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Abstract
This paper is concerned with statistical estima-
tion of two preferential attachment models: the
Buckley-Osthus model and a new block prefer-
ential attachment model. We prove that the max-
imum likelihood estimates for both models are
consistent. We perform simulation studies to cor-
roborate our theoretical findings. We also apply
both models to study the evolution of a real-world
network. A list of open problems are presented.

1. Introduction
Networks are ubiquitous. A network consists of elements
or actors represented by nodes or vertices, with interactions
modeled by links or edges. Network studies are usually
data-driven via graph theoretical analysis, aiming to deter-
mine the influence of its constituents. In the era of data
deluge, there is a surge of interest in exploring the features
of large networks such as the Internet (Gyöngyi et al., 2004;
Bychkovsky et al., 2006), social media (Centola, 2010; Wei
et al., 2016), biological systems (Jeong et al., 2001; Barabási
et al., 2011), and more recently blockchains (Nakamoto,
2008; Croman et al., 2016).

Large networks are complex, and their intricate structures
can be modeled by random graphs. The best-known ran-
dom graph model is the Erdös-Rényi graph (Erdős & Rényi,
1959; 1961), where any two nodes are linked independently
with a fixed probability. See (Bollobás, 2001; Durrett, 2010)
for further results of the Erdös-Rényi graph such as the
limiting degree distribution and emergence of the giant com-
ponent.

Despite its simple form and wide applications, the Erdös-
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Rényi model is often criticized for the following two rea-
sons.

• The Erdös-Rényi model does not take into account the
heterogeneity, whereas a real-world network is hetero-
geneous, composed of a few communities or groups
and exhibiting different characteristics across these
communities.

• The Erdös-Rényi graph has an unrealistic Poisson
degree distribution, whereas in many real-world net-
works, the degree of a typical node is observed to be
power-law or heavy-tailed distributed.

To tackle the first point, (Holland et al., 1983) introduced
the stochastic blockmodel (SBM) which is a generalization
of the Erdös-Rényi graph with community structure. In the
past decade, there has been considerable progress on the
SBM including community detection (Girvan & Newman,
2002; Bickel & Chen, 2009; Mossel et al., 2015; Abbe et al.,
2016; Mossel et al., 2018) and statistical estimation (Daudin
et al., 2008; Bickel et al., 2011; 2013; Wang & Bickel,
2017). To address the second point, (Barabási & Albert,
1999) proposed the preferential attachment model (PAM),
which is an instance of the scale-free network. It attaches
a new node to existing ones according to the popularity,
i.e., the degrees of the existing nodes, and the resulting
degree distribution follows a power law. See also (Karrer &
Newman, 2011; Zhao et al., 2012; Chen et al., 2018) for the
degree-corrected SBM.

Since the work of Barabási and Albert, preferential attach-
ment and related models have attracted much attention from
combinatorics and probability communities, see e.g. (Bol-
lobás et al., 2001; Bollobás et al., 2003; Bollobás & Riordan,
2003; 2004; Peköz et al., 2013; Bhamidi et al., 2015; Bubeck
et al., 2015). But it was not until recently that statistical esti-
mation of the PAM was investigated. (Gao & van der Vaart,
2017; Gao et al., 2017; Wang & Resnick, 2019) considered
estimates of an undirected PAM, while the counterpart of a
directed PAM was studied by (Wan et al., 2017).

This paper is concerned with two classes of PAM:

• the Buckley-Osthus model (Buckley & Osthus, 2004),
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which is a one-parameter PAM allowing for self-loops;

• a new model that adds a community structure to the
PAM, which we call block preferential attachment
model (BPAM).

These two models capture different features of the underly-
ing network. The parameter in the Buckley-Osthus model
identifies the exponent of the power-law degree distribution,
and the community structure in the BPAM characterizes the
interactions across various groups. The relation between the
BPAM and the PAM is the same as that between the SBM
and the Erdös-Rényi graph.

Meanwhile, inn contrast to the SBM, the BPAM hinges
on the order of nodes added, thus describing the evolution
of the network. Thus, the BPAM naturally combines the
idea of the SBM and the PAM, and may overcome the two
drawbacks of the Erdös-Rényi model. Though some related
characteristics of the BPAM are implicitly discussed in the
work of (Jordan, 2013; Hajek & Sankagiri, 2018), it is the
first time in this work the BPAM is explicitly formulated.
We also provide statistical analysis under this framework.

In this paper, we show the asymptotic consistency of the
maximum likelihood estimate (MLE) for the aforemen-
tioned two models. Precisely, we prove that (1) the MLE of
the Buckley-Osthus model is asymptotically normal, (2) the
MLE of the BPAM with observed community memberships
is consistent. Contrary to the SBM, the likelihood of either
the Buckley-Osthus model or the BPAM does not belong
to the exponential family. Thus, the proof of these results
does not follow from standard theory, and requires extra
mathematical tools and careful analysis. We also compare
the BPAM with the SBM, and apply both models to study
the evolution of real-world networks, and in particular the
Bitcoin network. We present a list of open problems such as
community detection and efficient estimation of the BPAM.
We hope that this work serves as a first step towards under-
standing the BPAM, a natural model for modeling network
evolution with community structures.

The rest of this paper is organized as follows.

• In Section 2, we present the models of interest, and
state the main results.

• In Section 3, we conduct simulation studies to corrobo-
rate our theoretical findings. We also apply the BPAM
to a real-world data – Bitcoin network.

• In Section 4, we conclude with further extensions of
the PAM, and a comparison of the BPAM and the SBM.
There a list of open problems are presented.

The proofs of the lemma are given in the Supplementary
Material.

2. Models and main results
2.1. Preferential attachment models

The PAM was proposed by Barabási and Albert (Barabási &
Albert, 1999), capturing the idea that popular nodes get more
attracted than less popular ones. It is closely related to the
Yule model (Yule, 1925), the Matthew effect (Merton, 1968),
the Price model (Price, 1976) and the Chinese restaurant
process (Aldous, 1985). Roughly speaking, it generates
the graph in a sequential way by attaching a new node to
existing ones with probability proportional to the degree of
those nodes. Thus, the resulting degree distribution has a
power law. As pointed out in (Bollobás et al., 2001), the
original definition of the PAM is mathematically ambiguous.
A more precise description is given as follows.

• Start with two nodes linked by m ≥ 1 edges.

• When adding a new node, add edges one a time, with
the second and subsequent edges performing preferen-
tial attachment using the updated degrees.

This construction allows to reduce the PAM for any m ≥
1 to m = 1 by collapsing nodes (k − 1)m + 1, . . . , km
to node k. See also (Bianconi & Barabási, 2001; Móri,
2002; Bollobás et al., 2003; Bollobás & Riordan, 2003) for
various extensions of the PAM. In the sequel, we focus on
the undirected linear PAM.

An important variant of the PAM was introduced in (Bol-
lobás & Riordan, 2004), which is referred to as the Lin-
earized Chord Diagram (LCD) or the Bollobás-Riordan
model. It starts with a single node, labelled 1, with a self-
loop. For i ≥ 1, node i+ 1 is attached to the graph by the
following rule:

P(i+ 1 ∼ v) =


di(v)
2i+1 for v ≤ i,
1

2i+1 for v = i+ 1,
(2.1)

where di(v) is the degree of the node v at time i. It can be
shown that the graph under the dynamics (2.1) has a degree
distribution P (k) proportional to k−3. A more general
model was proposed (Buckley & Osthus, 2004), allowing
the degree power as a parameter. Precisely, the attachment
rule is given by

P(i+ 1 ∼ v) =


di(v)+a−1
(a+1)i+a for v ≤ i,

a
(a+1)i+a for v = i+ 1.

(2.2)

By taking a = 1, we get the LCD model. The degree distri-
bution P (k) of the Buckley-Osthus model is proportional to
k−2−a. A nice property of the Buckley-Osthus model is the
exchangeability, i.e. the graph distribution does not depend
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on the order of nodes added. Given a graph of n nodes and
edges, the Buckley-Osthus likelihood is

LBOn (a) :=

∏
v a

(d(v)−1)

a(2a+ 1)(3a+ 2) · · · (na+ n− 1)
, (2.3)

where a(n) :=
∏n−1
k=0(a + k) is the Pochhammer rising

factorial, with the convention a(0) := 1, and d(v) is the
total degree of the node v. One can fit the Buckley-Osthus
model by MLE, and a natural question is whether the MLE
is consistent.

2.2. Block preferential attachment model

In view of the stochastic blockmodel, it is natural to add a
community structure to the PAM. It allows for extra param-
eters to model the incentive of attachment between different
communities. Precisely, the attachment rule is as follows.

• There are K communities C1, . . . , CK . Each added
node belongs to community Cj with probability πj ,
1 ≤ j ≤ K with

∑K
j=1 πj = 1. The memberships of

nodes are independent.

• (γkl; 1 ≤ k, l ≤ K) is a symmetric matrix represent-
ing the interaction between communities. The proba-
bility that node i+ 1 is attached to v is proportional to
γkldi(v) with i+ 1 ∈ Ck, v ∈ Cl.

In this case,

P(i+ 1 ∼ v) =


γkldi(v)∑

v′ γkl′di(v
′)+γkk

for v ≤ i,
γkk∑

v′ γkl′di(v
′)+γkk

for v = i+ 1.

(2.4)
By taking γkl’s all equal, we get the LCD model. It is easy
to see that the attachment probability (2.4) is homogenous
in (γkl; 1 ≤ k, l ≤ K). One can take for instance γ11 = 1
for normalization.

The main difference between the PAM and the BPAM is that
the latter is not exchangeable. That is, the graph distribution
depends on the order of nodes added. To see this, we need
some notations. For n ≥ 1 and 1 ≤ i, j ≤ K, let

• Tnj be the number of nodes belonging to community
Cj up to time n;

• Nn
j be the sum of degrees of nodes belonging to Cj up

to time n;

• Mn
ij be the number of edges linking a node in Ci with

one in Cj .

For 1 ≤ k ≤ n, let lk be the membership of node k, i.e.
lk = j if node k belongs to community j. The BPAM

likelihood is given by

LBPAn (πππ,γγγ) :=

K∏
j=1

π
Tn
j

j

∏K
i,j=1 γ

Mn
ij

ij

∏
v(d(v)− 1)!∏n

k=1

(∑K
j=1 γlkjN

k−1
j + γlklk

) .
(2.5)

It can be seen from the likelihood (2.5) that the denominator
is node order dependent, while the numerator is not. Thus,
the graph likelihood depends on the whole history of the
network expansion, not merely the final configuration. A
first question is whether the MLE of LBPAn is consistent.

By letting tk be the membership of the node attached by
node k, the BPAM likelihood (2.5) can be rewritten as

LBPAn (lll; πππ,γγγ) =

n∏
k=1

πlk

∏n
k=1 γlktk

∏
v(d(v)− 1)!∏n

k=1

(∑K
j=1 γlkjN

k−1
j + γlklk

) .
(2.6)

Often the memberships of nodes are not observed, and this
leads to considering the marginal likelihood:

GBPAn (πππ,γγγ) :=
∑

lll∈{1,...,K}n
LBPAn (lll; πππ,γγγ). (2.7)

Note that the marginal likelihood (2.7) is invari-
ant under relabeling the names of communities, i.e.
GBPAn (Ππππ,ΠγγγΠT ) = GBPAn (πππ,γγγ) for Π a permutation
matrix. It is also interesting to ask whether the MLE of
GBPAn is consistent.

2.3. Theoretical results

Now we present the main results – consistency of the MLE
for both the Buckley-Osthus model and the BPAM. Recall
the Buckley-Osthus likelihood from (2.3). We restrict to the
domain D := [ε,M ] ⊂ (0,∞), and consider the following
scaled log-likelihood:

`BOn (a) :=
1

n

( ∑
v : d(v)≥2

d(v)−2∑
k=0

log(a+ k)

−
n∑
k=1

log

(
a+

k − 1

k

))
. (2.8)

The MLE of the Buckley-Osthus model is defined by
âBOn := argmaxa∈D `

BO
n (a). Denote a0 to be the true

value of a. Our first result shows the consistency of âBOn .

Theorem 2.1. Assume that a0 ∈ D. Then âBOn → a0
almost surely as n→∞

Moreover, we can prove the asymptotic normality of âBOn .

Theorem 2.2. As n→∞,

√
n(âBOn − a0)

(d)−→ N
(

0,
σ2

β2

)
, (2.9)
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where

σ2 :=
∑
k≥0

p>k+1

(a0 + k)2
− 2

a0 + 1

∑
k≥0

p>k+1

a0 + k
+

1

(a0 + 1)2
,

(2.10)
and

β :=
∑
k≥0

p>k+1

(a0 + k)2
− 1

(a0 + 1)2
, (2.11)

with

pk :=
(a0 + 1)a

(k−1)
0

(2a0 + 1)(k)
, (2.12)

and p>k :=
∑∞
j=k+1 pj .

Now let us move onto the BPAM whose likelihood is given
by (2.5). We consider the following scaled log-likelihood:

`BPAn (πππ,γγγ) :=
1

n

(
K∑
j=1

Tnj log πj +

K∑
i,j=1

Mn
ij log γij

−
n∑
k=1

log

 K∑
j=1

γlkj
Nk−1
j

k

). (2.13)

We write `BPAn (πππ,γγγ) = `BPAn (πππ) + `BPAn (γγγ) where

`BPAn (πππ) :=
1

n

K∑
j=1

Tnj log πj (2.14)

and

`BPAn (γγγ) :=
1

n

(
K∑

i,j=1

Mn
ij log γij

−
n∑
k=1

log

 K∑
j=1

γlkj
Nk−1
j

k

). (2.15)

The MLE (π̂ππ, γ̂γγ) is defined by π̂ππ := argmaxπππ∈D `
BPA
n (πππ)

over the set of probability distributions D, and γ̂γγ :=
argmaxγγγ∈S `

BPA
n (γγγ) over the set of symmetric stochas-

tic matrices S . Denote (πππ0, γγγ0) to the true parameter values.
The main result is the consistency of (π̂ππ, γ̂γγ).

Theorem 2.3. We have π̂ππ → πππ0, γ̂γγ → γγγ0 almost surely as
n→∞.

2.4. Roadmap to the proofs

Let us start with the consistency of âBOn . For k ≥ 1,
let Znk be the number of nodes of degree k, and Zn>k =∑∞
j=k+1 Z

n
j be the number of nodes of degree greater than

k. The log-likelihood (2.8) can be expressed as

`BOn (a) =
∑
k≥0

Zn>k+1

n
log(a+k)− 1

n

n∑
k=1

log

(
a+

k − 1

k

)
.

(2.16)

The key idea to prove Theorem 2.1 is that Znk /n converges
almost surely to pk, which forms a probability distribution.

Proposition 2.4. For k ≥ 1, Znk /n → pk almost surely,
where pk is defined by (2.12).

Proof. For k ≥ 1, letNn
k := EZnk . We prove thatNn

k /n→
pk as n→∞. The idea is to establish the recursion for Nn

k .
For k = 1,

Nn+1
1 −Nn

1 =
(a0 + 1)n

(a0 + 1)n+ a0
− a0N

n
1

(a0 + 1)n+ a0
,

(2.17)
where the first term on the r.h.s. comes from attaching the
new node to any existing one, and the second term is due to
loss of a degree one node being attached by the new node.
For k = 2,

Nn+1
2 −Nn

2 =
a0

(a0 + 1)n+ a0
+

a0N
n
1

(a0 + 1)n+ a0

− (a0 + 1)Nn
2

(a0 + 1)n+ a0
, (2.18)

where the first term on the r.h.s. is due to creation of a loop
by the new node, the second term due to creation of a degree
two node by attaching the new node to a degree one node,
and the third term due to loss of a degree two node being
attached by the new node. Similarly, for k ≥ 3,

Nn+1
k −Nn

k =
(k + a0 − 2)Nn

k−1
(a0 + 1)n+ a0

− (k + a0 − 1)Nn
k

(a0 + 1)n+ a0
.

(2.19)
From (2.17), we get

Nn+1
1 =

(
1− a0

(a0 + 1)n+ a0

)
Nn

1 +
(a0 + 1)n

(a0 + 1)n+ a0
.

By Lemma 4.1.2 in (Durrett, 2010), Nn
1 /n → 1/(1 +

a0
a0+1 ) = p1 as n→∞. Similarly, we haveNk

n/n→ pk for
all k. During a time epoch, the number of nodes with degree
k differs at most two. A standard argument by combin-
ing the Azuma-Hoeffding inequality and the Borel-Cantelli
lemma yields the desired result.

This leads to considering the limit of (2.16):

`BO∞ (a) :=
∑
k≥0

p>k+1 log(a+ k)− log(a+ 1), (2.20)

where p>k+1 :=
∑∞
j=k+2 pj . Next we show that `BO∞ at-

tains its unique maximum at a0, from which we derive the
consistency of âBOn .

Lemma 2.5. The function `BO∞ (·) has a unique maximum
at a0. Moreover, for any ε > 0,

sup
a>ε
|`BO

′

n (a)− `BO
′

∞ (a)| → 0 a.s. (2.21)
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Proof of Theorem 2.1. Fix η > 0. According to Lemma
2.5, there exists mη > 0 such that

`′∞(a) > mη for a ∈ [ε, a0 − η]

and
`′∞(a) < −mη for a ∈ [a0 + η,M ],

and a.s. for n large enough, supD |`′n(a)−`′∞(a)| < mη/2.
As a consequence,

`′n(a) > mη/2 for a ∈ [ε, a0 − η]

and
`′n(a) < −mη/2 for a ∈ [a0 + η,M ].

This implies that âBOn ∈ [a0 − η, a0 + η] a.s. Since η
can be taken arbitrarily small, we prove the consistency of
âBOn .

We proceed to proving the asymptotic normality of âBOn . To
this end, let v(k) be the node being attached at time k. The
scaled log-likelihood can be written as

`n(a) =
1

n

n∑
k=1

Fk(a),

where Fk(a) := log(a + dk(v(k)) − 1) − log(a + 1 −
k−1) with the convention that dk(v(k)) = 1 if a self-loop is
formed at epoch k. Therefore,

`′n(a) =
1

n

n∑
k=1

fk(a),

where

fk(a) :=
1

a+ dk(v(k))− 1
− 1

a+ 1− k−1
. (2.22)

Note that `′n(âBOn ) = 0. By Taylor expanding fk’s, we get

0 =

n∑
k=1

fk(âBOn ) =

n∑
k=1

fk(a0) + (âBOn − a0)

n∑
k=1

f ′k(a?),

where a? ∈ (a0, â
BO
n ). Consequently,

√
n(âBOn −a0) =

(
− 1

n

n∑
k=1

f ′k(a?)

)−1(
1√
n

n∑
k=1

fk(a0)

)
.

(2.23)
The proof of Theorem 2.2 boils down to the following two
lemmas.

Lemma 2.6. As n→∞,

1√
n

n∑
k=1

fk(a0)
(d)−→ N (0, σ2), (2.24)

where σ2 is defined by (2.10).

Lemma 2.7. As n→∞,

1

n

n∑
k=1

f ′k(a?) −→ −β in probability, (2.25)

where β is defined by (2.11).

Now we consider the BPAM. Note that π̂ππ is the MLE of
the Multinomial(1,πππ) distribution. It follows from standard
exponential family theory (Brown, 1986) that π̂ππ is consistent
and asymptotically normal. The main difficulty of Theorem
2.3 is to prove that γ̂γγ → γγγ0. The idea is similar to that of
Theorem 2.1. We prove that Mn

ij/n→ θ0ij and Nn−1
j /n→

p0j almost surely, with
∑K
i,j=1 θ

0
ij = 1 and

∑K
j=1 p

0
j = 2.

Proposition 2.8. For 1 ≤ i, j ≤ K, Nn−1
j /n → p0j and

Mn
ij/n→ θ0ij almost surely, where (p0j ; 1 ≤ j ≤ K) satis-

fies

p0j

(
1−

K∑
l=1

π0
l γ

0
lj∑K

k=1 γ
0
lkp

0
k

)
= π0

j , (2.26)

and

θ0ij :=


π0
i γ

0
ijp

0
j∑K

k=1 γ
0
ikp

0
k

+
π0
jγ

0
jip

0
i∑K

k=1 γ
0
jkp

0
k

for i 6= j,

π0γ0
iip

0
i∑K

k=1 γ
0
ikp

0
k

for i = j.

(2.27)

Proof. The idea is to establish a recursion for Nn
j , 1 ≤ j ≤

K. Denote (Fn; n ≥ 1) to be the natural filtration of the
attachment process. We have

E(Nn+1
j |Fn)−Nn

j =
∑
l 6=j

π0
l γ

0
ljN

n
j∑

k γ
0
lkN

n
k + γ0ll

+ π0
j

∑
l 6=j

γ0ljN
n
l∑

k γ
0
jkN

n
k + γ0jj

+
2γ0jj(1 +Nn

j )∑
k γ

0
jkN

n
k + γ0jj

 ,
(2.28)

where the first term on the r.h.s. includes the contributions
from a new node not in Cj attached to an existing one in
Cj , the second term from a new node in Cj attached to an
existing one not in Cj , and the third term from a new node
in Cj attached to an existing one in Cj . Rearranging the
terms in (2.28) yields

E(Nn+1
j |Nn

j ) =

[
1 +

∑
l 6=j

π0
l γ

0
lj∑

k γ
0
lkN

n
k + γ0ll

+
2π0

jγ
0
jj∑

k γ
0
jkN

n
k + γ0jj

]
Nn
j + π0

j

∑
l 6=j γ

0
ljN

n
l + 2γ0jj∑

k γ
0
jkN

n
k + γ0jj

.
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Now we explain how (2.26) comes from. One expects
Nn
k ∼ p0kn. Then the r.h.s. of the above expression is

approximately1 +
1

n

∑
l 6=j

π0
l γ

0
lj∑

k γ
0
lkp

0
k

+
1

n

2π0
jγ

0
jj∑

k γ
0
jkp

0
k

Nn
j

+ π0
j

∑
l 6=j γ

0
ljp

0
l∑

k γ
0
jkp

0
k

=

[
1 +

1

n

∑
l

π0
l γ

0
lj∑

k γ
0
lkp

0
k

]
Nn
j + π0

j .

Now by Lemma 4.1.2 in (Durrett, 2010), (p0j ; 1 ≤ j ≤ K)
satisfies (2.26). These facts can be justified by a routine
argument as in Section 3, (Jordan, 2013). The full details
are left for the readers.

Now we move to the convergence of Mn
ij/n. Similarly, we

get the recursion

E(Mn+1
ij |Fn)−Mn

ij

=


π0
i γ

0
ijN

n
j∑

k γ
0
ikN

n
k +γ0

ii
+

π0
jγ

0
jiN

n
i∑

k γ
0
jkN

n
k +γ0

jj
for i 6= j,

π0
i γ

0
ii(1+N

n
i )∑

k γ
0
ikN

n
k +γ0

ii
for i = j.

(2.29)

It is easy to see from the asymptotics of Nn
j that Mn

ij/n

converges to θ0ij satisfying (2.27).

The above result yields the limit of (2.15):

`BPA∞ (γγγ) :=

K∑
i,j=1

θ0ij log γij −
K∑
i=1

π0
i log

 K∑
j=1

γijp
0
j

 .

(2.30)
Note that `BPA∞ is homogeneous of order 0, i.e.
`BPA∞ (θγγγ) = `BPA∞ (γγγ) for each θ > 0. It suffices to prove
that `BPA∞ attains its unique maximum at the equivalent
class [γγγ0], from which the consistency of γ̂γγ follows.

Lemma 2.9. The function `BPA∞ (·) has a unique maximum
at γγγ0 up to a constant multiple.

All the remaining proofs are deferred to the Supplementary
Material.

3. Empirical results
3.1. Buckley-Osthus model

Theorems 2.1 and 2.2 show that the MLE of the Buckley-
Osthus model is consistent and asymptotically normal. Here
we present some simulation experiments to illustrate sta-
tistical inference for finite samples. We pick three dif-
ferent values for the parameter, a0 ∈ {0.5, 1.0, 2.0}. For
each parameter value, we generate 200 realizations from

the Buckley-Osthus dynamics (2.2) with sample sizes n =
100, 200, 500, 1000.

We fit the Buckley-Osthus model by MLE, and calculate
the MLE âBO via the gradient ascent algorithm. So for
each parameter value and sample size, there are 200 es-
timates. Figure 1 gives the boxplots of these MLEs for
each parameter a0 ∈ {0, 5, 1.0, 2.0} with sample sizes
n = 100.200, 500, 1000. Table 1 summarizes a few statis-
tics of the MLEs in different experiment settings.

Figure 1. Boxplots of the MLEs for the Buckley-Osthus model
with different parameter values and sample sizes.

It can be seen from Figure 1 and Table 1 that for n ' 500,
the mean/median of the MLEs are close to the true parameter
values. For each parameter value, the standard deviation of
the MLEs decreases as the sample size increases. Given the
sample size, the standard deviation of the MLEs increases
as the parameter value gets larger. These observations agree
with the theoretical findings in Section 2.3.

3.2. Block preferential attachment model

Theorem 2.3 proves that the MLE of the BPAM is consistent.
Here we corroborate this result with some simulations. We
take K = 2 with (π1, π2) = (0.3, 0.7), and γ12 = γ21 =
0.5 and γ22 = 1.5. For this parameter setting, we generate
100 realizations from the BPAM dynamics (2.4) with sample
sizes n = 100, 200, 500, 1000.
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a0 = 0.5 n = 100 n = 200 n = 500 n = 1000
Mean 0.543 0.511 0.510 0.506
Median 0.526 0.516 0.515 0.511
Std 0.200 0.114 0.100 0.062
a0 = 1.0 n = 100 n = 200 n = 500 n = 1000
Mean 1.125 1.098 0.977 1.011
Median 0.936 0.997 0.977 0.990
Std 0.645 0.365 0.182 0.123
a0 = 2.0 n = 100 n = 200 n = 500 n = 1000
Mean 2.540 2.354 2.081 2.085
Median 2.130 2.060 2.027 2.025
Std 1.708 1.008 0.487 0.251

Table 1. The mean, median and standard deviation of the MLEs
for the Buckley-Osthus model with different parameter values and
sample sizes.

We calculate the MLEs (π̂1, π̂2) by counting frequency, and
the MLEs (γ̂12, γ̂22) via the gradient ascent algorithm. For
each sample size, we get 100 sets of estimates. Figure
2 provides boxplots of the MLEs with sample sizes n =
100, 200, 500, 1000. Table 2 displays some statistics of the
MLEs with different sample sizes.

π1 = 0.3 n = 100 n = 200 n = 500 n = 1000
Mean 0.291 0.297 0.302 0.303
Median 0.300 0.300 0.301 0.301
Std 0.071 0.036 0.033 0.024
π2 = 0.7 n = 100 n = 200 n = 500 n = 1000
Mean 0.709 0.703 0.698 0.697
Median 0.700 0.700 0.698 0.699
Std 0.071 0.036 0.033 0.024
γ12 = 0.5 n = 100 n = 200 n = 500 n = 1000
Mean 0.736 0.486 0.476 0.520
Median 0.478 0.435 0.460 0.496
Std 0.837 0.203 0.122 0.098
γ22 = 1.5 n = 100 n = 200 n = 500 n = 1000
Mean 1.680 1.555 1.480 1.529
Median 1.529 1.609 1.409 1.432
Std 1.842 1.457 0.588 0.514

Table 2. The mean, median and standard deviation of the MLEs
for the HPAM with different sample sizes.

It can be observed from Figure 2 and Table 2 that the MLEs
(π̂1, π̂2) get very close to the true values for n ' 100, while
the MLEs (γ̂12, γ̂22) seem to converge when n ≈ 1000.
This is partly due the stability of the gradient ascent algo-
rithm to find the MLE of γγγ. Also for each parameter, the
standard deviation decreases as the sample size increases.

Figure 2. Boxplots of the MLEs of (π1, π2, γ12, γ22) for the
HPAM with different sample sizes.

3.3. Evolution of the Bitcoin network

Bitcoin (Nakamoto, 2008) is a distributed digital cur-
rency system which works without central governing.
Payments are processed by a peer-to-peer network of
users connected through the internet. Here we apply
the BPAM to the Bitcoin network. The data we use
is available at http://www.vo.elte.hu/bitcoin/
zipdescription.htm (Kondor et al., 2014).

In such a transaction, ‘A’ is the receiver and ‘B’ is the
sender. The data set consists of 30048983 transactions up
to December, 2013. All these transactions are recorded with
timestamps. In the Bitcoin network, there are two types
of nodes: regular nodes and super nodes. Regular nodes
represents normal users, while super nodes are professional
miners or digital currency companies. Super nodes are
usually much more equipped than regular ones, and are
more reliable in the transactions. Hence, we model the
Bitcoin network by the BPAM with K = 2. The index ‘1’
is used for super nodes, and ‘2’ for regular nodes. The idea
is to fit the Buckley-Osthus model and the BPAM by MLE,
and calculate the MLEs for the parameters of interest.

We preprocess the data by removing a few abnormal transac-
tions, for instance, those related to the SatoshiDice gambling
whose addresses start with ‘1Dice’. Due to computation
limits, we are unable to process all 3 · 108 transactions. In-

http://www.vo.elte.hu/bitcoin/zipdescription.htm
http://www.vo.elte.hu/bitcoin/zipdescription.htm
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stead, we consider the first n = 5000, 10000, 20000, 50000
transactions to get the corresponding parameter estimates.
We select a threshold of top 5% active users to distinguish
super nodes from regular nodes. Table 3 displays the MLE
for the power-law exponent with different network sizes.
It can be seen that the exponent stabilizes around 4.4 for
n ' 20000.

n = 5000 n = 10000 n = 20000 n = 50000
â 3.757 3.857 4.401 4.398

Table 3. The MLE for a of the Bitcoin network.

Table 4 displays the MLEs for the BPAM parameters with
different network sizes. Observe that (1) the proportion
of super nodes π̂1 decreases as the network expands, (2)
γ̂12 > γ̂22 for n = 5000, and γ̂12 < γ̂22 for n ' 10000.
These phenomena can be interpreted as follows. At the
early stage of the Bitcoin, many transactions were made
through super nodes, and professional miners were the main
player. As the blockchain techniques are developed, more
and more individuals participate in Bitcoin transactions.
This is the reason why we see an order change between
γ̂12 and γ̂22. The BPAM characterizes the evolution of the
Bitcoin network.

n = 5000 n = 10000 n = 20000 n = 50000
π̂1 0.410 0.312 0.225 0.199
π̂2 0.590 0.688 0.775 0.801
γ̂12 3.974 9.226 16.351 34.596
γ̂22 2.360 11.213 67.216 123.497

Table 4. The MLEs for (π1, π2, γ12, γ22) of the Bitcoin network.

4. Conclusion and discussion
This paper deals with statistical estimation of two preferen-
tial attachment related models: the Buckley-Osthus model,
and the BPAM. We prove the consistency of the MLE for
both models, and corroborate the theory with simulation
studies. Though these models might be too simplistic for
real-world networks (as shown in the Bitcoin example), they
can capture some gross features and structural changes in
the network. Despite their limitations, these models may be
used as a building piece for more flexible systems.

In the remaining of this section, we discuss a few open prob-
lems related to the BPAM. As shown in Theorem 2.3, if
the memberships of all nodes are correctly classified, then
the MLEs are consistent. In fact, even if a small portion
of memberships (e.g. of order o(n)) are misclassified, the
consistency still holds. Consider the case where all but the
last node are correctly classified. It is easy to see that the

statistics (Mn
ij , N

n
j ) is affected by ±1, and the limiting log-

likelihood (2.30) stays the same. More generally, the degree
of any node is of order nβ for some β < 1. Thus, mis-
classifying any node will affect (Mn

ij , N
n
j ) by ±nβ , which

is absorbed by the 1/n-scaling. This leads to the problem
of community detection of the BPAM. (Hajek & Sankagiri,
2018) gave a message passing algorithm to recover the mem-
berships of Θ(1) nodes. An important question is to which
extent the memberships of nodes can be recovered for the
BPAM.

Open Problem 4.1. Is there any algorithm to recover the
memberships of all nodes for the BPAM ? If not, what is the
maximum number of memberships which can be recovered
? Is it of order Θ(n) ?

For the SBM, the MLEs of the marginal likelihood were
shown to be asymptotically normal (Bickel et al., 2013).
The key idea is that the likelihood with misclassifications
is much smaller than that with all correct memberships.
However, this is not true for the BPAM since misclassifying
a small portion of memberships will not affect much the
likelihood. It is not clear whether the MLEs of the marginal
likelihood (2.7) give the correct memberships and good
parameter estimates.

Open Problem 4.2. Are the MLEs for the marginal likeli-
hood (2.7) consistent ?

From the computational viewpoint, the marginal likelihood
(2.7) is intractable so calculating the MLE is not efficient. In
the case of the SBM, (Daudin et al., 2008) applied the varia-
tional inference to remove the normalizing term so that the
optimization can be easily solved by the EM algorithm. The
corresponding estimates were also shown to be asymptoti-
cally normal (Bickel et al., 2013). Here we can ask similar
questions regarding the marginal likelihood for the BPAM.

Open Problem 4.3.

1. Propose an approximation of the MLEs for the
marginal likelihood (2.7) which is computationally fea-
sible.

2. Is the approximation in (1) consistent ?

3. How to choose the number of communities K ?
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A. Proof of Lemma 2.5
To simplify the notation, we omit the ‘BO’ in the superscript.
We begin with a few algebraic identities for pk. It is easy to
see from (2.18)-(2.19) that

pk =
k + a0 − 2

k + 2a0
pk−1 for k ≥ 2. (A.1)

Therefore,
∑k
j=2(j + 2a0)pj =

∑k
j=2(j + a0 − 2)pj−1

which implies that

p>k−1 =
k + 2a0
a0 + 1

pk for k ≥ 2. (A.2)

Further by summing both sides of (A.2), we get∑
k≥1 kpk = 2. Observe that

`′∞(a) =
∑
k≥0

p>k+1

a+ k
− 1

a+ 1

=
∑
k≥0

(k + 2 + 2a0)pk+2

(a0 + 1)(a+ k)

− 1

a+ 1

∑
k≥0

k + 2 + 2a0
k + a0

pk+2

=
a− a0

(a0 + 1)(a+ 1)

∑
k≥0

(k + 2 + 2a0)(k − 1)

(k + a0)(k + a)
pk+2

=
a− a0

(a0 + 1)(a+ 1)

∑
k≥0

k − 1

k + a
pk+1.

where the second equality is due to (A.2) and the last one
stems from (A.1). In addition,

∑
k≥0

k − 1

k + a
pk+1 ≤

1

1 + a

∑
k≥0

(k − 1)pk+1 = 0,

where the last equality is due to the fact that
∑
k≥1 kpk = 2.

Therefore, `′∞(·) has a unique zero at a0, and `′∞(a) < 0 if
a > a0 and `′∞(a) > 0 if a < a0. These imply that `∞(·)
has a unique maximum at a0.

Now we prove (2.21). We have

`′n(a)− `′∞(a) =
∑
k≥0

Zn>k+1/n− p>k+1

a+ k

+

(
1

n

n∑
k=1

1

a+ 1− k−1
− 1

a+ 1

)
. (A.3)

Standard analysis shows that the second term on the r.h.s.
of (A.3) goes to 0 as n → ∞. Note that (k + 2)Zn>k+1 =∑
j≥k+2(k + 2)Znj ≤

∑
j≥k+2 jZ

n
j ≤ 2n, which implies

Zn>k+1/n ≤ 2
k+2 . Consequently,

sup
a>ε

∣∣∣∣∣∣
∑
k≥0

Zn>k+1/n− p>k+1

a+ k

∣∣∣∣∣∣ ≤
K∑
k=0

|Zn>k+1/n− p>k+1|
ε+ k

+
∑
k>K

2

(2 + k)(a+ k)
+
∑
k>K

p>k+1

a+ k
. (A.4)

The first term on the r.h.s. of (A.4) converges to 0 a.s. by
Theorem 2.4, and the last two terms can be made arbitrar-
ily small for K sufficiently large. Combining the above
estimates yields the desired result.

B. Proof of Lemma 2.6
It follows easily from the definition that
(
∑n
k=1 fk(a0); n ≥ 1) is a martingale. To prove the

convergence (2.24), it suffices to use Theorem 3.2 in (Hall
& Heyde, 1980) with the following conditions:

• n−1/2 maxk |fk(a0)| → 0 in probability.

• E(n−1 maxk f
2
k (a0)) is bounded in n.

• n−1
∑n
k=1 f

2
k (a0)→ σ2 in probability.

The first two conditions are straightforward since |fk(a)| ≤
2/a. Now we check the last condition. Write

1

n

n∑
k=1

f2k (a0) =
1

n

n∑
k=1

1

(a0 + dk(v(k))− 1)2
+

1

n

n∑
k=1

1

(a0 + 1− k−1)2

− 2

n

n∑
k=1

1

(a0 + dk(v(k))− 1)(a0 + 1− k−1)

:= S1 + S2 − 2S3.

Note that

S1 =
∑
k≥0

Zn>k+1/n

(a0 + k)2
−→

∑
k≥0

p>k+1

(a0 + k)2
a.s.

which follows from Theorem 2.4. By standard analysis,
S2 −→ 1

(a0+1)2 . We decompose S3 into two terms:

S3 =
1

n

n∑
k=1

1

a0 + dk(v(k))− 1

(
1

a0 + 1− k−1
− 1

a0 + 1

)

+
1

(a0 + 1)n

n∑
k=1

1

a0 + dk(v(k))− 1
,

where the first term on the r.h.s. is bounded by
1
an

∑n
k=1

(
1

a0+1−k−1 − 1
a0+1

)
−→ 0, and the second term

converges almost surely to 1
a0+1

∑
k≥0

p>k+1

a0+k
. Combining

all the above estimates yields the desired result.
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C. Proof of Lemma 2.7
Write

1

n

n∑
k=1

f ′k(a?) =
1

n

n∑
k=1

f ′k(a0) +
1

n

n∑
k=1

(f ′k(a?)− f ′k(a0))

:= T1 + T2.

Observe that f ′k(a) = −f2k (a)− 2fk(a) 1
a+1−k−1 . We get

T1 = − 1

n

n∑
k=1

f2k (a0)− 2

n

n∑
k=1

fk(a0)
1

a0 + 1− k−1
.

(C.1)
The first term on the r.h.s. of (C.1) converges to −σ2 as
proved in Proposition 2.6. Recall the definition of S2, S3. It
is easy to see that

1

n

n∑
k=1

fk(a0)
1

a0 + 1− k−1
= S3 − S2

−→ 1

a+ 1

∑
k≥0

p>k+1

a0 + k
− 1

(a0 + 1)2
.

Therefore, T1 −→ −β in probability. By standard analysis,
|T2| ≤ C|a? − a0| for some C > 0. Note that a? ∈
(a0, â

BO
n ). By Theorem 2.1, |a? − a0| −→ 0 which implies

T2 −→ 0. The above estimates lead to the desired result.

D. Proof of Lemma 2.9
As discussed in Section 2.3, the consistency of π̂ππ follows
from standard exponential family theory. It suffices to prove
that γ̂γγ → γγγ0 almost surely.

Let us go back to the limit log-likelihood (2.30). Observe
that `BPA∞ is homogeneous of order 1, i.e. `BPA∞ (aγγγ) =
`BPA∞ (γγγ) for each a > 0. By taking the partial derivatives
of (2.30) and equating to 0, we get

∂

∂γij
`BPA∞ (γγγ)

=


θ0ij
γij
− π0

i p
0
j∑K

k=1 γikp
0
k

− π0
jp

0
i∑K

k=1 γjkp
0
k

for i 6= j,

θ0ii
γii
− π0

i p
0
i∑K

k=1 γikp
0
k

for i = j.

(D.1)

By (2.27), we have ∇`BPA∞ (γγγ0) = 000, i.e. γγγ0 is a stationary
point of `BPA∞ . Now it suffices to prove Lemma 2.9 to
conclude.

Note that `BPA∞ (γγγ) → −∞ as γγγ ∈ ∂D. It suffices to
prove that ∇`BPA∞ (γγγ) = 000 has a unique solution. First
∂`BPA∞ /∂γii = 0 gives

K∑
k=1

γikp
0
k =

π0
i p

0
i

θ0ii
γii. (D.2)

By injecting (D.2) into the equation ∂`BPA∞ /∂γij = 0, we
get

θ0ij
γij

=
θ0iip

0
j

p0i

1

γii
+
θ0jjp

0
i

p0j

1

γjj
. (D.3)

Consequently, the values of (γij ; i 6= j) is uniquely deter-
mined by those of (γii; 1 ≤ i ≤ K). By injecting (D.3) into
(D.2), we get a system of equations on (γii; 1 ≤ i ≤ K):

K∑
k=1

θ0ik

(
θ0iip

0
j

p0i

1

γii
+
θ0kkp

0
i

p0k

1

γkk

)−1
p0k =

π0
i p

0
i

θ0ii
γii

(D.4)
For K = 2, it is easy to solve the equations together with
the constraints γ11 = 1. For K ≥ 3, the explicit solution is
not available but we prove that the equations have a unique
solution. To illustrate, we consider the generic case K = 3.
All other cases can be proceeded in a similar way.

Let x1 :=
θ011p

0
2

p01
γ22

(
θ011p

0
2

p01
γ22 +

θ022p
0
1

p02
γ11

)−1
,

x2 :=
θ011p

0
3

p01
γ33

(
θ011p

0
3

p01
γ33 +

θ033p
0
1

p03
γ11

)−1
, and

x3 :=
θ033p

0
2

p03
γ22

(
θ033p

0
2

p03
γ22 +

θ022p
0
3

p02
γ33

)−1
. The equa-

tions (D.4) give
θ012x1 + θ013x2 = π0

1 − θ011,

θ021(1− x1) + θ023(1− x3) = π0
2 − θ022,

θ031(1− x2) + θ032x3 = π0
3 − θ033.

(D.5)

It suffices to prove that the equations (D.5) have a unique
solution. Observe that the system (D.5) has a solution
(x01, x

0
2, x

0
3) by taking γii = γ0ii. Algebraic manipulation

shows that the set of solutions to (D.5) has dimension 1,
with form

(x1, x2, x3) = (x01, x
0
2, x

0
3) + λ(1,−θ012/θ013,−θ021/θ023).

Consequently,

γ11
γ22

=
θ011(p02)2

θ022(p01)2
1− x0 − λ
x0 + λ

,
γ11
γ13

=
θ011(p03)2

θ033(p01)2
1− y0 + λθ012θ

0
13

y0 − λθ012θ013

γ33
γ22

=
θ033(p02)2

θ022(p03)2
1− z0 + λθ021/θ

0
23

z0 − λθ021/θ023
,

which implies that

1− x0 − λ
x0 + λ

=
(1− y0 + λθ012θ

0
13)(1− z0 + λθ021/θ

0
23)

(y0 − λθ012θ013)(z0 − λθ021/θ023)
.

(D.6)
Note that the l.h.s. of (D.6) is decreasing in λ while the r.h.s.
is increasing in λ. Thus, λ = 0 is the only solution which
proves the uniqueness.


