughout.

• R is the set of real numbers.

• For x, y ∈ Rd, x · y denotes the scalar product of x and y, and |x| :=
√
x · x is the

Euclidean norm of x.

• For A = (aij)1≤i,j≤d a matrix, |A|F :=
√∑d

i,j=1 a
2
ij is the Frobenius norm of A.

• For f a function on X, |f |∞ := supX |f(x)| denotes its sup-norm.

• For f : [0,∞)× Rd ∋ (t, x) → R, ∂tf denotes its time derivative, ∇f is the gradient

of f and ∂kf := ∂f
∂xk

its kth coordinate, and ∆f :=
∑d

k=1
∂2f
∂x2k

is the Laplacian of f .

• For Z a random variable, EZ denotes the expectation of Z.

• For p(·) and q(·) two probability distributions, dTV (p(·), q(·)) := supA |p(A) − q(A)|
is the total variation distance between p(·) and q(·); dKL(p(·), q(·)) :=

∫
log
(
dp
dq

)
dp is

the KL divergence between p(·) and q(·); andW2(p(·), q(·)) :=
√
infγ E(X,Y )∼γ |X − Y |2,

where the infimum is taken over all couplings γ of p(·) and q(·), is the Wasserstein-2
distance between p(·) and q(·).

We use C for a generic constant whose values may change from line to line.

2. Background on diffusion models

This section provides preliminaries of score-based diffusion models. We follow the presen-
tation of [52]. Diffusion models rely on a forward-backward procedure: the forward process
transforms the target data to noise, and the backward process recovers the data from noise.

Let pdata(·) be the target data distribution. Fixing T > 0, the forward process {Xt}0≤t≤T
is governed by the stochastic differential equation (SDE):

dXt = f(t,Xt)dt+ g(t)dWt, X0 ∼ pdata(·), (2.1)

where f : R+ × Rd → Rd, g : R+ → R+, and {Wt}t≥0 is Brownian motion in Rd. Some
conditions on f(·, ·) and g(·) are required so that the SDE (2.1) is well-defined, and that Xt

1Pluralistic alignment refers to multi-objective alignment in an attempt to integrate complex, often con-
flicting, real-world values. Refer to https://pluralistic-alignment.github.io/ for recent efforts in devel-
oping pluralistic alignment techniques.

https://pluralistic-alignment.github.io/
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has a smooth probability density p(t, x) := P(Xt ∈ dx)/dx (see [49]). By the time reversal
formula [1, 25], let

dXt =
(
−f(T − t,Xt) + g2(T − t)∇ log p(T − t,Xt)

)
dt+g(T−t)dBt, X0 ∼ p(T, ·), (2.2)

where {Bt}t≥0 is an independent Brownian motion in Rd. The processes {Xt}0≤t≤T and

{XT−t}0≤t≤T have the same distribution, so the output XT ∼ pdata(·).
The main obstacle in sampling the process X is that the score function ∇ log p(·, ·), which

depends on pdata(·), is not available. Moreover, the initialization X0 ∼ p(T, ·) also relies on
pdata(·) in each sample generation. The idea of score-based diffusion models is to learn the
score function via a parametrized family of functions {sθ(t, x)}θ (e.g., neural networks), with
a limited number of samples from pdata(·) (see [26, 46, 47]). The resulting backward process
{Yt}0≤t≤T for sampling is:

dYt = f(t, Yt)dt+ g(t)dBt, Y0 ∼ pnoise(·), (2.3)

where g(t) := g(T − t) and f(t, y) := −f(T − t, y) + g(T − t)2sθ∗(T − t, y). Here,

• pnoise(·) is a proxy to p(T, ·) for generating the target distribution from noise, which
should not depend on pdata(·). The form of pnoise(·) is related to the design of the
diffusion model, i.e., the pair (f(·, ·), g(·)). Popular examples include variance ex-
ploding (VE) model [34] with f(t, x) = 0, g(t) =

√
2t+ ϵ for some (small) ϵ > 0,

and pnoise(·) = N (0, T 2I), and variance preserving (VP) model [47] with f(t, x) =

−1
2

(
a+ (b−a)t

T

)
x, g(t) =

√
a+ (b−a)t

T for some b > a > 0, and pnoise(·) = N (0, I).

• {sθ(t, x)}θ are function approximations to the score ∇ log p(t, x), which are trained
by solving some stochastic optimization problem. This technique is known as score
matching, and the learned sθ∗(t, x) is the score matching function. There are sev-
eral existing score matching methods, among which the most widely used one is the
denoising score matching (DSM) [30, 57]:

min
θ

Et∼Unif [0,T ]

{
λ(t)EX0∼pdata(·)

[
EXt|X0

|sθ(t,Xt)−∇ log p(t,Xt|X0)|2
]}

,

where λ : R+ → R+ is a weight function.

Most successful diffusion models require substantial training effort for score matching, and
are therefore referred to as the pretrained models 2. Let the process (2.3) be such a pretrained
model. Denote by P[0,T ](·) the distribution of the process {Yt}0≤t≤T on the path space, and
by Pt(·) its marginal distribution at Yt. Write

ppre(·) := PT (·),

for the output of the pretrained model (2.3). A good model is expected to generate reliable
samples such that ppre(·) ≈ pdata(·). In fact, one can quantify how close ppre(·) and pdata(·)
are under suitable conditions on the model {f(·, ·), g(·), T, pnoise(·), sθ(·, ·)}, and the target
distribution pdata(·). The following proposition bounds the total variation and theWasserstein
distance between ppre(·) and pdata(·) for the aforementioned VE and VP models.

2It was shown in [34] that a wide class of diffusion models can be derived from the VE model by reparam-
eterization. So practically, it suffices to pretrain a good VE model (i.e., learn the score function of the VE
model suitably well).
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Proposition 2.1. Assume that Epdata(·)|X|2 <∞, and that the score matching satisfies:

sup
0≤t≤T

Ep(t,·)|sθ∗(t,X)−∇ log p(t,X)|2 ≤ ε2VP (resp. ε2VE), (2.4)

for the VE (resp. VP) model.

(1) (Total variation) [11, 52] There are CVE, CVP > 0 (independent of T ) such that

dTV (ppre(·), pdata(·)) ≤

 CVE

(
T−1

√
Epdata(·)|X|2 + εVE

√
T
)

for VE,

CVP

(
e−CVP T

√
Epdata(·)|X|2 + εVP

√
T
)

for VP.
(2.5)

(2) (Wasserstein) [22, 52] Assume further that pdata(·) is κ-strongly log-concave 3 for κ
sufficiently large. There are CVE, CVP > 0 (independent of T ) such that

W2 (ppre(·), pdata(·)) ≤

 CVE

(
T−1

√
Epdata(·)|X|2 + εVE T

2
)

for VE,

CVP

(
e−CVP T

√
Epdata(·)|X|2 + εVP

)
for VP.

(2.6)

The condition (2.4) is referred to as the blackbox score matching error, which was assumed
in the most recent literature on the convergence of diffusion models [11, 22, 37, 39, 51]. There
has also been a line of work [9, 24, 36, 59] on the quantitative rate of score matching, which
requires a low-dimensional structure of {sθ(t, x)}θ. However, existing score-based diffusion
models rely on very deep neural nets [34, 47]. So we adopt the blackbox score matching
assumption (2.4) in this paper.

3. Diffusion guidance by conditioning

In this section, we build the foundations for conditional diffusion guidance in the context
of the classifier guidance [14].

For a set S ⊂ Rd (which we call the guidance set), denote by pSdata(·) the conditional target
distribution on S. That is, for Z ∼ pdata(·),

(Z |Z ∈ S) ∼ pSdata(·).

Typically, the set S corresponds to certain discrete labels or classifiers of the target data. For
ease of presentation, we assume that the set S is nice enough (e.g., Borel and non-negligeable)
so that pSdata(·) is well-defined.
The problem of interest is to exploit the pretrained models to generate samples that ap-

proximate the conditional distribution pSdata(·). Recall that ppre(·) is the output distribution
of the pretrained model (2.3), and denote by pSpre(·) its conditioning on S. According to the
discussions in Section 2, a good pretrained model yields ppre(·) ≈ pdata(·). This would imply
pSpre(·) ≈ pSdata(·) under mild assumptions on the guidance set S (see Section 4). So our focus

is to use the pretrained model to sample pSpre(·), or more precisely, to sample

{Y S
t }0≤t≤T ∼ P[0,T ](Y |YT ∈ S). (3.1)

3A smooth function ℓ : Rd → R is κ-strongly log-concave if (∇ log ℓ(x)−∇ log ℓ(y)) · (x− y) ≤ −κ|x− y|2
for all x, y.
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3.1. Conditional diffusion sampling. We start by discussing how the process {Y S
t }0≤t≤T

is generated. For t ≥ 0, let

h(t, y) := P[0,T ](YT ∈ S |Yt = y). (3.2)

By the Bayes rule, we have for s > 0,

P[0,T ](Yt+s = y′ |Yt = y, YT ∈ S) =
P[0,T ](Yt+s = y′, YT ∈ S |Yt = x)

P[0,T ](YT ∈ S |Yt = x)

=
h(t+ s, y′)

h(t, y)
P[0,T ](Yt+s = y′ |Yt = y),

(3.3)

which is known as Doob’s h-transform 4. The h-transform (3.3) reveals a change of measure
between the processes {Yt}0≤t≤T and {Y S

t }0≤t≤T . As a result, {Y S
t }0≤t≤T is also a diffusion

process, whose dynamics is given in the following proposition.

Proposition 3.1. [45, IV.39] The distribution of {Y S
t }0≤t≤T is governed by:

dY S
t =

(
f(t, Y S

t ) + g(t)2∇ log h(t, Y S
t )
)
dt+ g(t)dBt, Y S

0 ∼ pnoise(·). (3.4)

The proof of this proposition is a direct application of (3.3) and Girsanov’s theorem. As
pointed out by [55, Appendix B], the dynamics (3.4) can be viewed as the classifier-guided
diffusion sampling [14] in continuous time. Denote by PS[0,T ](·) the distribution of the process

{Y S
t }0≤t≤T , and PSt (·) its marginal distribution at Y S

t . Now by running the process (3.4),

we get a sample Y S
T ∼ PST (·) := pSpre(·). The terms f(·, ·), g(·) are given by the pretrained

model (2.3). Only the term ∇ log h(·, ·) in (3.4) is unknown, which requires to be learned.

3.2. Learning h function. As explained in Section 3.1, the key (and obstacle) in sampling
{Y S

t }0≤t≤T is to learn the h function, or more concretely, its logarithmic derivative ∇ log h.
Here our goal is to develop principled approaches to learn the h function, which combined with
the dynamics (3.4) yields an implementation of the diffusion guidance {Y S

t }0≤t≤T . The main
tools are from stochastic analysis: martingale theory and quadratic variation of stochastic
processes.

3.2.1. Learning h via martingale loss. First, as mentioned in the footnote 4, h(t, y) :=
P[0,T ](YT ∈ S |Yt = y) is harmonic with respect to the generator of {Yt}0≤t≤T :

∂th+ f(t, y) · ∇h+
1

2
g(t)2∆h = 0 (and h(T, ·) = 1(· ∈ S)). (3.5)

By applying Itô’s formula to h(t, Yt), we get:

dh(t, Yt) = g(t)∇h(t, Yt) · dBt, (3.6)

which leads to the following classical result.

Proposition 3.2. Let {Yt}0≤t≤T be the pretrained model defined by (2.3), and h(·, ·) be
defined by (3.2). Then the process {h(t, Yt)}0≤t≤T is a local martingale.

4Doob’s h-transform is a general concept of conditioning a Markov process, provided that h is harmonic
with respect to the Markov generator. In our setting, the h function (3.2) arises as a special case by con-
ditioning on the terminal data. The “bridge” calculation in (3.3) can be understood in terms of transition
densities, see [20, Section 2] for a justification.
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A natural idea is to exploit the (local) martingale property 5 of {h(t, Yt)}0≤t≤T to learn
the function h. Assume that {h(t, Yt)}0≤t≤T is a (true) martingale. By the L2 projection of
conditional expectations, the h function (3.2) uniquely solves the optimization problem:

min
ℓ(·,·)

E[0,T ]

∫ T

0
(ℓ(t, Yt)− 1(YT ∈ S))2dt.

Now we restrict our search within a class of parametrized functions {hϕ(t, y)}ϕ to approximate
h(t, y). This leads to the martingale loss objective to learn the h function:

min
ϕ

E[0,T ]

∫ T

0
(hϕ(t, Yt)− 1(YT ∈ S))2dt = Et∼Unif [0,T ]

{
E[0,T ](hϕ(t, Yt)− 1(YT ∈ S))2

}
.

(3.7)
Denote by hϕ∗(t, y) the learned h function by solving the stochastic optimization problem
(3.7). The algorithm for conditional diffusion guidance via martingale loss (CDG-ML) is
summarized as follows.

Algorithm A Conditional diffusion guidance via martingale loss (CDG-ML)

Input: pretrained model {Yt}0≤t≤T (2.3), guidance set S, parametrized family {hϕ(t, y)}ϕ
Step 1. Solve the stochastic optimization problem (3.7) that outputs ϕ∗.
Step 2. Sample

dY S
t =

(
f(t, Y S

t ) + g(t)2∇ log hϕ∗(t, Y
S
t )
)
dt+ g(t)dBt

=

(
f(t, Y S

t ) + g(t)2
∇hϕ∗(t, Y S

t )

hϕ∗(t, Y
S
t )

)
dt+ g(t)dBt, Y S

0 ∼ pnoise(·).

Output: Y S
T .

The logic of Algorithm A is that if hϕ∗ is a good approximation to h, then so is ∇ log hϕ∗ to
∇ log h. This is not always true mathematically, but can still serve as a simple computational
proxy to ∇ log h.

3.2.2. Learning ∇h via quadratic variation. Scrutinizing the conditional guided process (3.4),
it is the logarithmic derivative ∇ log h (rather than the h function itself) that needs to be
learned. Noting that ∇ log h = ∇h

h , a more reasonable approach is to learn the numerator
∇h and the denominator h separately. We have seen that the denominator h can be learned
by means of the martingale loss (3.7). Now we explain how to learn its gradient ∇h by
exploiting the quadratic variation of {h(t, Yt)}0≤t≤T . Recall from (3.6) that

dh(t, Yt) = g(t)
d∑

k=1

∂kh(t, Yt)dB
k
t ,

where {Bk
t }0≤t≤T is the k-th coordinate of {Bt}0≤t≤T . Also denote by {Y k

t }0≤t≤T the k-th
coordinate of the pretrained model {Yt}0≤t≤T . For each k = 1, . . . , d, the covariation of

5It is well known that a uniformly integrable local martingale is a (true) martingale, see [44, Chapter II].
In our setting, a sufficient condition for {h(t, Yt)}0≤t≤T to be a (true) martingale is that g(·), |∇h(·, ·)| are
bounded.
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h(t, Yt) and Y
k
t is:

d[h, Y k]t = g(t)2∂kh(t, Yt)dt, (3.8)

see [44, Chapter IV] 6. Put it compactly,

d[h, Y ]t = g(t)2∇h(t, Yt)dt. (3.9)

By substituting h on the right side of (3.9) with hϕ∗ , and approximating ∇h(t, y) by a class
of parametrized functions {qψ(t, y)}ψ, we derive the covariation loss objective:

min
ψ

Et∼Unif [0,T ]

{
E[0,T ]

(
1

g(t)2
d[hϕ∗ , Y ]t

dt
− qψ(t, Yt)

)2
}
. (3.10)

Denote by qψ∗(t, y) the learned gradient of h by solving the stochastic optimization prob-
lem (3.10). The algorithm for conditional diffusion guidance via martingale-covariation loss
(CDG-MCL) is summarized as follows.

Algorithm B Conditional diffusion guidance via martingale-covariation loss (CDG-MCL)

Input: pretrained model {Yt}0≤t≤T (2.3), guidance set S, parametrized families
{hϕ(t, y)}ϕ, {qψ(t, y)}ψ
Step 1. Solve the stochastic optimization problem (3.7) that outputs ϕ∗.
Step 2. Solve the stochastic optimization problem (3.10) that outputs ψ∗.
Step 3. Sample

dY S
t =

(
f(t, Y S

t ) + g(t)2
qψ∗(t, Y

S
t )

hϕ∗(t, Y
S
t )

)
dt+ g(t)dBt, Y S

0 ∼ pnoise(·).

Output: Y S
T .

In Algorithm B, we write ∇ log h = ∇h
h , and estimate the numerator ∇h and the denomina-

tor h separately. We first learn the h function via the martingale property of {h(t, Yt)}0≤t≤T ,
and then learn its gradient by using the (quadratic) covariation of {h(t, Yt)}0≤t≤T and
{Yt}0≤t≤T . Denote by p̃Spre(·) the distribution of the output Y S

T in Algorithm A or B.

3.3. Practical considerations. Now we provide a few practical variants for implementing
the conditional diffusion guidance algorithms.

Labeling. Typically, the guidance set S is defined by a label or reward function r : Rd → Rm.
To be more precise,

YT ∈ S ⇐⇒ r(YT ) ∈ Sr,

6The equation (3.8) can be understood as:

(h(t+ δ, Yt+δ)− h(t, Yt))(Y
k
t+δ − Y k

t )

g(t)2δ
≈ ∂kh(t, Yt), for sufficiently small δ > 0. (⋆)

There have been a body of works [4, 12, 17, 28, 29, 32] on the statistical estimation of quadratic variation.
These papers consider how to estimate the quadratic variation of a process from a single trajectory in the
context of (financial) time series. Here we have a different scenario, where the pretrained model {Yt}0≤t≤T
under P[0,T ](·) can be sampled repeatedly. The relation (⋆) naturally provides an approximation to ∂kh by
regressing the left side term over (t, Yt).
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where Sr ⊂ Rm is the guidance set in the label/reward space 7. The corresponding martingale
loss to learn h(t, y) = P[0,T ](r(YT ) ∈ Sr |Yt = y) is specified by

min
ϕ

Et∼Unif [0,T ]

{
E[0,T ](hϕ(t, Yt)− 1(r(YT ) ∈ Sr))

2
}
. (3.7’)

ODE sampling. It is known in the diffusion folklore that the deterministic or ODE samplers
are more efficient than the stochastic counterparts. The ODE sampler for the pretrained
model (2.3) is:

dYt
dt

= −f(t, Yt) +
1

2
g(T − t)2sθ∗(T − t, Yt), Y0 ∼ pnoise(·). (3.11)

Denote by P o[0,T ](·) the distribution of the (true) time reversal (2.2) of {Xt}0≤t≤T . Let

h̊(t, y) := Po[0,T ](YT ∈ S |Yt = y) be the associated h function. The following proposition is

key to the ODE sampling of pSdata(·).

Proposition 3.3. Let {Xt}0≤t≤T be defined by the SDE dXt = f(t,Xt)dt+ g(t)dWt, X0 ∼
pSdata(·). Let {X ′

t}0≤t≤T be defined by the ODE:

dX ′
t

dt
= f(t,X ′

t)−
1

2

(
∇ log p(t,X ′

t) +∇ log h̊(t,X ′
t)
)
, X0 ∼ pSdata(·). (3.12)

Then Xt and X
′
t have the same distribution for each t.

Proof. Let p(t, x;S) := P(Xt∈dx,X0∈S)/dx
pdata(S)

, and note that ∇ log p(t, x;S) = ∇ log p(t, x) +

∇ log h̊(t, x). Thus,
dX′

t
dt = f(t,X ′

t) − 1
2∇ log p(t,X ′

t;S). The conclusion follows from [52,
Theorem 6.1]. □

It is expected that ∇ log h̊(t, y) ≈ ∇ log h(t, y). That is, the h functions are close under
P o[0,T ](·) and P[0,T ](·). Denote by µϕ∗(t, y) the function approximation for ∇ log h(t, y) in

Algorithm A or B (i.e., ∇ log hϕ∗(t, y) in Algorithm A and
qψ∗ (t,y)
hϕ∗ (t,y)

in Algorithm B). The

ODE sampler of pSdata(·) is:
dY S

t

dt
= −f(t, Yt) +

1

2
g(T − t)2

(
sθ∗(T − t, Y S

t ) + µϕ∗(t, Y
S
t )
)
, Y0 ∼ pnoise(·). (3.13)

Algorithm A and B can be easily adapted to labeling and ODE sampling, which are
summarized as follows.

Note that Algorithm B’ also requires the SDE sampler (2.3), which is used to estimate the

covariation
d[hϕ∗ ,Y ]t

dt in Step 2. This is because the ODE and the SDE sampler only agree in
distribution marginally, but not at the level of the process that is needed to approximate the
quadratic variation.

7Here we consider the diffusion guidance by conditioning (YT | r(YT ) ∈ Sr). An alternative (popular)
approach to fine-tuning the diffusion process is to solve:

maxE[rv(YT )] or maxEp(·)[rv(Y )]− βdKL(p(·), ppre(·)),

where rv : Rd → R (m = 1) is the real-valued reward, and β > 0 is the level of exploration (see [50, 55, 56]).

In the latter case, the guided distribution is ∝ erv(y)/βppre(y)dy, which is referred to as the soft conditioning.

By taking rv(y) =

{
1 if y ∈ S

−∞ if y /∈ S
, we get the guidance by conditioning.
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Algorithm A’ Conditional diffusion guidance via martingale loss (CDG-ML)

Input: pretrained model {Yt}0≤t≤T (3.11), label r(y), guidance set Sr, parametrized family
{hϕ(t, y)}ϕ
Step 1. Solve the stochastic optimization problem (3.7’) that outputs ϕ∗.
Step 2. Sample

dY S
t

dt
= −f(t, Yt) +

1

2
g(t)2sθ∗(T − t, Y S

t ) +
1

2
g(t)2∇ log hϕ∗(t, Y

S
t ), Y0 ∼ pnoise(·).

Output: Y S
T .

Algorithm B’ Conditional diffusion guidance via martingale-covariation loss (CDG-MCL)

Input: pretrained model {Yt}0≤t≤T (2.3) and (3.11), label r(y), guidance set Sr,
parametrized families {hϕ(t, y)}ϕ, {qψ(t, y)}ψ

Step 1. Solve the stochastic optimization problem (3.7’) that outputs ϕ∗.

Step 2. Use the ODE (3.11) to sample Yt, and then the SDE (2.3) to estimate
d[hϕ∗ ,Y ]t

dt .
Solve the stochastic optimization problem (3.10) that outputs ψ∗.

Step 3. Sample

dY S
t

dt
= −f(t, Yt) +

1

2
g(t)2sθ∗(T − t, Y S

t ) +
1

2
g(t)2

qψ∗(t, Y
S
t )

hϕ∗(t, Y
S
t )
, Y0 ∼ pnoise(·).

Output: Y S
T .

We also point out various numerical schemes to discretize the above continuous-time sam-
plers, see [52, Section 5.3] and [62] for the references. Since we rely on the pretrained model
for sampling, we will simply follow its built-in schemes (so we do not pursue this direction
here).

4. Theoretical results

In this section, we provide theoretical results of the conditional diffusion guidance intro-
duced in Section 2. The total variation and Wasserstein distance between the conditional
target distribution pSdata(·), and the diffusion guidance p̃Spre(·) output by Algorithm A or B
are studied in Section 4.1 and 4.2 respectively. In Section 4.3, we explore the convergence of
the stochastic optimization algorithms to learn the h function.

4.1. Total variation bounds. This part studies the total variation distance between pSdata(·)
and p̃Spre(·).
Recall from Section 2 that p(t, x) is the probability density of the forward process (2.1),

and sθ∗(t, x) is the score matching function of the pretrained model. Also recall from Section
3.1 that PSt (·) is the (marginal) distribution of Y S

t defined by (3.4). Below we present a few
assumptions.

Assumption 4.1.

(i) dTV (p(T, ·), pnoise(·)) <∞.

(ii) The score matching satisfies: sup0≤t≤T Ep(t,·)|sθ∗(t,X)−∇ log p(t,X)|2 ≤ ε2.
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(iii) There is ρ > 0 such that pdata(S) ≥ ρ.

(iv) There is η > 0 such that |∇ log h−∇ log hϕ∗ |∞ ≤ η for Algorithm A, or
∣∣∣∇ log h− qψ∗

hϕ∗

∣∣∣
∞
<

∞ for Algorithm B.

The assumptions (i)-(ii) ensure that pdata(·) and ppre(·) are close. The assumption (iii)
indicates that the guidance set S is non-negligible, so the conditional distributions on S are
well-defined. The assumption (iv) provides blackbox errors for learning ∇ log h 8, which will
be further developed in Section 4.3.

First, we bound the total variation distance between pSdata(·) and pSpre(·).

Lemma 4.2. Let Assumption 4.1 (iii) hold. We have:

dTV (p
S
pre(·), pSdata(·)) ≤

3

2ρ
dTV (ppre(·), pdata(·)). (4.1)

Proof. Without loss of generality, assume that ppre(·), pdata(·) have densities. We have:

dTV (p
S
pre(·), pSdata(·)) =

1

2

∫
|pSpre(x)− pSdata(x)|dx

=
1

2

∫
S

∣∣∣∣ ppre(x)ppre(S)
− pdata(x)

pdata(S)

∣∣∣∣ dx
≤ 1

2pdata(S)

(
|ppre(S)− pdata(S)|+

∫
S
|ppre(x)− pdata(x)|dx

)
≤ 3

2pdata(S)
dTV (ppre(·), pdata(·)),

(4.2)

where the third inequality follows the triangle inequality |ppre(x)pdata(S)− pdata(x)ppre(S)| ≤
ppre(x)|ppre(S) − pdata(S)| + ppre(S)|ppre(x) − pdata(x)|. Combining (4.2) with the fact that
pdata(S) ≥ ρ yields the bound (4.1). □

The next lemma bounds the total variation distance between the conditional pretrained
distribution pSpre(·), and p̃Spre(·) output by Algorithm A or B.

Lemma 4.3. Let Assumption 4.1 (iv) hold. We have:

dTV (p
S
pre(·), p̃Spre(·)) ≤ η

√
T

2
. (4.3)

8The assumption (iv) means that the function ∇ log h can be learned pointwise. Note that in Algorithm A
and B, the h function is learned by solving stochastic optimization problems using the pretrained samples under
P[0,T ](·). So a more “reasonable” hypothesis is that ∇ log h can be learned under the pretrained distribution:

sup
0≤t≤T

Et|∇ log h(t, Y )−∇ log hϕ∗(t, Y )| ≤ η2 or sup
0≤t≤T

Et
∣∣∣∣∇ log h(t, Y )− qψ∗(t, Y )

hϕ∗(t, Y )

∣∣∣∣2 ≤ η2, (⋆⋆)

which will be studied in Section 4.3. As will be clear in the proof of Lemma 4.3, we need (technically):

sup
0≤t≤T

ESt |∇ log h(t, Y )−∇ log hϕ∗(t, Y )|2 ≤ η2 or sup
0≤t≤T

ESt
∣∣∣∣∇ log h(t, Y )− qψ∗(t, Y )

hϕ∗(t, Y )

∣∣∣∣2 ≤ η2.

to establish the total variation bound. That is, ∇ log h can be learned under the conditional guided distribution
PS[0,T ](·). Our conjecture is that using sufficiently rich function approximations, the function ∇ log h can be

learned pointwise, so it does not matter whether the evaluation is under P[0,T ](·) or PS[0,T ](·).



CONDITIONAL DIFFUSION GUIDANCE 11

Proof. Recall that µϕ∗(t, y) denotes the function approximation for ∇ log h(t, y) in Algorithm

A or B (i.e., ∇ log hϕ∗(t, y) in Algorithm A and
qψ∗ (t,y)
hϕ∗ (t,y)

in Algorithm B). Note that

dKL(p
S
pre(·), p̃Spre(·)) ≤ dKL(Y

S
T , Ỹ

S
T )

= E
∫ T

0

∣∣∇ log h(t, Y S
t )− µϕ∗(t, Y

S
t )
∣∣2 dt ≤ η2T,

(4.4)

where the first inequality follows the data processing inequality, and the second identity is
a consequence of Girsanov’s theorem. Further by Pinsker’s inequality, we get the bound
(4.3). □

Combining the above two lemmas yields the following result on the total variation distance
between p̃Sdata(·) and p̃Spre(·).

Theorem 4.4. Let Assumption 4.1 hold. We have:

dTV (p
S
data(·), p̃Spre(·)) ≤

3

2ρ
dTV (p(T, ·), pnoise(·)) +

(
3ε

2ρ
+ η

)√
T

2
. (4.5)

In particular, assuming that Epdata(·)|X|2 < ∞, there are CVE, CVP > 0 (independent of T )
such that

dTV (p
S
data(·), p̃Spre(·)) ≤


CVE

ρ T
−1
√
Epdata(·)|X|2 +

(
3εVE
2ρ + η

)√
T
2 for VE,

CVP

ρ e
−CVP T

√
Epdata(·)|X|2 +

(
3εVP
2ρ + η

)√
T
2 for VP.

(4.6)

Proof. It follows from [52, Theorem 5.2] that dTV (ppre(·), pdata(·)) ≤ dTV (p(T, ·), pnoise(·)) +
ε
√

T
2 . Combining this with Lemma 4.2 and 4.3 yields the bound (4.5). The rest of the

theorem follows from (4.5) and Proposition 2.1. □

4.2. Wasserstein bounds. Here we consider the Wasserstein-2 distance between pSdata(·)
and p̃Spre(·), which is more involved than the total variation bounds. Note that we cannot

bound the Wasserstein distance between pSdata(·) and pSpre(·) in terms of that between pdata(·)
and pdata(·) as in Lemma 4.2. Our analysis relies on coupling and Malliavin calculus.

Recall from Section 3.3 that P o[0,T ](·) denotes the distribution of the (true) time reversal

process of {Xt}0≤t≤T , whose drift is:

f
o
(t, y) = −f(T − t, y) + g(t)2∇ log p(T − t, y).

Let P o,S[0,T ](·) be the conditional distribution of P o[0,T ](·) on {YT ∈ S}, and P o,St (·) be its

marginal distribution at Yt. We need the following assumptions.

Assumption 4.5.

(i) W2(p(T, ·), pnoise(·)) <∞.

(ii) There is r > 0 such that (x− y) · (f(t, x)− f(t, y)) ≥ α|x− y|2 for all t, x, y.

(iii) There is κ1 > 0 such that p(t, ·) is κ1-strongly log-concave for all t.

(iv) There is ε > 0 sufficiently small: |sθ∗ −∇ log p|∞ ≤ ε.

(v) There is κ2 > 0 such that h(t, ·) is κ2-strongly log-concave for all t.
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(vi) There is G : Rd → R+ such that |∇ log h(t, y)| ≤ G(y)
T−t for all t, y.

(vii) There is η > 0 such that |∇ log h−∇ log hϕ∗ |∞ ≤ η for Algorithm A, or
∣∣∣∇ log h− qψ∗

hϕ∗

∣∣∣
∞
<

∞ for Algorithm B.

(viii) There is F > 0 such that Eo[0,T ](
∫ T
t |e

∫ u
t ∇f(r,Yr)dr|2Fdu |Yt = y) ≤ F 2 for all t, y.

(ix) There is γ > 0 such that Eo[0,T ](
∫ T
t |e

∫ u
t ∇f(r,Yr)dr − e

∫ u
t ∇fo(r,Yr)dr|2Fdu |Yt = y) ≤ γ2

for all t, y.

(x) There is K > 0 such that Eo,St
[̊
h(t, Y )−

3
2

]
, Eo,St

[
G(Y )2̊h(t, Y )−

3
2

]
≤ K for all t.

Before stating our result, we make several comments on Assumption 4.5. The conditions
(i)–(iv) can be used to boundW2(pdata(·), ppre(·)), which together with (vii) yields an estimate
of W2(p

S
data(·), pSpre(·)) involving a perturbation bound on ∇ log h. The conditions (v)–(x)

are required for the perturbation analysis of ∇ log h via Malliavin calculus. Note that the
condition (iii) holds for the VE and VP models, if pdata(·) is strongly log-concave. The
condition (iv) is stronger than Assumption 4.1 (ii) for the same reason as explained in the
footnote 8. (In fact, it suffices to assume an L2 bound under the guided distribution in
Algorithm A or B.) Finally, the condition (vi) is reasonable, since it holds for heat(-like)
kernels.

The following theorem provides a bound on W2(p
S
data(·), p̃Spre(·)).

Theorem 4.6. Let Assumption 4.5 hold, and set Λ := α+ (κ1 + κ2)g
2
max. We have:

W2(p
S
data(·), p̃Spre(·)) ≤ e−ΛTW2(p(T, ·), pnoise(·)) + C(ε+ η + γ), (4.7)

for some C > 0 (independent of T ). In particular, assuming that Epdata(·)|X|2 < ∞, pdata(·)
is κ-strongly log-concave for κ sufficiently large and Assumption 4.5 (iv)–(x) holds, there are
CVE, CVP > 0 (independent of T ) such that

W2(p
S
data(·), p̃Spre(·)) ≤

 CVE

(
e−CVET

√
Epdata(·)|X|2 + ε+ η + γ

)
for VE,

CVP

(
e−CVPT

√
Epdata(·)|X|2 + ε+ η + γ

)
for VP.

(4.8)

Proof. The proof is split into three steps.

Step 1. We start by establishing a coupling bound on W2(p
S
data(·), p̃Spre(·)). Recall that

µϕ∗(t, y) denotes the function approximation for ∇ log h(t, y) in Algorithm A or B (i.e.,

∇ log hϕ∗(t, y) in Algorithm A and
qψ∗ (t,y)
hϕ∗ (t,y)

in Algorithm B).

Consider the coupled equations:{
dUt =

(
f
o
(t, Ut) + g(t)2∇ log h̊(t, Ut)

)
dt+ g(t)dBt,

dVt =
(
f(t, Vt) + g(t)2µϕ∗(t, Vt)

)
dt+ g(t)dBt,

where (U0, V0) are coupled to achieve W2(p(T, ·), pnoise(·)). Note that W 2
2 (p

S
data(·), p̃Spre(·)) ≤

E|UT − VT |2, so our goal is to bound E|UT − VT |2. By Itô’s formula, we get:

d|Ut − Vt|2 = 2(Ut − Vt) · (−f(T − t, Ut) + g(t)2∇ log p(T − t, Ut) + g(t)2∇ log h̊(t, Ut)

+ f(T − t, Vt)− g(t)2sθ∗(T − t, Vt)− g(t)2µϕ∗(t, Vt))dt,
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which implies that

1

2

dE|Ut − Vt|2

dt
= −E[(Ut − Vt) · (f(T − t, Ut)− f(T − t, Vt))]︸ ︷︷ ︸

(a)

+ g(t)2 E[(Ut − Vt) · (∇ log p(T − t, Ut)− sθ∗(T − t, Vt))]︸ ︷︷ ︸
(b)

+ g(t)2 E[(Ut − Vt) · (∇ log h̊(t, Ut)− µϕ∗(t, Vt))]︸ ︷︷ ︸
(c)

.

(4.9)

By Assumption 4.5 (ii), the term (a) ≥ αE|Ut − Vt|2. For the term (b), we get:

(b) = E[(Ut − Vt) · (∇ log p(T − t, Ut)−∇ log p(T − t, Vt))]

+ E[(Ut − Vt) · (∇ log p(T − t, Vt)− sθ∗(T − t, Vt))]

≤ −κ1E|Ut − Vt|2 + ε
√

E|Ut − Vt|2,
(4.10)

which follows from Assumption 4.5 (iii) and (iv). Similarly, we have:

(c) = E[(Ut − Vt) · (∇ log h̊(t, Ut)−∇ log h(t, Ut))]

+ E[(Ut − Vt) · (∇ log h(t, Ut)−∇ log h(t, Vt))]

+ E[(Ut − Vt) · (∇ log h(t, Vt)− µϕ∗(t, Vt))]

≤ −κ2E|Ut − Vt|2 +
(
η +

√
E|∇ log h̊(t, Ut)−∇ log h(t, Ut))|2

)√
E|Ut − Vt|2

(4.11)

which follows from Assumption 4.5 (v) and (vii). Combining (4.9), (4.10) and (4.11) yields:

dE|Ut − Vt|2

dt
≤ −2ΛE|Ut − Vt|2

+ 2g2max

(√
E|∇ log h̊(t, Ut)−∇ log h(t, Ut))|2 + ε+ η

)√
E|Ut − Vt|2.

(4.12)

Step 2. Now we apply Malliavin calculus to bound |∇ log h(t, y) − ∇ log h̊(t, y)|. First we

consider |h(t, y) − h̊(t, y)|. It follows from [21, Proposition 3.1] that for ε > 0 sufficiently
small,

|h(t, y)− h̊(t, y)|

≤ C

∣∣∣∣Eo[0,T ](1(YT ∈ S)

∫ T

t
g(u)(∇ log p(T − u, Yu)− sθ(T − u, Yu))dBu

∣∣∣∣Yt = y

)∣∣∣∣
≤ Cgmax

√
h̊(t, y)

√
Eo[0,T ]

(∫ T

t
|∇ log p(T − u, Yu)− sθ(T − u, Yu))|2du

∣∣∣∣Yt = y

)
≤ Cgmaxε

√
T − t

√
h̊(t, y),

(4.13)

where the second inequality is by the Cauchy–Schwarz inequality, and the last inequality is
due to Assumption 4.5 (iv).
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Next we bound |∇h(t, y)−∇h̊(t, y)|. Introduce the first variation process {Zu}t≤u≤T that
solves:

dZu = ∇f(u, Yu)Zudu, Zt = I.

So Zu = exp
(∫ u
t ∇f(r, Yr)dr

)
(here ∇f is a matrix.) By [21, Proposition 3.2],

∇h(t, y) = E[0,T ]

(
1(YT ∈ S)

T − t

∫ T

t

Zu
g(u)

dBu

)
= E[0,T ]

(
1(YT ∈ S)

T − t

∫ T

t

e
∫ u
t ∇f(r,Yr)dr

g(u)
dBu

)
.

A similar argument as before shows that

|∇h(t, y)−∇h̊(t, y)| ≤ (d) + (e),where

(d) = C

∣∣∣∣Eo[0,T ](1(YT ∈ S)

T − t

∫ T

t

e
∫ u
t ∇f(r,Yr)dr

g(u)
dBu∫ T

t
g(u)(∇ log p(T − u, Yu)− sθ(T − u, Yu))dBu

∣∣∣∣Yt = y

)∣∣∣∣
(e) =

∣∣∣∣∣Eo[0,T ]
(
1(YT ∈ S)

T − t

∫ T

t

e
∫ u
t ∇f(r,Yr)dr − e

∫ u
t ∇fo(r,Yr)dr

g(u)
dBu

∣∣∣∣Yt = y

)∣∣∣∣∣ .
(4.14)

For the term (d), we have:

(d) ≤ C

(T − t)gmin
h̊(t, y)

1
4

{
Eo[0,T ]

(∫ T

t
|e

∫ u
t ∇f(r,Yr)dr|2Fdu

∣∣∣∣Yt = y

)} 1
2

{
Eo[0,T ]

(∫ T

t
g(u)(∇ log p(T − u, Yu)− sθ(T − u, Yu))dBu

∣∣∣∣Yt = y

)4
} 1

4

≤ C

(T − t)gmin
ε̊h(t, y)

1
4

{
Eo[0,T ]

(∫ T

t
|e

∫ u
t ∇f(r,Yr)dr|2Fdu

∣∣∣∣Yt = y

)} 1
2 (
gmaxε

√
T − t

)
≤ CgmaxF

gmin
ε̊h(t, y)

1
4 , (4.15)

where the first inequality is due to Hölder’s inequality, the second inequality follows from
the moment inequality (see [44, Chapter IV, §4]) and Assumption 4.5 (iv), and the final
inequality is by Assumption 4.5 (viii). For the term (e), we have:

(e) ≤ 1

(T − t)gmin

√
h̊(t, y)

√
Eo[0,T ]

(∫ T

t
|e

∫ u
t ∇f(r,Yr)dr − e

∫ u
t ∇fo(r,Yr)dr|2Fdu

∣∣∣∣Yt = y

)
≤ 1

gmin

γ√
T − t

√
h̊(t, y),

(4.16)

where the first inequality is by the Cauchy–Schwarz inequality, and the second inequality
follows from Assumption 4.5 (ix). Injecting (4.15) and (4.16) into (4.14) yields:

|∇h(t, y)−∇h̊(t, y)| ≤ C

(
Fε+

γ√
T − t

)
h̊(t, y)

1
4 , for some C > 0. (4.17)
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Combining (4.13), (4.17) and Assumption 4.5 (vi) leads to:

|∇ log h(t, y)−∇ log h̊(t, y)| ≤

∣∣∣∣∣ h̊(t, y)− h(t, y)

h̊(t, y)
∇ log h(t, y)

∣∣∣∣∣+
∣∣∣∣∣∇h(t, y)−∇h̊(t, y)

h̊(t, y)

∣∣∣∣∣
≤ C

{(
F +

G(y)√
T − t

)
ε+

γ√
T − t

}
h̊(t, y)−

3
4 .

(4.18)

Step 3. Observe that {Ut}0≤t≤T is distributed by P o,S[0,T ](·). By (4.12), (4.18) and Assumption

4.5 (x), we have:

dE|Ut − Vt|2

dt
≤ −ΛE|Ut − Vt|2 + C

(
ε+ η +

ε+ γ√
T − t

)√
E|Ut − Vt|2. (4.19)

By Grönwall’s inequality (see [15, Theorem 21]), we get:

E|UT − VT |2 ≤
(
e−ΛTW2(p(T, ·), pnoise(·)) + C

∫ T

0

(
ε+ η +

ε+ γ√
T − t

)
e−Λ(T−t)dt

)2

≤
(
e−

1
2
ΛTW2(p(T, ·), pnoise(·)) + C(ε+ η + γ)

)2
,

which leads to the bound (4.7).

The rest of the theorem follows from the fact that W 2
2 (p(T, ·), pnoise(·)) ≤ Epdata(·)|X|2 for

VE, and W2(p(T, ·), pnoise(·)) ≤ e−CTEpdata(·)|X|2 with C > 0 for VP. □

4.3. Learning the h function. In this part, we study the convergence of the stochastic
optimization problems outlined in Section 3.2 (Alogrithm A and B) to learn the function
∇ log h. Our approach is generic, and does not require any explicit structure of function
approximations.

4.3.1. Learning h. We first consider the convergence of the stochastic optimization problem
(3.7). The stochastic approximation to the martingale loss is given by

ϕn+1 = ϕn + δnV(ϕn, τ (n), Y (n)), (4.20)

where δn > 0 is the step size, τ (n) ∼ Unif [0, T ], Y (n) = {Y (n)
t }0≤t≤T is a copy of the pretrained

model P[0,T ](·), and
V(ϕ, τ, Y ) := −2∂ϕhϕ(τ, Yτ )(hϕ(τ, Yτ )− 1(YT ∈ S)). (4.21)

Our goal is to provide a quantitative bound on |hϕn(t, y) − h(t, y)| (in some weak sense).
Our idea follows from [53, Section 4], which relies on [5] for stochastic approximations. Set

V (ϕ) := Eτ∼Unif [0,T ]{E[0,T ][V(ϕ, τ, Y )]}. (4.22)

We need the following assumptions.

Assumption 4.7.

(i) The ODE ϕ′(t) = V (ϕ(t)) has a unique stable equilibrium ϕ∗
9.

(ii) There is C > 0 such that E[0,T ][V(ϕn+1, Y ) |ϕn] ≤ C(1 + ϕ2n).

(iii) There is ℓ > 0 such that (ϕ− ϕ∗)V (ϕ) ≤ −ℓ|ϕ− ϕ∗|2.

9ϕ∗ is the unique stable equilibrium means that V (ϕ) = 0 has a unique root ϕ∗, and V ′(ϕ∗) < 0.
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(iv) There is a function ω : R+ → R+ such that ω(r)/rν is bounded for some ν ≤ 2, and
|hϕ − hϕ′ |∞ ≤ ω(|ϕ− ϕ′|) for all ϕ, ϕ′.

The assumptions (i)–(iii) guarantees that the stochastic approximation (4.20) converges,
and the assumption (iv) quantifies the sensitivity of the function approximation {hϕ(t, x)}ϕ
with respect to the parameter.

Theorem 4.8. Let Assumption 4.7 hold, and δn = A
nζ+B

for some ζ ≤ 1, A > ζ
2ℓ and B > 0.

We have:
E[0,T ]|hϕn − h|∞ ≤ |h− hϕ∗ |∞ + Cn−

ζν
2 . (4.23)

Proof. It follows from [5, Theorem 22] that under Assumption 4.7 (i)–(iii) and δn = A
nζ+B

,

E[0,T ]|ϕn − ϕ∗|2 ≤ Cn−ζ . (4.24)

As a result,
E[0,T ]|hϕn − h|∞ ≤ |h− hϕ∗ |∞ + E[0,T ]|hϕn − hϕ∗ |∞

≤ |h− hϕ∗ |∞ + E[0,T ][ω(|ϕn − ϕ∗|)]

≤ |h− hϕ∗ |∞ + C(E|ϕn − ϕ∗|2)
ν
2 ,

(4.25)

where the first inequality is from the triangle inequality, the second inequality is due to
Assumption 4.7 (iv), and the last inequality is by Cauchy-Schwarz inequality. Combining
(4.24) and (4.25) yields the bound (4.23). □

The first term |h−hϕ∗ |∞ on the right side of (4.23) quantifies how well the family {hϕ(t, y)}ϕ
approximates the h function, and the second term n−

ζν
2 gives the convergence rate of the

stochastic approximation (4.20). In particular, if the family {hϕ(t, y)}ϕ is rich enough to
contain the h function (i.e., |h − hϕ∗ |∞ = 0), and {hϕ(t, y)}ϕ is Lipschitz in ϕ (i.e, ν = 1),

then hϕn converges to h at a rate n−
1
2 by taking the step size 1/n.

4.3.2. Learning ∇h. Now we establish similar results for the stochastic optimization prob-
lem (3.10). Fixing n > 0, we use hϕn to approximate the covariation, so the stochastic
approximation to the covariation loss is:

ψm+1 = ψm + δmUn(ψm, τ (m), Y (m)), (4.26)

where

Un(ψ, τ, Y ) := −2∂ψqϕ(τ, Yτ )

(
qψ(τ, Yτ )−

1

g(τ)2
d[hϕn , Y ]t

dt
|t=τ

)
. (4.27)

Also set
Un(ψ) := Eτ∼Unif [0,T ]{E[0,T ][Un(ψ, τ, Y )]}. (4.28)

We need the following assumptions.

Assumption 4.9.

(i) The ODE ψ′(t) = Un(ψ(t)) has a unique stable equilibrium ψ∗n.

(ii) There is C > 0 such that E[0,T ][Un(ψm+1, Y ) |ψm] ≤ C(1 + ψ2
m).

(iii) There is ℓ > 0 such that (ψ − ψ∗)Un(ψ) ≤ −ℓ|ψ − ψ∗|2.
(iv) There is a function ω : R+ → R+ such that ω(r)/rν

′
is bounded for some ν ′ ≤ 2, and

|qψ − qψ′ |∞ ≤ ω(|ψ − ψ′|) for all ψ,ψ′.
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Theorem 4.10. Let Assumption 4.9 hold, and δn = A
nζ′+B

for some ζ ′ ≤ 1, A > ζ′

2ℓ and

B > 0. We have:

E[0,T ]|qψm −∇h|∞ ≤ E[0,T ]

∣∣∣∣ 1

g(t)2
d[hϕn , Y ]t

dt
−∇h(t, Yt)

∣∣∣∣+ E[0,T ]|∇hϕn − qψ∗n |∞ + Cm− ζ′ν′
2 .

(4.29)

The proof of the theorem is in the same vein as that of Theorem 4.8. The first term

E[0,T ]

(∣∣∣ 1
g(t)2

d[hϕn ,Y ]t
dt −∇h(t, Yt)

∣∣∣) on the right side of (4.29) quantifies how close the covari-

ation
d[hϕn ,Y ]t

dt is to d[h,Y ]t
dt . However, it is generally hard to provide an explicit bound on

this term 10, and we simply denote it by θ(n). Also note that the estimation of
d[hϕn ,Y ]t

dt also

incurs a sample error 11, which we do not pursue here. The second term |∇hϕn − qψ∗n |∞
measures how well the family {qψ(t, y)}ψ approximates ∇hϕn , and the third term m− ζν

2 is
the convergence rate of the stochastic approximation (4.26).

Combining Theorem 4.8 and 4.10, we have (at least heuristically) that the learning error
η of ∇ log h is of order:

θ(n) + n−
ζν
2 +m− ζ′ν′

2 + discrepancy of approximations {hϕ(t, y)}ϕ, {qψ(t, y)}ψ. (4.30)

Again if the families {hϕ(t, y)}ϕ, {qψ(t, y)}ψ are rich enough and Lipschitz in the parameter

(i.e., ν = ν ′ = 1), then η is of order θ(n) + n−
1
2 +m− 1

2 by taking the step size δn = 1/n.

5. Numerical experiments

5.1. Synthetic examples.

6. Conclusion
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Doob’s lagrangian: A sample-efficient variational approach to transition path sampling. In Neurips,
volume 37, 2024.

[17] J. Fan. A selective overview of nonparametric methods in financial econometrics. Stat. Sci., pages 317–337,
2005.

[18] Y. Fan and K. Lee. Optimizing DDPM sampling with shortcut fine-tuning. 2023. arXiv:2301.13362.
[19] Y. Fan, O. Watkins, Y. Du, H. Liu, M. Ryu, C. Boutilier, P. Abbeel, M. Ghavamzadeh, K. Lee, and K. Lee.

DPOK: Reinforcement learning for fine-tuning text-to-image diffusion models. In Neurips, volume 36,
2023.

[20] P. Fitzsimmons, J. Pitman, and M. Yor. Markovian bridges: construction, Palm interpretation, and
splicing. In Seminar on Stochastic Processes, 1992 (Seattle, WA, 1992), volume 33 of Progr. Probab.,
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