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Abstract. In this paper, we consider the impact of the order flow auction (OFA) in the
context of the proposer-builder separation (PBS) mechanism through a game-theoretic per-
spective. The OFA is designed to improve user welfare by redistributing maximal extractable
value (MEV) to the users, in which two auctions take place: the order flow auction and the
block-building auction. We formulate the OFA as a multiplayer game, and focus our analy-
ses on the case of two competing players (builders). We prove the existence and uniqueness
of a Nash equilibrium for the two-player game, and derive a closed-form solution by solving
a quartic equation. Our result shows that the builder with a competitive advantage pays
a relatively lower cost, leading to centralization in the builder space. In contrast, the pro-
poser’s shares evolve as a martingale process, which implies decentralization in the proposer
(or, validator) space. Our analyses rely on various tools from stochastic processes, convex
optimization, and polynomial equations. We also conduct numerical studies to corroborate
our findings, and explore other features of the OFA under the PBS mechanism.

1. Introduction

A blockchain is a decentralized, distributed, and tamper-proof digital ledger that tracks and
verifies digital transactions securely without the need for a central authority. Its applications
span a wide range of industries, including sustainable energies [27], cryptocurrency [13, 15],
healthcare [4, 17, 19], and construction industry [14].

To maintain its decentralized structure, blockchain relies on consensus mechanisms, with
the two most widely used being Proof-of-Work (PoW) and Proof-of-Stake (PoS). PoW re-
quires substantial computational power to solve cryptographic puzzles, making it highly
energy-intensive. In contrast, PoS is more energy-efficient as it selects validators based on
their stake rather than computational effort. Due to its energy efficiency and increasing
adoption, we focus on the PoS mechanism in this study.

However, decentralization, the core principle of blockchain technology, faces challenges as
large validators gain power in the PoS system. (Validators are often also called proposers;
here we use both terms interchangeably.) In PoS, validators with larger holdings have a higher
chance of validating new blocks and earning more rewards, increasing wealth concentration
and excluding smaller participants [3].

Maximal Extractable Value (MEV). A significant portion of validators’ revenue comes
from MEV, which involves strategically reordering, inserting, or censoring transactions within
a block to maximize profits. This includes activities like DEX arbitrage, sandwich attacks,
and liquidations that exploit inefficiencies in the market. Some of these activities depend

Date: February 17, 2025.

1



2 RUOFEI MA, WENPIN TANG, DAVID YAO

solely on the blockchain’s state, using on-chain data to extract value. Others require infor-
mation from external sources, such as off-chain data, to identify opportunities like CEX-DEX
arbitrage [9, 25].

MEV is widely considered as one of the greatest threats to decentralization in blockchain
networks, favoring the validators with more resources [7]. Extracting MEV effectively requires
significant capital, advanced strategies, and considerable computational power, which most
ordinary validators may not have access to. As a result, well-equipped validators can gain
an advantage, further centralizing their control within the network [2, 6, 10, 12, 16, 28].

Proposer-Builder Separation (PBS). To distribute MEV fairly among the validators
and to prevent centralization, Ethereum introduced the PBS mechanism [10]. Originally,
validators were responsible for both proposing new blocks and constructing their contents.
PBS separates these responsibilities into two distinct roles: block builders and block
proposers.

Block proposers (or validators) validate and propose blocks; block builders become respon-
sible for assembling blocks. Block builders compete to create the most profitable block, and
participate in a block-building auction, offering fees (bids) to the proposer. The proposer
then receives the block bundle created by the winning builder and their bid. This allows
the proposers to collect significant auction revenue without requiring advanced technical ex-
pertise. By fostering competition among the builders, this system diminishes the advantage
previously held by sophisticated validators over ordinary ones, facilitating a more balanced
distribution of MEV among validators [5, 8, 10, 28].

While PBS can mitigate centralization among the validators to some extent, it tends to
create centralization within the builder community. For instance, some builders are excep-
tionally skilled at exploiting arbitrage opportunities, enabling them to capture significant
MEV and consistently win block production opportunities. This concentration of expertise
and resources among a few builders can lead to a situation where only a small number of
entities control a large portion of the block-building market, thus centralizing power within
the builder space [2, 12].

Order Flow Auction (OFA). OFA is another mechanism aiming to mitigate centralization
and redistribute MEV. While PBS involves the builders and the validators, OFA focuses on
the interaction between the users and the builders. It seeks to return a portion of MEV back
to the users. In this process, users send their orders to a third-party auction, where block
builders or MEV-extracting searchers bid for the exclusive rights to execute strategies on
these orders. This approach is conceptually analogous to Payment For Order Flow (PFOF)
in traditional finance. Gosselin and Chiplunkar [11], and Ventures [25] outline the structure
of OFA as follows:

(1) Order Flow Originators (OFO): Order Flow Originators (OFOs) refer to wallets,
decentralized applications (dApps), or custodians that users interact with for on-
chain transactions. These OFOs gather the orders created by users and forward
them to the OFA.

(2) Auctioneer: OFA discloses certain information to a group of bidders.
(3) Bidders: Bidders then need to submit their bids back to the OFA. The OFA must

determine the criteria for selecting the winning bids.
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(4) Winning Bid: Finally, the OFA bundles are sent to the winning bidder for inclusion
in the blockchain.

Users OFO OFA Builders Validators
orders orders bids

orders

bids

Figure 1. OFA

Figure 1 presents a flowchart illustrating the OFA process. It is important to note that
an order included by a block builder is not necessarily guaranteed on-chain inclusion. The
order will only be included if the block builder wins the block-building auction. Therefore,
the OFA must provide reliable inclusion guarantees and faces the challenge of the double
auction problem, which stems from the interaction between the OFA and the block-building
auction [11]. If higher rebates are offered to the users, less MEV can be redistributed to
the validators, which may affect the timely inclusion of blocks. Thus, it is crucial to find
the optimal balance between user rebates and inclusion fees offered to the validators in the
winner selection process [11].

Main Contributions.

(1) We formulate the OFA as an M -player game, where each builder’s decision variable is
the amount of MEV they are willing to pay. Under suitable conditions, we establish
that the Nash equilibrium can be characterized by the first-order conditions.

(2) We study in depth the case when M = 2, i.e., there are two competing builders.
Interestingly, solving for the corresponding Nash equilibrium boils down to solving
a univariate quartic equation. We show that there exists a unique Nash equilibrium
and derive its closed-form solution. Our analysis reveals that when there are two
builders, their equilibrium payments do not scale linearly with the MEV they can
extract. Instead, the more capable builder pays relatively less, allowing them to earn
higher expected revenue, which drives centralization. Our simulation experiments
with three players show a similar pattern, with an interesting variation: the most
capable player’s advantage is further amplified, while the gap between the second
and the least capable players narrows compared to the two-player case.

(3) We formulate the evolution of validators’ stake shares as a Pólya urn process with a
random replacement matrix. Under this framework, we establish that the stake shares
follow a martingale process, aligning with our simulation results, which show that the
average stake shares remain nearly constant over time. Furthermore, we analyze the
long-term behavior of this process. In the absence of consumption factors (i.e., when
no costs are incurred due to staking), we characterize the distribution of the limiting
stake shares via functional equations.

Literature Review. Our research contributes to the literature on blockchain centralization.
Prior studies have explored various factors driving centralization in blockchain ecosystems,
both with and without the PBS mechanism. Reward heterogeneity, a direct cause of cen-
tralization, arises from skill disparities among block producers in the absence of PBS [2]. It
is further influenced by order flow acquisition, along with the resulting MEV extraction and
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arbitrage opportunities under PBS [6, 12]. In fact, the role of order flow in centralization has
been widely recognized. Empirical studies show that private order flow exacerbates dispari-
ties in block-building capacity among builders [28], and those with greater access to private
order flow have a higher probability of winning the block-buildling auction [26].

Our research takes into account both the builder heterogeneity in skills and knowledge, and
the process of order flow acquisition. Relative to previous studies, we further model order
flow acquisition as an auction that explicitly captures its relationship with builders’ block-
building capacity, while also incorporating the interaction between the order flow auction
and the block-building auction, which remains under-explored in previous studies.

Our research also contributes to the literature on the evolution of validators’ stake shares
in the Proof-of-Stake (PoS) system. Rosu and Saleh [18], and Tang [20] show that in a
standard PoS system, validators’ stake shares evolve as a martingale process. Tang and Yao
[22] analyze stake share evolution under a polynomial voting rule. See also Tang [21] for
a review. Building on these works, our research further examines a setting in which the
validator’s reward for proposing a block is stochastic and dependent on builders’ bids. In
addition, we include consumption factors into the system, recognizing that staking in the pool
may incur costs, including opportunity costs, locked funds, and other potential expenses.

Organization of the paper: The remainder of the paper is organized as follows. In Section
2, we present the models of the OFA and PBS. In Section 3, we analyze the Nash equilibrium
among the builders, and in Section 4, we study the evolution of stake shares of the validators.
We present numerical findings in Section 5. Finally, we conclude with Section 6.

2. The OFA and PBS Models

In this section, we develop a formal model for the OFA, PBS, and the PoS system, focusing
on the equilibrium and stochastic processes associated with the model. Section 2.1 introduces
the model for builders, who participate in both the order flow auction and the block-building
auction. Section 2.2 presents the model for validators and the PoS system.

First, here is a list of some of the common notations used throughout the paper.

• N+ denotes the set of positive integers, R denotes the set of real numbers, and R+

denotes the set of positive real numbers.
• [n] denotes the set {1, 2, . . . , n}.
• a = O(b) means a

b is bounded from above as b → ∞; a = Θ(b) means a
b is bounded

from below and above as b → ∞; and a = o (b) or b ≫ a means a
b decays towards

zero as b → ∞.
• I (A) denotes the indicator function of event A, which equals 1 if event A happens
and 0 otherwise.

Builders in a decentralized system are responsible for assembling transaction blocks. They
participate in two auctions: the order flow auction and the block-building auction. In the
order flow auction, builders compete to acquire users’ order flow, which can provide additional
MEV opportunities. By strategically integrating the auctioned order with their existing order
flow, they can optimize execution for increased profitability. In the block-building auction,
builders bid for the right to propose their assembled block for inclusion on-chain, thereby
capturing MEV generated from transaction sequencing and execution.



ANALYSIS OF THE ORDER FLOW AUCTION UNDER PROPOSER-BUILDER SEPARATION 5

Validators are responsible for validating and proposing blocks. They participate in the
consensus process by staking cryptocurrencies as collateral. At each block-building oppor-
tunity, a validator is selected to propose the next block. The selected validator receives the
bid from the winning builder in the block-building auction.

Remark 2.1. In our model, we do not distinguish between MEV searchers and builders, but
instead treat them as a collective entity. This is motivated by the fact that searchers often
direct their order flow to dominant builders or restrict it exclusively to vertically integrated
builder-searcher entities [12, 23, 24, 28]. This close coordination, coupled with their shared
objective of maximizing MEV, has convinced us to ignore any distinction between their roles,
and to focus instead on their combined strategic behavior in the context of MEV extraction.

Let M ∈ N+ be the total number of builders, and N ∈ N+ be the total number of
validators, which will stay fixed throughout the paper; and let [M ] and [N ] denote the sets of
all builders and all validators, respectively. Time is modeled as a discrete sequence indexed
by t = 0, 1, 2, . . .. In each period t, a single round of the order flow auction and a single round
of the block-building auction take place.

2.1. Builder’s Game. Let fi,t represent the amount of Maximal Extractable Value (MEV)
that builder i can capture at round t. Assume that fi,t follows a distribution Di,t for each
i ∈ [M ] and for each t = 0, 1, 2, . . .. The expected value of fi,t is given by E[fi,t] = f̄i,t.
Suppose builder i has value vi,t for winning the transaction right in the order flow auction at
round t. Assume that vi,t follows some distribution Fi,t, for i ∈ [M ] and t = 0, 1, 2, . . .. The
expected value of vi,t is given by E[vi,t] = v̄i,t.

Let hi,t denote the total amount that builder i is willing to pay to both users and validators
at round t. Suppose a fraction µhi,t is ultimately paid to users, and (1 − µ)hi,t is paid to
the selected validator, with µ determined by the auction design (0 ≤ µ ≤ 1). We make the
following assumptions.

Assumption 2.2. Builders’ abilities to extract MEV are time-homogeneous.

Assumption 2.3. The winners of the order flow auction and the block-building auction are
determined independently.

Remark 2.4. We view builders’ capacities to optimize MEV extraction as intrinsic charac-
teristics that remain relatively stable over time. This perspective is in a similar spirit to that
of Bahrani et al. [2]. We will omit the time index in the following discussions of builders.

In each auction, the winner is selected randomly, with builder i winning the order flow
auction with probability hi∑M

j=1 hj
and winning the block-building auction with the same prob-

ability. Let Vi denote the event that builder i wins the order flow auction, and Zi denote the
event that builder i wins the block-building auction:

I (Vi) =

{
1 if builder i wins the order flow auction,

0 otherwise.

I (Zi) =

{
1 if builder i wins the block-building auction,

0 otherwise.
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Table 1 presents the four possible outcomes of the two auctions for builder i, along with the
corresponding revenue (utility) in each case. (Revenue can be regarded as utility, and we use
both terms interchangeably in this paper.) Let h−i denote the M − 1 strategies of all the
builders except i. The expected utility of builder i is given by:

πi(hi|h−i) = E [I (Zi) (fi + viI (Vi))− µhiI (Vi)− (1− µ)hiI (Zi)] ,

= f̄i
hi∑M
j=1 hj

+ v̄i

(
hi∑M
j=1 hj

)2

− h2i∑M
j=1 hj

. (2.1)

Each builder i chooses a bid hi from the strategy space Bi := (0,∞) to maximize their
expected utility. Let h∗i denote the optimal bid, i.e.,

h∗i = argmax
hi>0

f̄i
hi∑M
j=1 hj

+ v̄i

(
hi∑M
j=1 hj

)2

− h2i∑M
j=1 hj

.

In contrast to Capponi et al. [6], which introduce an additional player, the order flow
provider, and model the order flow acquisition process using a quadratic function, our frame-
work takes a different perspective. Specifically, we model the payment as a proportion of
the MEV obtained and introduce randomness in the winner selection process for both the
OFA and PBS. As a result, our objective function involves the term hi∑M

j=1 hj
, reflecting the

competitive interaction among the builders.

Order Flow Auction Block-Building Auction Revenue
Win Win fi + vi − hi
Win Lose −µhi
Lose Win fi − (1− µ)hi
Lose Lose 0

Table 1. Revenue Outcomes for Builder i.

We aim to find the Nash equilibrium of the game among the builders.

Definition 2.5. Let M denote the total number of builders. Let Bi be the set of all possible
strategies for builder i, where i ∈ [M ]. Let h = (hi, h−i) be a strategy profile where h−i

denotes the M − 1 strategies of all the builders except i. A Nash equilibrium is a strategy
profile h∗ = (h∗i , h

∗
−i) if

πi(h
∗
i |h∗−i) ≥ πi(hi|h∗−i)

for all hi ∈ Bi.

2.2. Validator’s Game. Let sj,t denote the stake held by validator j at time t, and define
the total stake at time t as St :=

∑n
j=1 sj,t. The fraction of the total stake held by validator

j at time t is given by ωj,t :=
sj,t
St

for j ∈ [N ]. In each round t, the probability that validator
j is selected to propose a block is ωj,t−1. The initial stake share of validator j is given by

ωj,0 =
sj,0
S0

, where sj,0 represents the initial stake held by validator j, and S0 =
∑N

j=1 sj,0
denotes the total initial stake held by all N validators. We assume that each validator holds
a positive initial stake.
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Assumption 2.6. For all j ∈ [N ], the initial stake is strictly positive, i.e., sj,0 > 0, and

hence the total initial stake satisfies S0 =
∑N

j=1 sj,0 > 0.

If selected, a validator can either propose the block submitted by the winning builder
in the block-building auction or choose to propose the block built by themselves. Let βw,t

denote the bid submitted by the winning builder in the block-building auction at time t.
Since we assume that builders’ MEV extraction capacities are time-homogeneous, we omit
the subscript t and refer to it as βw in the rest of the paper. The value of βw is drawn from
the set {µh1, µh2, . . . , µhM}, where it takes the value µhi with probability hi∑M

k=1 hk
. Let βv,t

denote the value of the block built directly by the selected validator at time t. We make the
following assumptions:

Assumption 2.7. Validators’ MEV extraction abilities are time-homogeneous.

Assumption 2.8. MEV extraction abilities are identical across all validators and are char-
acterized by the same value βv.

Remark 2.9. Similar to the builders, we consider a validator’s ability to extract MEV
as an intrinsic characteristic that remains relatively stable over time. In the remainder of
the paper, we omit the time subscript t in βv,t and refer to it simply as βv. Moreover,
the validators with significantly higher skills in MEV extraction would likely operate as the
builders instead. Consequently, those in the role of the validators are expected to exhibit
relatively homogeneous MEV extraction capabilities in the PBS system.

The reward received by the selected validator for proposing a block is given by Rt =
max{βw, βv}. {Rt}t≥1 is a sequence of i.i.d random variables with mean E (Rt) = R for all
t ≥ 1.

Additionally, a staking cost α
sj,t

S1+γ
t

is incurred, where γ ≥ 0. This cost may reflect factors

such as opportunity cost of locked funds or operational expenses. It is proportional to a
validator’s stake share, conceptually similar to transaction fees in traditional finance, which
are typically a small percentage of the transaction amount.

Let Rmin := min {k1, k2, . . . , kM} denote the minimum value of the i.i.d variable Rt, where
ki = max {βv, µhi} for i ∈ [M ]. To ensure that α is sufficiently small, we make the following
assumption.

Assumption 2.10. α < min {Sγ
0Rmin, S0, Rmin + c}, where c > 0 is a constant.

This assumption guarantees that St is strictly increasing for all t ≥ 0 (see Lemma 4.2).

Let Xj,t denote the event that validator j is chosen at time t, and define its corresponding
indicator variable 1 (Xj,t) as

1 (Xj,t) =

{
1, if validator j is selected at time t,

0, otherwise.

Assumption 2.11. The event Xj,t, i.e., the selection of validator j at time t, is independent
of all other random variables in the system.
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The stake held by each validator evolves according to the following update rule:

sj,t = sj,t−1 +Rt1 (Xj,t)− α
sj,t−1

S1+γ
t−1

,

=

sj,t−1 − α
sj,t−1

S1+γ
t−1

with probability 1− ωj,t−1

sj,t−1 +Rt − α
sj,t−1

S1+γ
t−1

with probability ωj,t−1
for j ∈ [N ] .

(2.2)

As a result, the total stake St evolves as

St = St−1 +Rt −
α

Sγ
t−1

, (2.3)

where we take into account the identity
∑n

k=1 sk,t = St. Finally, for each t ∈ N+, let Ft

denote the filtration generated by random events (Xj,r : j ∈ [N ] , r ≤ t).

3. Analysis of the game of the builders

In this section, we analyze the strategic interactions among the builders. Section 3.1 con-
siders the general setting with M players, and the two-player game is studied in Section 3.2.
Numerical results for the multi-player setting are given in Section 5.1.

3.1. Nash Equilibrium among M Builders. We make the following assumptions about
the game between builders.

Assumption 3.1. The parameters satisfy f̄i > 0, v̄i > 0, and f̄i ≥ v̄i for all i ∈ [M ]

Remark 3.2. This assumption implies that, in expectation, the MEV each builder can
independently extract is at least as large as the additional MEV that may be obtained from
the order being auctioned in the OFA. In other words, the orders auctioned in the OFA
should not constitute the primary source of MEV in expectation.

Lemma 3.3. The payoff function πi (hi|h−i) is concave with respect to builder i’s own strategy
hi.

Proof. Let H =
∑

j hj and H−i =
∑

j ̸=i hj . It suffices to note that

∂2πi
∂h2i

= −
2H−i

(
f̄iH +H−i (H−i − v̄i) + hi (H−i + 2v̄i))

)
H4

≤ 0,

holds for all hi ∈ Bi when f̄i ≥ v̄i (Assumption 3.1). □

Since the utility function is concave and continuous, the Nash equilibrium of the game can
be characterized by the first-order conditions.

Lemma 3.4. The first-order conditions for the Nash equilibrium of the game ⟨I, (Bi)i∈I , (πi)i∈I⟩,
where I = [M ], are given by:

∂πi
∂hi

= 0 for i ∈ [M ] ,

where

∂πi
∂hi

=
−f̄ihiH + f̄iH

2 + 2v̄ihiH − 2h2i v̄i − 2hiH
2 + h2iH

H3
for i ∈ [M ] , (3.1)

with H =
∑

j hj.
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In the remaining of this section, we focus on the case where M = 2.

3.2. M = 2 Builders. Given that h1, h2 ̸= 0, let h2 = λh1, where λ > 0. Substituting this
into Eqs. (3.4)–(3.1), the equations simplify to:{

h31 (1 + 2λ) (1 + λ) = λh21
(
f̄1λ+ f̄1 + 2v̄1

)
,

h31λ (2 + λ) (1 + λ) = h21
(
f̄2 + (f̄2 + 2v̄2

)
λ).

(3.2)

Solving Eq. (3.2) is equivalent to solving the quartic equation:

P (λ) = f̄1λ
4 +

(
3f̄1 + 2v̄1

)
λ3 +

(
2f̄1 − 2f̄2 + 4v̄1 − 4v̄2

)
λ2 −

(
3f̄2 + 2v̄2

)
λ− f̄2 = 0. (3.3)

Once λ is obtained, we set h2 = λh1 and solve for h1 using either of the reformulated
equations:

h1 =
λ
(
f̄1λ+ f̄1 + 2v̄1

)
(1 + 2λ) (1 + λ)

=
f̄2 +

(
f̄2 + 2v̄2

)
λ

λ (2 + λ) (1 + λ)
. (3.4)

Theorem 3.5. The game ⟨I, (Si)i∈I , (πi)i∈I⟩, where I = {1, 2}, has a unique Nash equilib-
rium h∗ = (h∗1, h

∗
2).

Proof. We analyze the solutions to Eq. (3.3). By Vieta’s formulas, the products of the roots

satisfies λ1λ2λ3λ4 = − f̄2
f̄1

< 0, indicating the roots of Eq. (3.3) must satisfy one of the

following: (1) one positive real root and three negative real roots, (2) three positive real
roots and one negative real root, or (3) one positive real root, one negative real root, and
two complex real roots. We will eliminate cases (2) and (3), thereby proving the existence of
a unique positive real root.

Assume, for contradiction, that the roots consist of three positive positive real roots,
denoted λ1, λ2, λ3, and one negative real root, denoted λ4. We further observe from Vieta’s
formulas that {

λ1 + λ2 + λ3 + λ4 = −3− 2v̄1
f̄1

< −3,
1
λ1

+ 1
λ2

+ 1
λ3

+ 1
λ4

= −3− 2v̄2
f̄2

< −3.

Since λ1 + λ2 + λ3 + λ4 < 0, it follows that λ3 + λ4 < 0. However, this implies 1
λ3

+ 1
λ4

> 0,

contradicting 1
λ1

+ 1
λ2

+ 1
λ3

+ 1
λ4

< 0. This contradiction eliminates case (2).

To eliminate case (3), we observe that P (0) = −f̄2 < 0, P (−1
2) = 3

16 f̄1 +
3
4 v̄1 > 0, and

P (−2) = −3f̄2−12v̄2 < 0. Since P (λ) is continuous in λ, there exists one root in the interval(
−1

2 , 0
)
and another root in the interval

(
−2,−1

2

)
by the intermediate value theorem. Thus,

the polynomial has at least two negative real roots, leaving no possibility for two complex
roots.

Having ruled out cases (2) and (3), we conclude that the only remaining possibility is case
(1), where there exists exactly one positive real root, and it is unique.

We now prove that the unique positive solution to Eq. (3.3), denoted by λ∗, corresponds

to the unique Nash equilibrium of the game. Let h∗1 =
λ∗ (f̄1λ∗ + f̄1 + 2v̄1

)
(1 + 2λ∗) (1 + λ∗)

and h∗2 = λ∗h∗1.

By Lemma 3.3, the strategy profile (h∗1, h
∗
2) is a Nash equilibrium. We now establish its

uniqueness. Suppose, for the sake of contradiction, that there exists another Nash equilibrium
h′ = (h′1, h

′
2) ̸= (h∗1, h

∗
2) such that πi(h

′
i|h′j) ≥ πi(hi|h′j) for all hi ∈ Si and for i, j ∈ {1, 2}, i ̸=
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j. By Lemma 3.3, h′1 must satisfy ∂π1
∂h1

∣∣∣
h2=h′

2

= 0, and h′2 must satisfy ∂π2
∂h2

∣∣∣
h1=h′

1

= 0.

Consequently, h′ = (h′1, h
′
2) would also satisfy Eq. (3.2). However, from the earlier analysis,

we proved that Eq. (3.2) admits a unique solution, namely (h∗1, h
∗
2). Therefore, it must hold

that h′1 = h∗1 and h′2 = h∗2. Thus, h∗ = (h∗1, h
∗
2) is the unique Nash equilibrium of the

game. □

After establishing the existence and uniqueness of the Nash equilibrium, we derive its
closed-form solution. The proof relies on a computer-assisted technique.

Theorem 3.6. The unique Nash equilibrium is given by:

λ∗ = −3f̄1 + 2v̄1
4f̄1

+ S +
1

2

√
−4S2 − 2p− q

S
,

h∗1 =
λ∗(f̄1λ

∗ + f̄1 + 2v̄1)

(1 + 2λ∗)(1 + λ∗)
=

f̄2 + (f̄2 + 2v̄2)λ
∗

λ∗(2 + λ∗)(1 + λ∗)
,

h∗2 = λ∗h∗1,

(3.5)

where

p = −11f̄1
2
+ 12v̄1

2 + 4f̄1(4f̄2 + v̄1 + 8v̄2)

8f̄1
2 ,

q =
3f̄1

3
+ 8v̄1

3 + 4f̄1v̄1(4f̄2 + v̄1 + 8v̄2) + f̄1
2
(−10v̄1 + 32v̄2)

8f̄1
3 ,

∆0 = (2f̄1 − 2f̄2 + 4v̄1 − 4v̄2)
2 + 3(3f̄1 + 2v̄1)(3f̄2 + 2v̄2)− 12f̄1f̄2,

∆1 = −27f̄2(3f̄1 + 2v̄1)
2 + 72f̄1f̄2(2f̄1 − 2f̄2 + 4v̄1 − 4v̄2) + 2(2f̄1 − 2f̄2 + 4v̄1 − 4v̄2)

3

+ 9(3f̄1 + 2v̄1)(2f̄1 − 2f̄2 + 4v̄1 − 4v̄2)(3f̄2 + 2v̄2) + 27f̄1(3f̄2 + 2v̄2)
2,

φ = arccos

(
∆1

2
√
∆3

0

)
,

S =
1

2

√
−2

3
p+

2

3f̄1

√
∆0 cos

φ

3
.

(3.6)

Proof. Since all the roots of Eq. (3.3) are real and exactly one of them is positive, the four
real roots can be expressed as follows:

λ1,2 = −3f̄1 + 2v̄1
4f̄1

− S ± 1

2

√
−4S2 − 2p+

q

S
,

λ3,4 = −3f̄1 + 2v̄1
4f̄1

+ S ± 1

2

√
−4S2 − 2p− q

S
.

where p, q, S are defined in Eqs. (3.6). We want to show that −S + 1
2

√
−4S2 − 2p+ q

S <

S + 1
2

√
−4S2 − 2p− q

S , which identifies the positive (and largest) real root of the quartic
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equation as Eq. (3.5). To prove this, observe that:

− S +
1

2

√
−4S2 − 2p+

q

S
< S +

1

2

√
−4S2 − 2p− q

S
,

⇐⇒
√
−4S2 − 2p+

q

S
< 4S +

√
−4S2 − 2p+

q

S
,

⇐⇒8S3 − q + 4S2

√
−4S2 − 2p− q

S
> 0.

(3.7)

Here we rely on numerical computations. We find that the optimal value of the following
minimization problem is approximately 3 (> 0):

min
f̄1,f̄2,v̄1,v̄2∈R+

8S3 − q,

such that f̄1 ≥ v̄1,

f̄2 ≥ v̄2.

(3.8)

(The implementation details and code are provided in Appendix A.) This ensures that the
inequality (3.7) holds, and the theorem is proved. □

We then explore how the equilibrium solutions vary when we change the parameters f̄i and
v̄i for i = 1, 2. Specifically, we examine whether, when one player is k times more capable
than the other in extracting MEV, the ratio of their equilibrium payments also equals k.

Proposition 3.7. Let k1, k2 be given such that v̄1
f̄1

= v̄2
f̄2

= k1 and f̄1
f̄2

= k2, where 0 < k1 ≤ 1

as given by Assumption 3.1. Then the following statements hold:

• If k2 < 1, then
h∗
1

h∗
2
> k2.

• If k2 = 1, then
h∗
1

h∗
2
= k2 = 1, and h∗1 = h∗2 =

f̄1+v̄1
3 = f̄2+v̄2

3 .

• If k2 > 1, then
h∗
1

h∗
2
< k2.

Proof. Since h1
h2

= 1
λ , proving the theorem is equivalent to proving that the largest real root

of Eq. (3.3), denoted by λ4, satisfies

λ4 <
1

k2
for k2 < 1, λ4 =

1

k2
= 1 for k2 = 1, λ4 >

1

k2
for k2 > 1.

Given that Eq. (3.3) satisfies P (0) = −f̄2 < 0, it follows that proving the desired inequalities
for λ4 is equivalent to verifying that P ( 1

k2
) is positive for k2 < 1, zero for k2 = 1, and negative

for k2 > 1. Since P (λ) is continuous in λ and P (0) < 0, it suffices to establish the sign of
P ( 1

k2
).

Rewriting P (λ) in terms of k1, k2, we obtain:

P (λ; k1, k2) = f̄2
[
k2λ

4 + (3k2 + 2k1k2)λ
3 + (2k2 − 2 + 4k1k2 − 4k1)λ

2 − (3 + 2k1)λ− 1
]
= 0.

Define G(k1, k2) as the evaluation of P (λ; k1, k2) at λ = 1
k2
.

G(k1, k2) = P (λ =
1

k2
; k1, k2) =

f̄2
k32

[
1 + (2k2 + 1 + 4k1k2 − 2k1) k2 − (3 + 2k1) k

2
2 − k32

]
.
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Differentiating with respect to k1, we obtain

∂G(k1, k2)

∂k1
=

2f̄2(k2 − 1)

k22
.

Since ∂G(k1,k2)
∂k1

< 0 for all k1 ∈ (0, 1] when k2 ∈ (0, 1), it follows that G(k1, k2) > G(1, k2) for

all k1 ∈ (0, 1). Evaluating G(1, k2), we find

G(1, k2) =
f̄2
k32

(
1 + k22 − k2 − k32

)
=

f̄2
k32

(1− k2)
(
1 + k22

)
,

which is positive for k2 ∈ (0, 1). Therefore, G(k1, k2) > 0 for all k1 ∈ (0, 1] and k2 ∈ (0, 1).

Similarly, for k2 > 1, we have ∂G(k1,k2)
∂k1

> 0 for all k1 ∈ (0, 1], implying that G(k1, k2) <

G(1, k2) for all k1 ∈ (0, 1). Since G(1, k2) = f̄2
k32

(1− k2)
(
1 + k22

)
< 0 for k2 > 1, it follows

that G(k1, k2) < 0 in this case.

For k2 = 1, direct substitution yields G(k1, k2 = 1) = 0, which implies that P (λ =
1; k1, k2) = 0, and hence λ = 1 is a root of P (λ). Consequently, it follows that h1 = h2.
Additionally, when k2 = 1, we have f̄1 = f̄2, v̄1 = v̄2. Substituting these identities into
Eq. (3.4), we obtain:

h1 = h2 =
f̄1 + v̄1

3
=

f̄2 + v̄2
3

.

This completes the proof. □

Proposition 3.7 shows that when a player’s ability to extract MEV, both with and without
the order being auctioned in the order flow auction, is k times that of the other player (in
expectation), their equilibrium payments do not scale proportionally with k. In particular,
if player 2 can obtain more MEV, and this amount is k times that of player 1 in expectation,
then player 2’s equilibrium payment is less than k times the payment of player 1.

For example, consider the case where f̄1 = 100, f̄2 = 200, v̄1 = 40, and v̄2 = 80. At
equilibrium, the corresponding bids are h1 = 49.94 and h2 = 82.17. After a single round of
the game, player 1’s expected revenue is 24.64, while player 2’s expected revenue is 104.23.
Although player 2’s MEV extraction capability is only twice that of player 1, they ultimately
earn more than four times player 1’s revenue, in expectation. This illustrates that the gap
between their MEV extraction abilities is amplified by the interaction between the order flow
auction and the block-building auction.

For M = 3, we conduct numerical experiments to study the equilibrium solutions, as
detailed in Section 5.1.

4. Evolution of Validators’ Stake Shares

In this section, we analyze the dynamics of validators’ stake shares over time. Each time
a validator is selected to propose a block, their reward comes either from the bid submitted
by the winning builder or from the MEV they extract by constructing the block themselves.

Theorem 4.1. Validator j’s stake share, (ωj,t)t≥0, is a martingale, and the limit ωj,∞ :=

limt→∞ ωj,t exists almost surely, with E (ωj,∞) = ωj,0.
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Proof. For each j,

ωj,t+1 =
sj,t+1

St+1
,

=
sj,t +Rt+11 (Xj,t+1)− α

sj,t

S1+γ
t

St+1
,

= ωj,t
St − α/Sγ

t

St+1
+

Rt+1

St+1
1 (Xj,t+1) .

(4.1)

Noting that E [1 (Xj,t+1) |Ft] = ωj,t, we have

E [ωj,t+1|Ft] = ωj,tE

[
St − α/Sγ

t +Rt+1

St+1

∣∣∣∣Ft

]
,

= ωj,t.

(4.2)

where Eq. (4.2) holds because St+1 = St − α/Sγ
t + Rt+1. This shows that (ωj,t)t≥0 is a

martingale. Since it’s a non-negative martingale, the martingale convergence theorem ensures
that the limit ωj,∞ := limt→∞ ωj,t exists almost surely. Furthermore, as ωj,t is bounded, the
bounded convergence theorem implies that E (ωj,∞) = limt→∞E (ωj,t) = ωj,0. □

This proposition suggests that centralization is unlikely to occur in the validator space, as
their stake shares follow a martingale process and depend only on their initial shares. We
next analyze the evolution of the total stake controlled by the validators in the system.

Lemma 4.2. Under Assumption 2.10, the sequence {St}t≥1 is strictly increasing.

Proof. We prove the lemma by induction. At t = 1, we have

S1 = S0 +R1 −
α

Sγ
0

.

By Assumption 2.10, it follows that α
Sγ
0
< min {k1, k2, . . . , kM} where ki = max {βv, µhi} for

each i ∈ [M ]. SinceR1 takes values in {ki}i∈[M ], we conclude that
α
Sγ
0
< min {k1, k2, . . . , kM} ≤

R1, which implies S1 > S0. Suppose that S0 < S1 < . . . < Sk holds for some k > 1. At
t = k + 1,

Sk+1 = Sk +Rk −
α

Sγ
k

.

Similarly, α
Sγ
k
<
(
S0
Sk

)γ
· min {k1, k2, . . . , kM} < Rk since S0 < Sk. Thus, Sk+1 > Sk. This

completes the induction and proves the lemma. □

Proposition 4.3. (Long-time behavior of St) The following results hold:

(1) The process (St, t ≥ 0) is an Ft-sub-martingale, and its compensator is

At = Rt− α

t−1∑
k=0

1

Sγ
k

.

(2) There is the convergence in probability:
(a) If γ > 0, then

St

t
→ R as t → ∞.
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(b) If γ = 0, then
St

t
→ R− α as t → ∞.

Proof. (1) It suffices to note that E (St+1|Ft) = St +R− α
Sγ
t
.

(2) Apply the method of moments by computing E
(
Sk
t

)
for all k. For k = 1, we have by

definition:

E (St+1 − St|St = s) = R− α

sγ
,

=

{
R if γ > 0

R− α if γ = 0
as s → ∞.

It is clear that with probability one St → ∞ as t → ∞ when γ ≥ 0. As a result,{
E (St+1 − St) → R as t → ∞ if γ > 0,

E (St+1 − St) → R− α as t → ∞ if γ = 0.

which yields {
E (St) ∼ Rt as t → ∞ if γ > 0,

E (St) ∼ (R− α) t as t → ∞ if γ = 0.

Next for k = 2, we have:

E
(
S2
t+1 − S2

t |St = s
)
= E

(
R2

t+1

)
+

α2

s2γ
+ 2sR− 2

αs

sγ
− 2

α

sγ
R,

=

{
E
(
R2

t+1

)
+ 2Rs+O(s1−γ) if γ > 0

E
(
R2

t+1

)
+ α2 + 2 (R− α) s− 2αR if γ = 0

as s → ∞.

Thus, {
E
(
S2
t+1 − S2

t

)
= (2R+ o(1))E (St) ∼ 2R2t if γ > 0,

E
(
S2
t+1 − S2

t

)
= (2 (R− α) + o(1))E (St) ∼ 2 (R− α)2 t if γ = 0.

Then we get: {
E
(
S2
t

)
∼ R2t2 if γ > 0

E
(
S2
t

)
∼ (R− α)2 t2 if γ = 0

as t → ∞.

We proceed by induction. Assume that{
E
(
Sk
t

)
∼ Rktk if γ > 0

E
(
Sk
t

)
∼ (R− α)k tk if γ = 0

as t → ∞.

We obtain:E
(
Sk+1
t+1 − Sk+1

t

)
= ((k + 1)R+ o(1))E

(
Sk
t

)
∼ (k + 1)Rk+1tk if γ > 0,

E
(
Sk+1
t+1 − Sk+1

t

)
= ((k + 1) (R− α) + o(1))E

(
Sk
t

)
∼ (k + 1) (R− α)k+1 tk if γ = 0.

Thus, we have: E
(
Sk+1
t

)
∼ Rk+1tk+1 as t → ∞ if γ > 0,

E
(
Sk+1
t

)
∼ (R− α)k+1 tk+1 as t → ∞ if γ = 0.
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By the method of moments, St/t converges in distribution, and thus in probability to R if
γ > 0, and to R− α if γ = 0. □

In general, it is difficult to make explicit the distribution of ωj,∞. Nevertheless, in the case
where α = 0, the following proposition characterizes the distribution of ωj,∞.

Recall from Section 2.2 that {Rt}t≥1 is a sequence of i.i.d random variables, where each
Rt takes the value

ki := max {µhi, βv} ,
with probability

pi :=
hi∑M

k=1 hk
for i ∈ [M ] .

Let K := {ki}i∈[M ] denote the support of Rt for all t ≥ 1. Let P ([0, 1]) denote the space

of distribution functions with support in [0, 1], and S := [0,∞) × [0,∞) \ {(0, 0)}. For any
x ∈ R, let δx be the distribution of the point mass at x. Define the function

Fj : S → P ([0, 1]) ,

that maps the initial stake pair (sj,0, S0 − sj,0), where S0 =
∑N

j=1 sj,0, to the probability

distribution Fj (sj,0, S0 − sj,0) of the limiting stake share ωj,∞. Recall that the initial stake
share is given by ωj,0 =

sj,0
S0

.

Proposition 4.4. When α = 0, for all (sj,0, S0 − sj,0) ∈ S, the distribution function of ωj,∞
satisfies

Fj (sj,0, S0 − sj,0) = ωj,0

∑
ki∈K

Fj (sj,0 + ki, S0 − sj,0) pi+(1− ωj,0)
∑
ki∈K

Fj (sj,0, S0 − sj,0 + ki) pi,

(4.3)
and it is the unique solution to Eq. (4.3) among the continuous functions G : S → P ([0, 1])
satisfying the following three conditions:

(1) G (0, a) = δ0 for a > 0;
(2) G (a, 0) = δ1 for a > 0;
(3) For every ϵ > 0, there exists a C = C (ϵ) such that

dw
(
G (sj,0, S0 − sj,0) , δωj,0

)
< ϵ,

if S0 > C, where

dw (F,G) =

∫ 1

0
|F (x)−G(x)|dx for all F,G ∈ P ([0, 1]) .

Proof. When α = 0, the stake share evolution of each validator j with initial stake sj,0 can be
modeled as a Pólya urn model with random replacements. Specifically, we consider an urn
containing two types of balls, black and white, where the initial number of black balls is sj,0
and the initial number of white balls is S0 − sj,0. The remainder of the proof follows Aletti
et al. [1]. □

Refer to Section 5.2 for the numerical results on the distribution of ωj,∞. Comparing
Figure 3 and Figure 4, we observe that when γ > 0, the distribution of ωj,∞ appears to be
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very similar for α = 0 and α ̸= 0. To provide an explanation, recall that when α = 0, the
evolution of ωj,t is given by:

ωj,t+1 = ωj,t
St − α/Sγ

t

St+1
+

Rt+1

St+1
1 (Xj,t+1) ,

= ωj,t
St

St+1
+

Rt+1

St+1
1 (Xj,t+1) .

For γ > 0, St → ∞ as shown in Proposition 4.3. Since ωj,t is bounded, the term αωj,t/S
γ
t

in (4.1) vanishes asymptotically. As a result, the evolution of stake shares follows a similar
pattern to the case when α = 0.

When γ = 0, we can compute explicitly the variance of ωj,∞, and study its stability. The
following theorem characterizes its asymptotics.

Theorem 4.5. Let Rmin and Rmax denote the minimum and maximum values, respectively,
of the i.i.d random variable Rt:

Rmin = min
i∈[M ]

{ki} , Rmax = max
i∈[M ]

{ki} .

For sj,0 = f (S0) such that f (S0) → ∞ as S0 → ∞, we have for each ϵ > 0 and each t ≥ 1
or t = ∞:

P

(∣∣∣∣ωj,t

ωj,0
− 1

∣∣∣∣ > ϵ

)
≤ R2

max

(Rmin − α) ϵ2f (S0)
, (4.4)

which converges to 0, as S0 → ∞.

The proof of Theorem 4.5 is given in Appendix B. It implies that for large validators, i.e.,
those with initial stakes sj,0 = f(S0) such that f(S0) → ∞ as S0 → ∞, their shares remain
stable over time. Specifically, their limiting share converges in probability to their initial
share as the total initial stake S0 → ∞.

5. Numerical Results

This section presents numerical results on the strategic interactions among builders and
the evolution of validators’ stake shares. Section 5.1 reports numerical findings for the multi-
player setting (M ≥ 3) in the builders’ game, and Section 5.2 provides simulation results on
the dynamics of validators’ stake shares.

5.1. Multi-Player Game among Builders (M ≥ 3). We conduct numerical experiments
to analyze the equilibrium behavior in settings with more than two players. In this analysis,
we consider two cases:

(1) Each player’s ability to extract MEV without the order being auctioned in the OFA is
k1,i :=

v̄i
f̄i
imes the MEV obtained from the auctioned order, and this ratio k1,iemains

constant across all three players, i.e., k1,1 = k1,2 = k1,3
(2) The ratio k1,iaries among the three players, such that k1,1 < k1,2 < k1,3

The results for three players are presented in Table 2 and Table 3.

From Table 2, we observe that, in most cases, the results align with the trend in Propo-
sition 3.7: the more capable players pay relatively less. However, an exception occurs when
f̄i/v̄i = 2 for i = 1, 2, 3, f̄2/f̄3 = v̄2/v̄3 = 2 and h2/h3 > 2. This suggests that the presence of
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f̄i/v̄i 2 3 5 8 10
h1 138.55 184.96 278.07 417.99 511.34

E (π1) 147.81 203.40 315.73 484.98 597.97
h2 64.31 89.42 139.38 214.14 263.93

E (π2) 19.79 30.01 50.48 81.21 101.70
h3 31.58 45.50 73.07 114.27 141.69

E (π3) 13.00 20.34 35.14 57.40 72.25

Table 2. This table presents the equilibrium outcomes for three players
under the assumption that each player i ∈ [3] has a common ratio f̄i/v̄i,
where the ratio is set to 2, 3, 5, 8, or 10. The players’ v̄i follow the ratio
v̄1 : v̄2 : v̄3 = 5 : 2 : 1, with v̄3 = 30.

v̄3 10 20 30 50 80
h1 6099.31 12198.62 18297.94 30496.56 48794.50

E (π1) 37850.41 75700.83 113551.24 189252.07 302803.32
h2 932.00 1864.01 2796.01 4660.01 7456.02

E (π2) 140.91 281.82 422.74 704.56 1127.30
h3 49.89 99.79 149.68 249.47 399.15

E (π3) 13.74 27.48 41.22 68.71 109.93

Table 3. This table presents the equilibrium outcomes for three players un-

der the assumption that f̄1
v̄1

= 1000 > f̄2
v̄2

= 100 > f̄3
v̄3

= 10. The players’ v̄i
follow the ratio v̄1 : v̄2 : v̄3 = 5 : 2 : 1, where v̄3 is set to 10, 20, 30, 50, or 80.

player 3 may exert competitive pressure on player 2, leading to a higher payment. Further-
more, the most capable player appears to gain a disproportionately higher expected utility,
while the gap in expected utility between the second and least capable players narrows.

From Table 3, we observe that when every player in the game is scaled by k times, then
their equilibrium solutions and expected utilities are also scaled by k times. The effect
observed in Table 2 is further amplified here. More capable players, such as player 1, attain

disproportionately high expected utility, significantly exceeding f̄1v̄1
f̄2v̄2

.

5.2. Simulation of Validators’ Stake Shares. We simulate the evolution of total stake
in the PoS system, and the distribution of validators’ stake shares. The parameters are set
as follows: the number of validators is fixed at N = 3, with a time horizon of T = 1000 steps.
The initial stakes of the three validators are given by s1,0 = 10, s2,0 = 20, and s3,0 = 30,
respectively. There are two builders, with bids set at h1 = 15 and h2 = 20. Additionally, we
set µ = 0.7, α = 8, and βv = 11, while γ varies over the values 0, 0.1, 0.2, 0.3, and 1.5. We
run the simulation 1000 times and plot the mean total stake and mean stake shares over time
in Figure 2. Additionally, we repeat the simulation 10000 times and plot the distribution
of the final stake share, ωj,T , for j = 1, 2, 3, in Figure 3. We then set α = 0 and plot the
distribution of ωj,T in Figure 4.

From Figure 2, we observe that the total stake grows at a rate of R when γ > 0 and at a
rate of R − α when γ = 1.5. The slight variations in growth rates for γ = 0.1, 0.2, 0.3 in the
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(a) (b)

Figure 2. (a) Evolution of mean total stakes over time when γ = 0, 0.1, 0.2, 0.3,
and 1.5. (b) Evolution of mean stake shares over time when γ = 1.5. The shaded
region represents mean± 1

4 standard deviation.

Figure 3. Distribution of final stake shares (α ̸= 0, γ = 1.5)

Figure 4. Distribution of final stake shares (α = 0, γ = 1.5)

plot arise from the fact that 1/Sγ
t decays at different rates as St → ∞. Extending the time

horizon would further demonstrate that the growth rate converges to R− α.
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For the evolution of stake shares, Figure 2 shows that they remain stable over time, con-
sistent with their martingale property. Since the stake share dynamics exhibit the same
behavior across different values of γ, we present only a representative case in the figure.

Figure 3 and Figure 4 illustrate the marginal distribution of ωj,T for j = 1, 2, 3 in the cases
where α > 0 and α = 0, respectively. Each player begins with initial stakes 10, 20, and 30,
corresponding to initial stake shares of ω1,0 = 1

6 , ω2,0 = 1
3 , and ω3,0 = 1

2 . The distributions
in both cases appear highly similar, with their marginal distributions skewed toward their
initial stake shares.

When increasing the total initial stake while maintaining the initial relative shares, we
observe that the limiting stake shares indeed converge to their initial values, aligning with
the theoretical results established in Theorem 4.5.

However, when γ = 0, we observe that under high consumption costs and small initial
stakes, some validators’ stake shares are likely to be driven to zero, as shown in Figures 5
and 6 in Appendix C. This phenomenon may be attributed to the fact that costs impose
a greater relative burden on smaller validators, whereas larger validators experience only a
limited impact. Specifically, since the term αsj,0/S0 is bounded, larger validators are more
resilient to costs, while smaller validators are more vulnerable and face greater challenges in
accumulating stakes over time.

6. Conclusions

In this paper, we examine the interaction between the order flow auction and the block-
building auction, formulating the problem within a general multiplayer framework. For the
case of two players, we establish the existence and uniqueness of the Nash equilibrium, while
for more than two players, we conduct simulations. Both analyses suggest a tendency toward
centralization in the builder space. In contrast, we find that validators’ stake shares follow
a martingale process, and both theoretical and numerical results indicate that centralization
is unlikely to emerge in the validator space.
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Appendix

Appendix A. Code for the Problem 3.8

1 import numpy as np

2 from scipy.optimize import minimize

3

4 def func(vars):

5 f1 , f2 , v1 , v2 = vars

6 try:

7 p = -((11*f1**2 + 12*v1**2 + 4*f1*(4*f2 + v1 + 8*v2))/(8*f1**2))

8 q = (3*f1**3 + 8*v1**3 + 4*f1*v1*(4*f2 + v1 + 8*v2) + f1**2*( -10*v1 +

32*v2))/(8*f1**3)

9 delta0 = (2*f1 -2*f2+4*v1 -4*v2)**2+3*(3* f1+2*v1)*(3*f2+2*v2) -12*f1*f2

10 delta1 = -27*f2*(3*f1 + 2*v1)**2 + 72*f1*f2*(2*f1 - 2*f2 + 4*v1 - 4*

v2) + 2*(2* f1 - 2*f2 + 4*v1 - 4*v2)**3 - \

11 9*(3*f1 + 2*v1)*(2*f1 - 2*f2 + 4*v1 - 4*v2)*(-3*f2 - 2*v2)

+ 27*f1*(-3*f2 - 2*v2)**2

12

13 phi = np.arccos(delta1 /(2*np.sqrt(delta0 **3)))

14

15 S = 1/2*np.sqrt(-2*p/3 + 2/(3*f1)*np.sqrt(delta0)*np.cos(phi/3))

16

17 lmda = -(3*f1+2*v1)/(4*f1)+S+1/2* np.sqrt(-4*S**2 -2*p-q/S)

18 h1_1 = lmda*(f1*lmda+f1+2*v1)/((1+2* lmda)*(1+ lmda))

19 h1_2 = (f2 + (f2+2*v2)*lmda)/(lmda *(2+ lmda)*(1+ lmda))

20

21 return (8*S**3-q)

22 except:

23 return np.inf

24

25 initial_guess = [1, 1, 1, 1]

26

27 # Variable bounds (all variables > 0)

28 bounds = [(1e-5, None), (1e-5, None), (1e-5, None), (1e-5, None)]

29

30 # Define the constraints f1 >= v1 and f2 >= v2

31 constraints = [

32 {"type": "ineq", "fun": lambda vars: vars [0] - vars [2]}, # f1 - v1 >= 0

33 {"type": "ineq", "fun": lambda vars: vars [1] - vars [3]}, # f2 - v2 >= 0

34 ]

35

36 result = minimize(func , initial_guess , method=’SLSQP ’, bounds=bounds ,

constraints=constraints)

37

38 # Results

39 if result.success:

40 print("Global␣minimum␣found:")

41 print("Function␣value:", result.fun)

42 print("At␣variables␣(f1 ,␣f2 ,␣v1 ,␣v2):", result.x)

43 else:

44 print("Optimization␣failed:", result.message)
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Appendix B. Proof of Theorem 4.5

To prove Theorem 4.5, we need a series of lemmas.

Lemma B.1. Let Vart ( · ) and Et ( · ) denote the conditional variance and conditional expec-
tation at time t, respectively, i.e., Vart ( · ) = Var ( · | Ft), Et ( · ) = E ( · | Ft). When γ = 0,
the conditional variance at time t of validator j’s share at time t+ 1 is:

Vart (ωj,t+1) = ωj,t (1− ωj,t)Et

[(
Rt+1

St+1

)2
]
.

Proof. When γ = 0,

ωj,t+1 = ωj,t
St − α

St+1
+

Rt+1

St+1
1 (Xj,t+1) .

Noting that St−α
St+1

= 1− Rt+1

St+1
, we have

Et

(
ω2
j,t+1

)
= Et

[
ω2
j,t

(
1− Rt+1

St+1

)2

+

(
Rt+1

St+1

)2

1 (Xj,t+1) + 2ωj,t1 (Xj,t+1)
Rt+1

St+1

(
1− Rt+1

St+1

)]
,

= ω2
j,t + ωj,t (1− ωj,t)Et

[(
Rt+1

St+1

)2
]
.

where the last equality is obtained by Assumption 2.11. By Theorem 4.1, (ωj,t)t≥0 is a
martingale:

Et (ωj,t+1) = ωj,t.

Therefore, the conditional variance of ωj,t+1 is given by

Vart (ωj,t+1) = Et

(
ω2
j,t+1

)
− (Et (ωj,t+1))

2 ,

= ωj,t (1− ωj,t)Et

[(
Rt+1

St+1

)2
]
.

□

Lemma B.2. When γ = 0, the unconditional variance of validator j’s share at time t is
given by

Var (ωj,t+1) = atωj,0 (1− ωj,0) , (B.1)

where the sequence at satisfies

a1 = z1, at+1 = at + zt+1 (1− at) , (B.2)

where

zt+1 = E

[(
Rt+1

St+1

)2
]
. (B.3)

Proof. We prove by induction, following the approach of Rosu and Saleh [18]. SinceEt (ωj,t+1) =
ωj,t, the following equation holds for all t ≥ 0:

Var (ωj,t+1) = Var (ωj,t) +E (Vart (ωj,t+1)) . (B.4)
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From Lemma B.1, we establish the base case at t = 1:

Var (ωj,1) = ωj,0 (1− ωj,0)E

[(
R1

S1

)2
]
,

= z1ωj,0 (1− ωj,0) .

Next, we assume that Eq. (B.1) holds for all time steps up to t = k, where k > 1. At time
t = k + 1, we have

Var (ωj,t+1) = Var (ωj,t) +E

{
ωj,t (1− ωj,t)Et

[(
Rt+1

St+1

)2
]}

,

from Lemma B.1 and Eq. (B.4). Since Var (ωj,t) = atωj,0 (1− ωj,0), we have

Var (ωj,t+1) = atωj,0 (1− ωj,0) +
(
ωj,0 − atωj,0 (1− ωj,0)− ω2

j,0

)
·E

[(
Rt+1

St+1

)2
]
,

= ωj,0 (1− ωj,0)

{
at + (1− at)E

[(
Rt+1

St+1

)2
]}

.

This completes the induction step and proves the lemma. □

Lemma B.3. When γ = 0, let the sequence {at}t≥0 be defined as in Eqs. (B.2)–(B.3) and

extend it by setting a0 = 0. This sequence satisfies at ∈ [0, 1] and is non-decreasing, i.e.,
at+1 ≥ at, for all t.

Proof. We prove by induction. When γ = 0, the sequence {St} satisfies the recurrence
relation

St+1 = St +Rt+1 − α

as given by Eq. (2.3). For the base case t = 1, by Eqs. (B.2)–(B.3), we have

a1 = E

[(
R1

S1

)2
]
= E

[(
R1

S0 +R1 − α

)2
]
∈ [0, 1] ,

since α < S0 by Assumption 2.10. Clearly, a1 ≥ a0 = 0. Suppose that at ∈ [0, 1] and
at+1 ≥ at, for all 1 ≤ t ≤ k. At t = k + 1, we have ak+1 = ak + zk+1 (1− ak). By the
definition of zt,

zk+1 = E

[(
Rk+1

Sk+1

)2
]
,

= E

( Rk+1

S0 +
∑k+1

i=1 Ri − (k + 1)α

)2
 ∈ [0, 1] ,

since α < S0 and α < Rmin by Assumption 2.10. Therefore, it follows that ak+1 ≥ ak and
ak+1 ∈ [0, 1]. This completes the induction step and the lemma is proved. □
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Lemma B.4. Let at be defined by Eqs. (B.2)–(B.3). We have for each t ≥ 1,

at ≤
R2

max

S0 (Rmin − α)
. (B.5)

Proof. By Eqs. (B.2)–(B.3), we have

at − a0 =

t∑
i=1

zi (1− ai−1) ,

noting that a0 := 0. It follows from Lemma B.3 that at ∈ [0, 1]. Consequently, we obtain

at ≤
t∑

i=1

zi =

t∑
i=1

E

[(
Ri

Si

)2
]
,

≤
t∑

i=1

(
Rmax

S0 + i (Rmin − α)

)2

,

where the last inequality follows from the fact that Si = S0+
∑i

j=1Ri−iα. Since the function

x →
(

Rmax
S0+x(Rmin−α)

)2
is decreasing on R+ due to Rmax > 0, S0 > 0, and Rmin − α > 0 (by

Assumption 2.10), using the sum-integral trick as in Rosu and Saleh [18, Lemma A.4], we
obtain:

at ≤
∫ ∞

0

(
Rmax

S0 + x (Rmin − α)

)2

dx =
R2

max

S0 (Rmin − α)
. (B.6)

□

Proof of Theorem 4.5. By Lemma B.2, Chebyshev’s inequality, and the uppder bound in B.5,
we get

P

(∣∣∣∣ωj,t

ωj,0
− 1

∣∣∣∣ > ϵ

)
≤ at (1− ωj,0)

ϵ2ωj,0
≤ R2

max

ϵ2sj,0 (Rmin − α)
,

since S0ωj,0 = sj,0 and 0 ≤ 1− ωj,0 ≤ 1. This proves the estimate (4.4).

Appendix C. Additional Results for Numerical Experiments

Figure 5. Distribution of final stake shares (α ̸= 0, γ = 0)
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Figure 6. Histogram of the joint distribution of final stake shares (α ̸= 0, γ = 0)

Figure 7. Distribution of final stake shares with large initial stakes (α ̸=
0, γ = 1.5)

Figure 5 illustrates the limiting stake distribution under conditions of high consumption
costs and small initial stakes, specifically with γ = 0, α = 8, and initial stakes s1,0 = 10, s2,0 =
20, s3,0 = 30. The reward Rt follows a similar setting as in previous cases. Under this setting,
we observe that some validators’ stake shares are likely to be driven toward zero, as explained
in Section 5.2. Their joint distribution is shown in Figure 6.

Compared to the previous setting, where the initial stakes for the three players are 10, 20,
and 30, as shown in Figures 3, 4, and 5, we set the initial stakes to 1000, 2000, and 3000,
respectively, in Figure 7. In this setting, we observe that the limiting share, ωj,T , indeed con-
verges to the initial share, consistent with the theoretical results established in Theorem 4.5.
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