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POLICY ITERATION FOR THE DETERMINISTIC CONTROL
PROBLEMS---A VISCOSITY APPROACH\ast 

WENPIN TANG\dagger , HUNG VINH TRAN\ddagger , AND YUMING PAUL ZHANG\S 

Abstract. This paper is concerned with the convergence rate of policy iteration for (determin-
istic) optimal control problems in continuous time. To overcome the problem of ill-posedness due to
lack of regularity, we consider a semidiscrete scheme by adding a viscosity term via finite differences
in space. We prove that the policy iteration (PI) for the semidiscrete scheme converges exponentially
fast and provide a bound on the error induced by the semidiscrete scheme. We also consider the
discrete space-time scheme, where both space and time are discretized. The convergence rate of PI
and the discretization error are studied.

Key words. finite differences, Hamilton--Jacobi--Bellman equations, optimal control, policy
iteration
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1. Introduction. Optimal control is ubiquitous in science and engineering with
a variety of applications including aerospace engineering [6, 10], chemical engineer-
ing [38], economy [29], operations research [45, 48] and robotics [2, 15]. Dynamic
programming (DP) has proved to be an efficient tool for solving multistage optimal
control problems since its inception by Bellman [5]. In recent years, reinforcement
learning (RL) has shown great success in resolving complex decision-making prob-
lems, notably AlphaGo [49] and humanoid tasks [22]. Policy iteration (PI), as a class
of approximate or adaptive dynamic programming (ADP), is instrumental in many
RL algorithms [51].

The idea of PI dates back to Howard [24] in a stochastic environment known as the
Markov decision process (MDP). Subsequent works [7, 40, 41] explored PI for MDPs
in discrete time and space; recently, [8, 36] considered PI for (deterministic) optimal
control problems in discrete time and continuous space. In these works, PIs are proved
to converge to the optimal control under suitable conditions on the model parameters.
Furthermore, [42, 47] studied the convergence rate of PI for infinite horizon MDP. On
the other hand, many real-world problems are modeled by dynamical systems evolving
in continuous time, and it is known that DP for optimal control in continuous time
and space entails the Hamilton--Jacobi--Bellman (HJB) partial differential equation
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376 WENPIN TANG, HUNG VINH TRAN, AND YUMING PAUL ZHANG

(PDE). Despite its importance, PI for optimal control problems in continuous time
and space has mostly been studied in the linear quadratic setting [32, 55] or those with
a specific structure that allows solvability to some extent [1]. It was not until recently
that the general space-time problems were considered in [34] under a fixed point
assumption. For the stochastic control problems, [31, 44] showed that PI converges
exponentially fast in the case where controls are only exercised on the drift term
of the state process. Similar results were derived for the corresponding entropy-
regularized problems [26, 53]. Recently, PI for mean field games was considered in
[11, 13, 14]. We also mention that, in a closely related direction, [9, 57] studied
value iteration for optimal control problems. References [28, 37] proposed differential
dynamic programming. It relies on a quadratic approximation to the value function,
which requires the second-order property of the model parameters. See [35, 56] for
recent progress on the theory and applications of ADP for optimal control and RL.

In this paper, we study the convergence rate of PI for optimal control problems
in continuous time and their discretization under general conditions on the model
parameters. We will assume that the cost function, the control, and the vector field
that controls the system's state are all uniformly bounded and Lipschitz continuous.
However, some of our results hold under more general assumptions (see Remark 3.4).
Note that the convergence analysis in [1, 32, 55] relies on the specific structure of the
problem, while [34] assumed that the HJB operator enjoys a fixed point or a contrac-
tion property, which is hard to verify. None of these works quantified the convergence
of PI to the optimal control. Moreover, PI for continuous-time control problems may
even be ill-posed due to lack of regularity. Our idea is to introduce a viscosity term
``h\Delta h"" in the policy evaluation, where h is the mesh size and \Delta h is the discrete Lapla-
cian in space. We call it a semidiscrete scheme. Essentially, the viscosity term is of
order 1, which ensures that the finite difference scheme is monotone. A monotone
scheme is commonly desirable for numerical implementation, so the addition of the
finite difference viscosity term is natural. On the other hand, the viscosity term in
the semidiscrete scheme mimics the vanishing viscosity approximation to first-order
PDEs [20], which forces PI to converge exponentially fast (Theorem 3.1 and Theo-
rem 3.3), as for the stochastic control problems. We also prove that the discrepancy
between the optimal control problem and its semidiscrete scheme is of order

\surd 
h as

h \rightarrow 0 (Theorem 3.5). If further assuming the cost function and the vector field to
be uniformly bounded in W 2,\infty in space, then the policy in PI converges almost ev-
erywhere (Theorem 3.7). Furthermore, we consider the time-discretization, called a
discrete space-time scheme. The same results hold for PI for the discrete space-time
scheme (Theorem 4.1 and Theorem 4.2). Our results echo recent work [23], which
asserts that noise enhances the convergence of finite horizon RL algorithms. In our
setting, noise corresponds to the viscosity term, and the importance of a finite horizon
is seen from various bounds with exponential dependence in time. Our analysis relies
on PDE techniques (which are also useful in analyzing vanishing viscosity approxima-
tions for mean field games [52]) and may carry over to the study of differential games
in solving Hamilton--Jacobi--Bellman--Issacs (HJBI) equations.

To the best of our knowledge, the exponential convergence results in Theo-
rems 3.1, 3.3, and 4.1 are new in the literature and they are essentially optimal. For
the quantitative convergence of the solutions to the semidiscrete scheme and the dis-
crete space-time scheme to these of the continuous equations in Theorems 3.5 and 4.2,
we follow the approach of Crandall and Lions [16]. Note that [16] does not deal with
PI and approximated optimal policies.
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PI FOR THE DETERMINISTIC CONTROL PROBLEMS 377

The rest of the paper is organized as follows. In section 2, we provide back-
ground and present the semidiscrete and the discrete space-time schemes. In section 3,
we study the semidiscrete scheme, and in section 4, we analyze the discrete space-
time scheme. We provide further PDE perspectives in section 5. We conclude with
section 7.

2. Setup and preliminary results. In this section, we present the semidiscrete
and the discrete space-time schemes. Consider a system whose state is governed by
the ordinary differential equation

dx(t)

dt
= f(t, x(t), \alpha (t)),(2.1)

where, for 0 \leq t \leq T , x(t) \in \BbbR d is the system state, \alpha (t) \in A \subset \BbbR m is the control
or policy, and f : [0, T ] \times \BbbR d \times A \rightarrow \BbbR d is Lipschitz continuous. Here, A is a given
compact subset of \BbbR m. The objective is

J(t, x,\alpha ) :=

\int T

t

c(s,x(s), \alpha (s))ds+ q(x(T )) given x(t) = x,(2.2)

and the goal is to minimize this objective function. Denote by

v\ast (t, x) := inf
\alpha \in \scrA t

J(t, x,\alpha ),(2.3)

where \scrA t is the standard admissible policy defined as \scrA t = \{ \alpha : [t, T ] \rightarrow A : \alpha is
measurable\} . It is known that, under suitable conditions on c(\cdot ) and q(\cdot ) (see [21,
Chapter 2] or [54, Chapter 2]), v\ast defined by (2.3) is the viscosity solution to\Biggl\{ 

\partial tv(t, x) +H(t, x,\nabla v(t, x)) = 0 in (0, T )\times \BbbR d,

v(T,x) = q(x) on \BbbR d,
(2.4)

where the Hamiltonian H : [0, T ]\times \BbbR d \times \BbbR d \rightarrow \BbbR is given by

H(t, x, p) := inf
a\in A

[c(t, x, a) + p \cdot f(t, x, a)] .

We assume the above infimum is achieved at a unique a\in A. Denote by

\alpha (t, x, p) := argmin
a\in A

[c(t, x, a) + p \cdot f(t, x, a)] .(2.5)

The optimal policy is given by

\alpha \ast (t, x) = \alpha (t, x,\nabla v\ast (t, x)).(2.6)

We impose the following assumptions.
(A1) c(\cdot , \cdot , \cdot ), f(\cdot , \cdot , \cdot ), q(\cdot ) are uniformly bounded and Lipschitz continuous in all of

their dependencies.
(A2) \alpha (\cdot , \cdot , \cdot ), the unique solution to (2.5), is uniformly Lipschitz continuous in all

of its dependencies on [0, T ]\times \BbbR d \times A.
Condition (A2) is restrictive, which is required to ensure the well-posedness and reg-
ularity properties of the PI algorithm. It is hard to relax this condition because the
control \alpha appears directly in PI.

PI is an ADP that alternates between policy evaluation to get the value function
with the current control and policy improvement to optimize the value function. More
precisely, for n= 0,1, . . ., the iterative procedure is as follows:
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378 WENPIN TANG, HUNG VINH TRAN, AND YUMING PAUL ZHANG

\bullet Given \alpha n(t, x), solve the linear PDE\Biggl\{ 
\partial tvn(t, x) + c(t, x,\alpha n(t, x)) +\nabla vn(t, x) \cdot f(t, x,\alpha n(t, x)) = 0 in (0, T )\times \BbbR d,

vn(T,x) = q(x) on \BbbR d.
(2.7)

\bullet Set

\alpha n+1(t, x) = \alpha (t, x,\nabla vn(t, x)) = argmin
a\in A

[c(t, x, a) +\nabla vn(t, x) \cdot f(t, x, a)] .(2.8)

The key is to understand how the sequence \{ vn\} approximates the optimal value v\ast 
and how \{ \alpha n\} approximates the optimal policy \alpha \ast .

On the other hand, it is not clear whether the PI scheme (2.7) and (2.8) is well-
posed. Intuitively, to make sense of \alpha n+1, we need vn to be Lipschitz continuous, for
which we then need \alpha n to be Lipschitz. This, in turn, requires \nabla vn - 1 to be Lipschitz.
After iterations, we need v0 to be smooth, which is not generally true.

Throughout the paper, we denote by \BbbN the set of all positive natural numbers
and \BbbZ the set of all integers. For any h > 0, we write h\BbbZ d := \{ hz | z \in \BbbZ d\} . Let \BbbR d

be the Euclidean space of dimension d and | \cdot | the Euclidean distance. For R > 0,
by BR we mean the ball in \BbbR d of radius R and centered at the origin. For a vector
field f : [0, T ]\times \BbbR d \times A\rightarrow \BbbR d, we denote its infinity norm by \| f\| \infty . For a function
g : [0, T ]\times \BbbR d \rightarrow \BbbR , the spatial gradient is denoted as \nabla g(t, x) = \nabla x g(t, x), and the
partial derivative with respect to time is denoted as \partial tg(t, x).

We write C as various universal constants that only depend on d and the constants
in (A1) and (A2) unless otherwise stated. Specifically, since T,h are not universal
constants, we keep track of the dependence on T,h in most estimates. The constants
C might vary from one line to another. By CX or C(X), we mean a constant that
depends on universal constants and X.

2.1. Semidiscrete schemes. For T > 0, h \in (0,1), N \geq max\{ 1,\| f\| \infty /2\} , and
a given Lipschitz continuous function \alpha 0 :\BbbR \times \BbbR d \rightarrow A, we solve for n= 0,1, . . .:

\left\{     
\partial tv

h
n(t, x) + c(t, x,\alpha n(t, x)) +\nabla hvhn(t, x) \cdot f(t, x,\alpha n(t, x))

= - Nh\Delta hvhn(t, x) in (0, T )\times \BbbR d,

vhn(T,x) = q(x) on \BbbR d.

(2.9)

Then, set

\alpha n+1(t, x) = \alpha (t, x,\nabla hvhn(t, x)) in (0, T )\times \BbbR d.(2.10)

Here, for any \varphi :\BbbR d \rightarrow \BbbR and h\in \BbbR \setminus \{ 0\} , we use the notations

\nabla h\varphi (x) :=

\biggl( 
\varphi (x+ he1) - \varphi (x - he1)

2h
, . . . ,

\varphi (x+ hed) - \varphi (x - hed)

2h

\biggr) 
,

\Delta h\varphi (x) :=

d\sum 
i=1

\varphi (x+ hei) - 2\varphi (x) +\varphi (x - hei)

h2
.

Later, we will also write Dh\varphi (x) := (\varphi (x+he1) - \varphi (x)
h , . . . , \varphi (x+hed) - \varphi (x)

h ). It is clear
that

\nabla h\varphi (x) =
1

2

\bigl( 
Dh\varphi (x) +D - h\varphi (x)

\bigr) 
.(2.11)
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PI FOR THE DETERMINISTIC CONTROL PROBLEMS 379

The assumptionN \geq \| f\| \infty /2 guarantees that the numerical Hamiltonian is mono-
tone, and, as a consequence of this, the following comparison principle holds (see, e.g.,
[16, 39, 54]).

Lemma 2.1. Let vh0 and \~vh0 be, respectively, a bounded continuous super- and
subsolution to (2.9) with n = 0 and satisfy \~vh0 \leq vh0 at t = T . Then, \~vh0 \leq vh0 in
[0, T ] \times \BbbR d. Here, by a supersolution (resp., subsolution), we mean that it satisfies
(2.9) with the first equality replaced by \leq (resp., \geq ) and the second equality replaced
by \geq (resp., \leq ).

First, we show that the scheme (2.9) and (2.10) is well-posed.

Proposition 2.2. Assume (A1) and (A2) and that N \geq max\{ 1,\| f\| \infty /2\} . Then,
the iterative process (2.9) and (2.10) is well-defined; that is, there are Lipschitz con-
tinuous functions vhn, \alpha n satisfying (2.9) and (2.10), and vhn are uniformly bounded for
all n\geq 0 and h> 0.

Proof. Since \alpha 0 is Lipschitz continuous, the unique solvability of (2.9) for n = 0
follows from [33, Theorem 2.4]. If one can show that vh0 is uniformly bounded and
Lipschitz continuous with Lipschitz constant Ch, then \alpha 1 is Lipschitz continuous with
Lipschitz constant C \prime 

h/h for some C \prime 
h > 0 by the assumption that \alpha is Lipschitz and\bigm| \bigm| \nabla hvh0 (t, x) - \nabla hvh0 (s, y)

\bigm| \bigm| 
\leq 

\bigm| \bigm| \bigm| \bigm| \Bigl( vh0 (t, x+ he1) - vh0 (s, y+ he1) - vh0 (t, x - he1) + vh0 (s, y - he1)

2h
, . . .

\Bigr) \bigm| \bigm| \bigm| \bigm| 
\leq h - 1Ch(| x - y| + | t - s| ).

From the same argument, we obtain a unique bounded and Lipschitz solution vh1 . The
existence of solutions then follows from iterations.

First, we prove the boundedness of vh0 . Since c(\cdot , \cdot , \cdot ), q(\cdot ) are uniformly bounded,
we have that \pm [\| q\| \infty + \| c\| \infty (T  - t)] are a supersolution and a subsolution to (2.9)
with n= 0, respectively. Hence, by Lemma 2.1,

 - \| q\| \infty  - \| c\| \infty (T  - t)\leq vh0 (t, x)\leq \| q\| \infty + \| c\| \infty (T  - t)

for all (t, x)\in [0, T ]\times \BbbR d. The same bound holds for all vhn by this argument.
Next, we show that vh0 is Lipschitz continuous with Lipschitz constant independent

of h when T = T0 is sufficiently small depending only on the Lipschitz norms of c, f and
\alpha 0 presented in assumptions (A1) and (A2). The general result for any T > 0 follows
immediately by iterations and shifting in time on [0, T0], [T0,2T0], . . ., to [kT0, (k +
1)T0], where kT0 <T \leq (k+ 1)T0 for some k \in \BbbN . For simplicity of notation, write

G(t, x, p) := c(t, x,\alpha 0(t, x)) + p \cdot f(t, x,\alpha 0(t, x)).

Then, for M := 2\| \nabla q\| \infty + 1, define

\~G(t, x, p) :=

\Biggl\{ 
G(t, x, p) if | p| \leq M,

G(t, x,Mp/| p| ) if | p| >M.

It follows from (A1) and the Lipschitz continuity of \alpha 0 that G is Lipschitz continuous
in (t, x) with Lipschitz constant C(1+ | p| ). Thus, also using that \| f\| \infty \leq 2N , we get
that, for all t, x, p,

| \~Gt(t, x, p)| , | \~Gx(t, x, p)| \leq C(1 +M), | \~Gp(t, x, p)| \leq 2N,(2.12)
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380 WENPIN TANG, HUNG VINH TRAN, AND YUMING PAUL ZHANG

where C only depends on the Lipschitz norms of c, f , and \alpha 0.
Now, let \~vh be the solution to\Biggl\{ 

\partial t\~v
h(t, x) + \~G(t, x,\nabla h\~vh(t, x)) = - Nh\Delta h\~vh(t, x),

\~vh(T,x) = q(x).

The goal is to show that \~vh is Lipschitz continuous and \~vh = vh0 in [0, T ]\times \BbbR d.

It follows from the equation of \~vh that ps(t, x) :=
\~vh(t,x+se) - \~vh(t,x)

s for any e\in \BbbS d - 1

and that s\in (0,1) satisfies

\left\{   \partial tps(t, x) +G1(t, x) +G2(t, x) \cdot \nabla hps(t, x) = - Nh\Delta hps(t, x) in (0, T )\times \BbbR d,

ps(T,x) =
q(x+ se) - q(x)

s
on \BbbR d,

(2.13)

where

G1(t, x) :=
1

s

\int s

0

\~Gx

\bigl( 
t, x+ ze,\nabla h\~vh(t, x+ se)

\bigr) 
\cdot edz,

G2(t, x) :=

\int 1

0

\~Gp

\bigl( 
t, x,\nabla h\~vh(t, x) + z(\nabla h\~vh(t, x+ se) - \nabla h\~vh(t, x))

\bigr) 
dz.

It is clear from (2.12) that | G1| \leq C(1 + M) and | G2| \leq 2N . This yields that the
comparison principle for (2.13) holds. Thus, by comparing ps with \pm (\| \nabla q\| \infty +C(1+
M)(T  - t)), we obtain | ps(t, x)| \leq \| \nabla q\| \infty + C(1 +M)(T  - t). Sending s\rightarrow 0 yields
that, for some C depending only on (A1), | \nabla e\~v

h(t, x)| \leq \| \nabla q\| \infty +C(1 +M)(T  - t).
Thus, if t\leq T \leq (2C) - 1, we have that \~vh(t, x) is Lipschitz and

sup
(t,x)\in [0,T ]\times \BbbR d

| \nabla \~vh(t, x)| \leq \| \nabla q\| \infty + 1/2 +M/2 =M.

From the definition of \nabla h, we get sup(t,x)\in [0,T ]\times \BbbR d | \nabla h\~vh(t, x)| \leq M. Hence, \~vh is
a solution to (2.9) for n = 0. The uniqueness of the solution to (2.9) yields that
vh0 \equiv \~vh. So, we obtain the uniform Lipschitz continuity of vh0 in space with the
Lipschitz constant of the form C exp(CT ). The Lipschitz regularity in time follows
from the equation.

We point out that the Lipschitz constant of vhn may depend on both n and h for
n\geq 1. Another consequence of the comparison principle is that the functions vhn are
monotone decreasing in n.

Proposition 2.3. Under the assumptions of Proposition 2.2, we have that, for
all n\geq 0,

vhn+1(t, x)\leq vhn(t, x) for all (t, x)\in [0, T ]\times \BbbR d.

Proof. By the definition of \alpha n,

c(t, x,\alpha n+1(t, x)) +\nabla hvhn(t, x) \cdot f(t, x,\alpha n+1(t, x))

\leq c(t, x,\alpha n(t, x)) +\nabla hvhn(t, x) \cdot f(t, x,\alpha n(t, x)).

Thus, vhn = vhn(t, x) is a supersolution to (2.9) with subscripts n+1 because it satisfies

\partial tv
h
n + c(t, x,\alpha n+1(t, x)) +\nabla hvhn \cdot f(t, x,\alpha n+1(t, x))\leq  - Nh\Delta hvhn in (0, T )\times \BbbR d.
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PI FOR THE DETERMINISTIC CONTROL PROBLEMS 381

Therefore, the comparison principle (Lemma 2.1) yields that vhn+1 \leq vhn in [0, T ]\times \BbbR d

for each n\geq 0.

Since vhn is uniformly bounded for all n\geq 0, the monotonicity property of vhn in n
from Proposition 2.3 yields that vhn converges locally uniformly as n\rightarrow \infty . We denote
the limit as vh. Then, by the stability property of viscosity solutions, vh solves\Biggl\{ 

\partial tv
h(t, x) +H(t, x,\nabla hvh(t, x)) = - Nh\Delta hvh(t, x) in (0, T )\times \BbbR d,

vh(T,x) = q(x) on \BbbR d,
(2.14)

where

H(t, x, p) := c(t, x,\alpha (t, x, p)) + p \cdot f(t, x,\alpha (t, x, p))
=min

a\in A
[c(t, x, a) + p \cdot f(t, x, a)] .(2.15)

Since \alpha (t, x, p) is assumed to be uniformly Lipschitz continuous in all of its dependen-
cies, there exists C > 0 such that, for all (t, x, p)\in [0, T ]\times \BbbR d \times \BbbR d,

| Ht(t, x, p)| , | Hx(t, x, p)| \leq C(1 + | p| ), | Hp(t, x, p)| \leq C.(2.16)

The same proof of uniform boundedness and Lipschitz continuity for vh0 in Proposi-
tion 2.2 can show that vh is uniformly bounded and Lipschitz continuous and that the
estimates are uniform in h> 0. In Lemma 2.4, we also consider the unique solution v
to (2.4), as one expects that it is the limit of vh as h\rightarrow 0. We will prove this fact in
Theorem 3.5.

Lemma 2.4. Under the assumptions of Proposition 2.2, let vh0 , v
h and v be, re-

spectively, solutions to (2.9) (for n= 0), (2.14), and (2.4). Then, in [0, T ]\times \BbbR d, vh0 , v
h

and v are bounded by C(1 + T ) and are Lipschitz continuous with Lipschitz constant
C exp(CT ) for some universal constant C > 0.

For a general class of first-order Hamilton--Jacobi (continuous) equations, we refer
to [3, 4] for the regularity results.

2.2. Discrete space-time schemes. Now, we consider the scheme that is dis-
crete in both space and time. Let \tau ,h\in (0,1) and N such that

max\{ 1,\| f\| \infty /2\} \leq N \leq h/(2d\tau ).(2.17)

Assuming that T/\tau \in \BbbN , we denote

\BbbN \tau 
T := \{ 0, \tau ,2\tau , . . . , T\} , \BbbZ d

h := h\BbbZ d,

\Omega \tau ,h
T :=\BbbN \tau 

T \times \BbbZ d
h, and \Omega \prime 

T := (\BbbN \tau 
T \setminus \{ 0\} )\times \BbbZ d

h.

Given a Lipschitz continuous function \alpha 0(t, x), let V
\tau ,h
n : \Omega \tau ,h

T \rightarrow \BbbR be defined itera-
tively for n= 0,1, . . . as follows:\left\{   

\partial \tau t V
\tau ,h
n (t, x) + c(t, x,\alpha n(t, x)) +\nabla hV \tau ,h

n (t, x) \cdot f(t, x,\alpha n(t, x))
= - Nh\Delta hV \tau ,h

n (t, x) in \Omega \prime 
T ,

V \tau ,h
n (T,x) = q(x) on \BbbZ d

h

(2.18)

with

\alpha n+1(t, x) := \alpha (t, x,\nabla hV \tau ,h
n (t, x)) in \Omega \prime 

T .(2.19)
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382 WENPIN TANG, HUNG VINH TRAN, AND YUMING PAUL ZHANG

Here, we used the notation \partial \tau t V
\tau ,h
n (t, x) :=

V \tau ,h
n (t,x) - V \tau ,h

n (t - \tau ,x)
\tau .

We also consider the following equation:\Biggl\{ 
\partial \tau t V

\tau ,h(t, x) +H(t, x,\nabla hV \tau ,h(t, x)) = - Nh\Delta hV \tau ,h(t, x) in \Omega \prime 
T ,

V \tau ,h(T,x) = q(x) on \BbbZ d
h

(2.20)

where H is given by (2.15). The goal is to show that V \tau ,h
n converges to V \tau ,h as n\rightarrow \infty 

and V \tau ,h converges to v as \tau ,h\rightarrow 0, where v is given by (2.4).
We will use the following operator. For each t \in \BbbN \tau 

T , let \scrF t : L
\infty (\BbbZ d

h)\rightarrow L\infty (\BbbZ d
h)

be defined as

\scrF t(U)(x) :=U(x) + \tau H(t, x,\nabla hU(x)) +Nh\tau \Delta hU(x).(2.21)

Then, the equation in (2.20) can be rewritten as V \tau ,h
n (t - \tau ,x) =\scrF t(V

\tau ,h
n (t, \cdot ))(x). We

need

max\{ 1,\| Hp\| \infty /2\} \leq N \leq h/(2d\tau )

(which corresponds to (2.17) as \| Hp\| \infty = \| f\| \infty ) to guarantee a monotonicity property
of the operator \scrF t. That is, for all t \in \BbbN \tau 

T and U,V \in L\infty (\BbbZ d
h) satisfying U \leq V , we

have that \scrF t(U) \leq \scrF t(V ); see, e.g., [16, 54]. It is easy to see that the same holds if
we replace H(t, x, p) by c(t, x,\alpha n(t, x)) + p \cdot f(t, x,\alpha n(t, x)) because \| f\| \infty \leq 2N .

The monotonicity property is important because it immediately implies the com-
parison principle of (2.20) and the scheme (2.18) and (2.19), in the sense that is similar
to Lemma 2.1. As a consequence of this, one can show the following properties.

Proposition 2.5. Assume (A1) and (A2) and (2.17). Then, in \Omega \tau ,h
T , the solu-

tions V \tau ,h
n , V \tau ,h are bounded by C(1+T ) and are Lipschitz continuous with Lipschitz

constant C exp(CT ) for some universal constant C > 0. Moreover, for all n \geq 0, we
have that V \tau ,h

n+1(t, x)\leq V \tau ,h
n (t, x) for all (t, x)\in \Omega \tau ,h

T .

The proof of Proposition 2.5 is similar to those of Propositions 2.2 and 2.3 and
Lemma 2.4, and hence, we skip it.

3. Analysis of semidiscrete schemes.

3.1. Convergence of PI. We show that, for each fixed h \in (0,1), vhn \rightarrow vh as
n\rightarrow \infty exponentially fast in an L2

loc norm. We will assume T \geq 1 for convenience.

Theorem 3.1. Assume (A1) and (A2) and N \geq 1. Let vhn and vh be, respectively,
continuous solutions to (2.9) and (2.14). Then, there exists a universal constant C > 0
such that, for all n\geq 1, R\geq 1, and t\in [0, T ], we have that\int 

BR

\bigm| \bigm| vhn(t, x) - vh(t, x)
\bigm| \bigm| 2 dx\leq h

2n+1

\int T

t

\int 
\BbbR d

exp
\bigl[ 
C(1 + \| \nabla hvh\| 2\infty )(s - t)/h

\bigr] 
\times 
\bigm| \bigm| Dh(vh0 (s,x) - vh(s,x))

\bigm| \bigm| 2min
\Bigl\{ 
1, e - | x| +R+1

\Bigr\} 
dxds.

In particular, we have that

sup
t\in [0,T ]

\int 
BR

\bigm| \bigm| vhn(t, x) - vh(t, x)
\bigm| \bigm| 2 dx\leq C2 - n exp [C exp(CT )/h]Rd.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/2

4/
25

 to
 1

60
.3

9.
34

.7
9 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



PI FOR THE DETERMINISTIC CONTROL PROBLEMS 383

Proof. In this proof, we write vn := vhn and v := vh and assume T \geq 1 for simplicity.
For any fixed R\geq 1, let \varphi =\varphi R : [0,\infty )\rightarrow (0,1] be C1 and satisfy

\varphi (r) = 1 on [0,R], \varphi (r) = e - r+R on [R+ 1,\infty ),

 - \varphi \prime (r)\in [0,4\varphi (r)] for all r > 0.
(3.1)

It is clear that such \varphi exists. Later, we write \varphi (x) :=\varphi (| x| ) for x\in \BbbR d.
Next, for some A> 0 to be determined, set

Et,n :=
1

2
eAt

\int 
\BbbR d

| vn(t, x) - v(t, x)| 2\varphi (x)dx,(3.2)

which is finite since vn, v are uniformly bounded. Direct computation yields that

d

dt
Et,n =AEt,n + eAt

\int 
\BbbR d

(vn(t, x) - v(t, x)) (\partial tvn(t, x) - \partial tv(t, x))\varphi (x)dx\underbrace{}  \underbrace{}  
=:Xt,n

.(3.3)

Recall from (2.15) that H(t, x, p) = c(t, x,\alpha (t, x, p))+\nabla v \cdot f(t, x,\alpha (t, x, p)). Below,
we write

c := c(t, x,\alpha (t, x,\nabla hv(t, x))) and f := f(t, x,\alpha (t, x,\nabla hv(t, x))),

cn := c(t, x,\alpha n(t, x)) and fn := f(t, x,\alpha n(t, x)))

for simplicity. We will also drop (t, x) from the notations of v(t, x) and vn(t, x) and
(x) from \varphi (x) when there is no confusion. Direct computation yields that\int 

\BbbR d

(\Delta hv)v\varphi dx

= - 
\int 
\BbbR d

| Dhv| 2\varphi dx+ 1

h2

d\sum 
i=1

\int 
\BbbR d

v(t, x+ hei)(v(t, x+ hei) - v(t, x))\varphi (x)dx

 - 1

h2

d\sum 
i=1

\int 
\BbbR d

v(t, x)(v(t, x) - v(t, x - hei))\varphi (x)dx

= - 
\int 
\BbbR d

| Dhv| 2\varphi dx - 
\int 
\BbbR d

vD - hv \cdot D - h\varphi dx,

where the last equality was obtained by a change of variable. We then deduce from
the equation that

Xt,n = - 
\int 
\BbbR d

(vn  - v)(\nabla hvn \cdot fn + cn +Nh\Delta hvn  - \nabla hv \cdot f  - c - Nh\Delta hv)\varphi dx

\geq Nh

\int 
\BbbR d

| Dh(vn  - v)| 2\varphi dx - Nh

\int 
\BbbR d

| vn  - v| | D - h(vn  - v)| | D - h\varphi | dx

 - 
\int 
\BbbR d

| vn  - v| 
\bigl( 
| \nabla h(vn  - v)| | fn| + | fn  - f | | \nabla hv| + | cn  - c| 

\bigr) 
\varphi dx.

(3.4)

Due to (3.1), | D - h\varphi (x)| \leq C\varphi (x) for some constant C > 0. Also, using \| f\| \infty <\infty 
and (2.11), we have | \nabla h(vn  - v)| | fn| \leq C(| Dh(vn  - v)| + | D - h(vn  - v)| ). Since v is
Lipschitz continuous, | \nabla hv| \leq M for some M \geq 1. So, by (2.10) and the uniform
Lipschitz continuity of f, c, and \alpha , we have that, for some C > 0,

| fn  - f | | \nabla hv| + | cn  - c| \leq CM(| Dh(vn - 1  - v)| + | D - h(vn - 1  - v)| ).(3.5)
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384 WENPIN TANG, HUNG VINH TRAN, AND YUMING PAUL ZHANG

With all these, if denoting

Gh
t,n :=

\int 
\BbbR d

| Dh(vn(t, x) - v(t, x))| 2\varphi (x)dx,

it follows from (3.4) that, for some C > 0,

Xt,n \geq NhGh
t,n  - C

\int 
\BbbR d

| vn  - v| (| Dh(vn  - v)| + | D - h(vn  - v)| )\varphi dx

 - CM

\int 
\BbbR d

| vn  - v| (| Dh(vn - 1  - v)| + | D - h(vn - 1  - v)| )\varphi dx.

Denote wn(t, x) := vn(t, x) - v(t, x). Since \varphi (x - hei)\leq (1+Ch)\varphi (x) by the choice
of \varphi , there exists C > 0 such that

G - h
t,n =

\int 
\BbbR d

d\sum 
i=1

h - 2| wn(t, x) - wn(t, x - hei)| 2\varphi (x)dx

\leq (1 +Ch)

\int 
\BbbR d

d\sum 
i=1

h - 2| wn(t, x) - wn(t, x - hei)| 2\varphi (x - hei)dx

= (1+Ch)Gh
t,n.

(3.6)

Then, using (3.2) and Young's inequality, we get, for some universal C > 0 and any
\sigma 1, \sigma 2 > 0, that

Xt,n \geq NhGh
t,n  - \sigma 1

2 +Ch

\int 
\BbbR d

(| Dh(vn  - v)| 2 + | D - h(vn  - v)| 2)\varphi dx

 - \sigma 2
2 +Ch

\int 
\BbbR d

(| Dh(vn - 1  - v)| 2 + | D - h(vn - 1  - v)| 2)\varphi dx

 - C(2 +Ch)(\sigma  - 1
1 +M2\sigma  - 1

2 )

\int 
\BbbR d

| vn  - v| 2\varphi dx

\geq (Nh - \sigma 1)G
h
t,n  - \sigma 2G

h
t,n - 1  - C(\sigma  - 1

1 +M2\sigma  - 1
2 )e - AtEt,n.

Using this and ET,n = 0 and integrating (3.3) over [t, T ], we obtain, for some universal
C > 0,

 - Et,n \geq (A - C\sigma  - 1
1  - CM2\sigma  - 1

2 )

\int T

t

Es,n ds

+ (Nh - \sigma 1)

\int T

t

eAsGh
s,n ds - \sigma 2

\int T

t

eAsGh
s,n - 1 ds.

(3.7)

Now, taking \sigma 1 := h/2, \sigma 2 := h/4 and A := 6CM2/h, then (3.7) and N \geq 1 yield
that \int T

t

eAsGh
s,n ds\leq 

1

2

\int T

t

eAsGh
s,n - 1 ds\leq \cdot \cdot \cdot \leq 2 - n

\int T

t

eAsGh
s,0 ds.

With this, (3.7) also shows that Et,n \leq h
4

\int T

t
eAsGh

s,n - 1 ds \leq h
2n+1

\int T

t
eAsGh

s,0 ds.
Therefore, for all n\geq 0 and t\in [0, T ], we obtain that\int 

BR

| vn(t, x) - v(t, x)| 2 dx\leq h

2n+1

\int T

t

\int 
\BbbR d

eA(s - t)| Dh(v0(s,x) - v(s,x))| 2\varphi (x)dxds,

which, combined with Lemma 2.4, concludes the proof.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/2

4/
25

 to
 1

60
.3

9.
34

.7
9 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



PI FOR THE DETERMINISTIC CONTROL PROBLEMS 385

Remark 3.2. In the proof of Theorem 3.1, we only used the following: uniform
Lipschitz continuity of f, c, and \alpha and uniform boundedness of f and | \nabla hvh| . In
particular, the solutions vhn and vh are allowed to have certain growth at x=\infty , and
the comparison principle is not needed.

By Theorem 3.1, we immediately have the convergence of the policies.

Theorem 3.3. Assume (A1) and (A2) and that N \geq 1. Then, there exists a
universal constant C > 0 such that, for all n\geq 0 and R\geq 1, we have that

sup
t\in [0,T ]

\int 
BR

| \alpha (t, x,\nabla hvhn(t, x)) - \alpha (t, x,\nabla hvh(t, x))| 2dx\leq C2 - n exp

\biggl[ 
C

h
exp(CT )

\biggr] 
Rd.

Proof. Since \alpha is Lipschitz continuous,\int 
BR

\bigm| \bigm| \alpha (t, x,\nabla hvhn(t, x)) - \alpha (t, x,\nabla hvh(t, x))
\bigm| \bigm| 2 dx

\leq C

h2

d\sum 
i=1

\int 
BR

\bigm| \bigm| vhn(t, x+ hei) - vh(t, x+ hei) - vhn(t, x - hei) + vh(t, x - hei)
\bigm| \bigm| 2 dx.

We can then conclude the proof from Theorem 3.1.

Remark 3.4. Here, we consider the problem where f is linear in x and c and q
are quadratic in x (again, we assume that the control set A is compact). To compute
the values and the optimal policy on [0, T ]\times BR (then (t, x) \in [0, T ]\times BR), by (2.1),
we have that | x(t)| \leq CReCT for some C > 0. Thus, by (2.2) and (2.3), we only need
the information of c, f , and q (and hence, H) for | x| \leq C \prime ReC

\prime T for some C \prime > 0. We
can then perform a cut-off of c, f , and q for | x| \geq 2C \prime ReC

\prime T so that c, f , and q are
globally bounded and the value function and the optimal policy remain the same on
[0, T ]\times BR. This shows that the boundedness conditions we impose are not restrictive.

Of course, this argument does not work if we need to study the problem globally,
but Theorems 3.1 and 3.3 deal exactly with this bounded setting.

3.2. Convergence of \bfitv \bfith as \bfith \rightarrow 0. Let vh and v be, respectively, solutions to
(2.14) and (2.4). We show that | vh - v| \leq CT

\surd 
h, where the rate is sharp (we refer to a

simple example given in [18]). We also point out that, for a semi-Lagrangian scheme
(which preserves the optimization structure), it is possible to obtain a first-order
estimate O(h) if the discretized solution is semiconcave; see [17, 46]. However, our
scheme is based on finite difference, and it is unclear whether or not vh is semiconcave.
Along this line, our Theorem 3.8 provides a weak semiconcavity result for vh.

Theorem 3.5. Assume (A1) and (A2) and that N \geq max\{ 1,\| f\| \infty /2\} . Then,
there exists a universal constant C > 0 such that

sup
(t,x)\in [0,T ]\times \BbbR d

| v(t, x) - vh(t, x)| \leq C(1 + T )(1 + \| \nabla v\| \infty )
\surd 
h.

In particular, we have that sup(t,x)\in [0,T ]\times \BbbR d | v(t, x) - vh(t, x)| \leq C exp(CT )
\surd 
h.

Remark 3.6. This rate was obtained in [19, 33] for a large class of parabolic
Bellman equations with Lipschitz coefficients. We apply a different argument---the
classical doubling variable method that is used in [16], in which a discrete space-
time homogeneous Hamilton--Jacobi equation is discussed. This argument allows us
to obtain the same sharp estimate for the scheme (2.18), while it seems that the
method in [19, 33] cannot (see Remark 4.3). See also [12] for a different proof of this
convergence rate via the nonlinear adjoint method.
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386 WENPIN TANG, HUNG VINH TRAN, AND YUMING PAUL ZHANG

Proof. We assume that T \geq 1. Suppose, for some (t0, x0)\in [0, T ]\times \BbbR d, that

8\sigma := v(t0, x0) - vh(t0, x0)\geq 
1

2
sup

(t,x)\in [0,T ]\times \BbbR d

\bigl[ 
v(t, x) - vh(t, x)

\bigr] 
> 0.(3.8)

Below, we will show that \sigma \leq CT (1 + \| \nabla v\| \infty )
\surd 
h.

Consider a smooth function g :\BbbR d+1 \rightarrow [0,1] such that
(g1) g(t, x) = 1 - t2  - | x| 2 if t2 + | x| 2 < 1/2,
(g2) 0\leq g(t, x)\leq 1/2 if t2 + | x| 2 > 1/2 and g(t, x) = 0 if t2 + | x| 2 > 1.

For \varepsilon > 0, denote g\varepsilon (t, x) := g(t/\varepsilon ,x/\varepsilon ) and

L := sup
\Bigl\{ 
v(t, x), - vh(t, x) : (t, x)\in [0, T ]\times \BbbR d

\Bigr\} 
+ 1\geq 1.

By Lemma 2.4, \sigma \leq L \leq CT for some universal constant C > 0. Next, for \phi (x) :=
(1 + | x| 2)1/2 and R\geq | x0| + T , we define \Phi h : [0, T ]2 \times \BbbR 2d \rightarrow \BbbR by

\Phi h(t, s, x, y) := v(t, x) - vh(s, y) - \sigma 

T
(2T  - t - s)

 - \sigma 

R
(\phi (x) + \phi (y)) + (8L+ 2\sigma )g\varepsilon (t - s,x - y).

Since v, vh are bounded and continuous, there exists (t1, s1, x1, y1)\in [0, T ]2 \times \BbbR 2d

such that

\Phi h(t1, s1, x1, y1) = max
[0,T ]2\times \BbbR 2d

\Phi h(t, s, x, y).(3.9)

Due to \phi (x0)\leq R, by (3.8),

\Phi h(t1, s1, x1, y1)\geq \Phi h(t0, t0, x0, x0)\geq 8L+ 6\sigma .(3.10)

Since max\{ v(t1, x1), - vh(s1, y1)\} \leq L, we deduce that \Phi h(t1, s1, x1, y1)\leq 2L+ (8L+
2\sigma )g\varepsilon (t1  - s1, x1  - y1), which, together with (3.10), implies that g\varepsilon (t1  - s1, x1  - y1)\geq 
3/4. Then, by (g1), we get that, for some C > 0,

g\varepsilon (t - s,x - y) = 1 - \varepsilon  - 2| t - s| 2  - \varepsilon  - 2| x - y| 2(3.11)

whenever | t - t1| , | s - s1| , | x - x1| , | y - y1| \leq \varepsilon /C.
Now, by (3.9), the mapping

(t, x) \mapsto \rightarrow v(t, x) +
\sigma 

T
t - \sigma 

R
\phi (x) + (8L+ 2\sigma )g\varepsilon (t - s1, x - y1)(3.12)

is maximized at (t, x) = (t1, x1). Together with the fact that v is Lipschitz continuous
(taking M := 1 + \| \nabla v\| \infty ) and | \nabla \phi | \leq 1, we find that | \nabla x g\varepsilon (t1  - s1, x1  - y1)| \leq 
(M + \sigma R - 1)(8L+ 2\sigma ) - 1 and | \partial t g\varepsilon (t1  - s1, x1  - y1)| \leq (M + \sigma T - 1)(8L+ 2\sigma ) - 1. By
(3.11), \sigma \leq L\leq CT , and R\geq T , these yield that

| x1  - y1| \leq C\varepsilon 2(M + \sigma R - 1)(L+ \sigma ) - 1 \leq C\varepsilon 2ML - 1(3.13)

and

| t1  - s1| \leq C\varepsilon 2(M + \sigma T - 1)(L+ \sigma ) - 1 \leq C\varepsilon 2ML - 1.(3.14)
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PI FOR THE DETERMINISTIC CONTROL PROBLEMS 387

Now, we first assume that t1, s1 < T . In view of (3.12), we apply the viscosity
solution test for v to get that

 - \sigma 

T
 - (8L+ 2\sigma )\partial tg\varepsilon (t1  - s1, x1  - y1)

+H
\Bigl( 
t1, x1,

\sigma 

R
\nabla \phi (x1) - (8L+ 2\sigma )\nabla x g\varepsilon (t1  - s1, x1  - y1))

\Bigr) 
\geq 0.

(3.15)

Similarly, since (s, y)\rightarrow vh(s, y) - \sigma 
T s+

\sigma 
R\phi (y) - (8L+2\sigma )g\varepsilon (t1 - s,x1 - y) is minimized

at (s1, y1), the comparison principle yields

\sigma 

T
 - (8L+ 2\sigma )\partial tg\varepsilon (t1  - s1, x1  - y1)

+H
\Bigl( 
s1, y1, - 

\sigma 

R
\nabla h\phi (y1) - (8L+ 2\sigma )\nabla h

x g\varepsilon (t1  - s1, x1  - y1)
\Bigr) 

 - Nh\Delta h
\Bigl[ \sigma 
R
\phi (y1) - (8L+ 2\sigma )g\varepsilon (t1  - s1, x1  - y1))

\Bigr] 
\leq 0.

Thus, we get that

2\sigma 

T
\leq H

\Bigl( 
t1, x1,

\sigma 

R
\nabla \phi (x1) - (8L+ 2\sigma )\nabla x g\varepsilon (t1  - s1, x1  - y1))

\Bigr) 
 - H

\Bigl( 
s1, y1, - 

\sigma 

R
\nabla \phi (y1) - (8L+ 2\sigma )\nabla h

x g\varepsilon (t1  - s1, x1  - y1)
\Bigr) 

+Nh\Delta h
\Bigl[ \sigma 
R
\phi (y1) - (8L+ 2\sigma )g\varepsilon (t1  - s1, x1  - y1))

\Bigr] 
.

(3.16)

It follows from (3.11) that, for h\ll \varepsilon , we have, at point (t1  - s1, x1  - y1), that

\nabla h
x g\varepsilon =\nabla x g\varepsilon = 2\varepsilon  - 2(x1  - y1), \Delta hg\varepsilon = - 2d\varepsilon  - 2.(3.17)

Due to | \nabla \phi | \leq 1 and \Delta h\phi \leq C, we get that

Nh\Delta h
\Bigl[ \sigma 
R
\phi (y1) - (8L+ 2\sigma )g\varepsilon (t1  - s1, x1  - y1))

\Bigr] 
\leq CL\varepsilon  - 2h.(3.18)

Using (3.16)--(3.18) and the regularity of H (see (2.16)), we obtain, for some universal
C, that

2\sigma T - 1 \leq C\sigma R - 1(| \nabla \phi (x1)| + | \nabla \phi (y1)| ) +CL\varepsilon  - 2h

+C(| t1  - s1| + | x1  - y1| ) [1 + (8L+ 2\sigma )| \nabla x g\varepsilon (t1  - s1, x1  - y1)| ]
\leq C\sigma R - 1 +CL\varepsilon  - 2h+C(| t1  - s1| + | x1  - y1| )

\bigl( 
1 +L\varepsilon  - 2| x1  - y1| 

\bigr) 
,

which, by (3.13) and (3.14), yields that \sigma T - 1 \leq C\sigma R - 1 + CL\varepsilon  - 2h + C\varepsilon 2M2L - 1.
Now, we take \varepsilon := M - 1/2L1/2h1/4 and pass R \rightarrow \infty . Then, when h is sufficiently
small, we obtain that \sigma \leq CTM

\surd 
h for some universal C > 0. This finishes the proof

of the upper bound of sup[0,T ]\times \BbbR d(v - vh) in the case when t1, s1 <T .
Next, suppose that one of t1 and s1 is equal to T . We only prove this for the case

when t1 = T . By (3.10) and the definition of \Phi h,

8L+ 6\sigma \leq v(t1, x1) - vh(s1, y1) + (8L+ 2\sigma )g\varepsilon (t1  - s1, x1  - y1).

It follows from the proof of Lemma 2.4 that vh is Lipschitz continuous with unit
Lipschitz constant when | T  - t| \leq C. Note that \varepsilon 2ML - 1 \leq C. Hence, (3.13) and
(3.14) yield that

8L+ 6\sigma \leq | v(T,x1) - q(y1)| + | q(y1) - vh(s1, y1)| + (8L+ 2\sigma )g\varepsilon (T  - s1, x1  - y1)

\leq C(| x1  - y1| + | T  - s1| ) + 8L+ 2\sigma \leq C\varepsilon 2ML - 1 + 8L+ 2\sigma .

This yields that \sigma \leq C
\surd 
h for some universal C > 0.
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388 WENPIN TANG, HUNG VINH TRAN, AND YUMING PAUL ZHANG

Finally, the upper bound estimate for sup[0,T ]\times BR
(vh  - v) follows by using the

same argument as the above. Applying Lemma 2.4 permits us to conclude.

3.3. Almost everywhere convergence of the policy. It was proved in [27]
that, under suitable assumptions, the solution v to (2.4) is semiconcave in space.
From this, we are able to derive the almost everywhere convergence of the policies.

We say that a function g :\BbbR d \rightarrow \BbbR is uniformly semiconcave if there exists C > 0
such that, for all x, y \in \BbbR d, we have that g(x+ y) + g(x - y) - 2g(x)\leq C| y| 2. If g is
uniformly bounded and Lipschitz continuous, and both \pm g are uniformly semiconcave,
then g is bounded in W 2,\infty (\BbbR d), and we denote by

\| g\| W 2,\infty = \| g\| \infty + \| \nabla g\| \infty + \| \nabla 2g\| \infty .

We make the following assumption:
(A3) q(\cdot ) is uniformly semiconcave, and c(t, \cdot , a), f(t, \cdot , a) are bounded inW 2,\infty (\BbbR d)

uniformly in t\in [0, T ] and a\in A.
Theorem 3.7. Under the assumptions of Theorem 3.5, further assume (A3).

Then, v(t, \cdot ) is uniformly semiconcave for all t \in [0, T ]. Moreover, for each t \in [0, T ]
we have, for a.e. x\in \BbbR d, that

\alpha (th, xh,\nabla hvh(th, xh))\rightarrow \alpha (t, x,\nabla v(t, x)) as h\rightarrow 0,

where [0, T ]\times \BbbR d \ni (th, xh)\rightarrow (t, x) as h\rightarrow 0.

We next show a weak type of semiconcavity of vh.

Theorem 3.8. Under the assumptions of Theorem 3.7, there exists C > 0 (also
depending on (A3)) such that, for all h\in (0,1), t\in [0, T ], and x, y \in \BbbR d,

vh(t, x+ y) + vh(t, x - y) - 2vh(t, x)\leq C exp(CT ) (| y| 2 +
\surd 
h).

The proofs of the two theorems are similar to those of Theorem 4.4 and The-
orem 4.5, and we choose to write the full details down there (as it is slightly more
complicated there).

4. Analysis of discrete space-time schemes.

4.1. Convergence of PI. The parallel result of Theorem 3.1 on the convergence
of V \tau ,h

n \rightarrow V \tau ,h holds the same (see Figure 1 for a numerical illustration). However,
the proof is more involved due to the discretization in the time direction. In it, we
will emphasize the difference.

Theorem 4.1. Assume (A1) and (A2) and that N \geq 1. Let Vn := V \tau ,h
n and

V := V \tau ,h be, respectively, continuous solutions to (2.18) and (2.20). Then, there
exists a universal constant C > 0 such that, if C(1+ \| \nabla hV \| 2\infty )\tau \leq h, we have, for all
n\geq 1, R\geq 1, and t\in \BbbN \tau 

T ,\sum 
x\in \BbbZ d

h,| x| \leq R

| Vn(t, x) - V (t, x)| 2 \leq h\tau 

2n+1

\sum 
t\leq s\in \BbbN \tau 

T

\sum 
x\in \BbbZ d

h

exp

\biggl[ 
C

h
exp(1 + \| \nabla hV \| 2\infty )(s - t)

\biggr] 
| Dh(V0(s,x) - V (s,x))| 2min

\Bigl\{ 
1, e - | x| +R+1

\Bigr\} 
.

In particular, we have that

max
t\in \BbbN \tau 

T

\sum 
x\in \BbbZ d

h,| x| \leq R

| Vn(t, x) - V (t, x)| 2 \leq C2 - n exp [C exp(CT )/h]Rd,
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PI FOR THE DETERMINISTIC CONTROL PROBLEMS 389

max
t\in \BbbN \tau 

T

\sum 
x\in \BbbZ d

h,| x| \leq R

| \alpha (t, x,\nabla hVn(t, x)) - \alpha (t, x,\nabla hV (t, x))| 2 \leq C

2n
exp

\biggl[ 
C

h
exp(CT )

\biggr] 
Rd.

Proof. Assume that T \geq 1 for simplicity. Let \varphi = \varphi R : [0,\infty )\rightarrow [0,1] be C1 and
satisfy (3.1), and let A :=CT 2/h for some C > 0 to be determined. Then, for t\in \BbbN \tau 

T ,
set

Et,n :=
1

2
eAt

\sum 
x\in \BbbZ d

h

| Vn(t, x) - V (t, x)| 2\varphi (| x| ),

which is finite. Direct computation yields that

Et,n  - Et - \tau ,n

\tau 

(4.1)

\geq Ae - A\tau Et,n +
1

2
eA(t - \tau )

\sum 
x\in \BbbZ d

h

(Vn(t, x) + Vn(t - \tau ,x) - V (t, x) - V (t - \tau ,x))

\times (\partial \tau t Vn(t, x) - \partial \tau t V (t, x))\varphi (| x| )

=Ae - A\tau Et,n + eA(t - \tau )
\sum 
x\in \BbbZ d

h

(Vn(t, x) - V (t, x))(\partial \tau t Vn(t, x) - \partial \tau t V (t, x))\varphi (| x| )

 - \tau 

2
eA(t - \tau )

\sum 
x\in \BbbZ d

h

| \partial \tau t Vn(t, x) - \partial \tau t V (t, x)| 2\varphi (| x| )

=:Ae - A\tau Et,n + eA(t - \tau )Xt,n  - \tau 

2
eA(t - \tau )Yt,n.

First, we consider the term Yt,n (which does not appear in the semidiscretization
problem in Theorem 3.1). Similarly as before, for simplicity of notations, we write
that

\alpha := \alpha (t, x,\nabla hV (t, x)), \alpha n := \alpha (t, x,\nabla hVn - 1(t, x)),

cn := c(t, x,\alpha n(t, x)), and fn := f(t, x,\alpha n(t, x))).

We will also drop (t, x) from the notations of V (t, x), Vn(t, x), and (| x| ) from \varphi (| x| ).
It follows from (2.18) and (2.20) that

Yt,n =
\sum 
x\in \BbbZ d

h

\bigm| \bigm| cn +\nabla hVn \cdot fn +Nh\Delta hVn  - H(t, x,\nabla hV ) - Nh\Delta hV
\bigm| \bigm| 2\varphi (| x| ).

Recall thatH(t, x,\nabla hV ) = c(t, x,\alpha ) + f(t, x,\alpha )\cdot \nabla hV and | \nabla hV | \leq M for someM \geq 1.
So, the regularity assumptions and (2.11) yield that

Yt,n \leq C
\sum 
x\in \BbbZ d

h

\bigl( 
M2| DhVn - 1  - DhV | 2 +M2| D - hVn - 1  - D - hV | 2

+ | DhVn  - DhV | 2 + | D - hVn  - D - hV | 2
\bigr) 
\varphi (| x| )\leq C

\bigl( 
M2Gh

t,n - 1 +Gh
t,n

\bigr) 
,

where, in the last inequality, we used the notation Gh
t,n :=

\sum 
x\in \BbbZ d

h
| DhVn(t, x)  - 

DhV (t, x)| 2\varphi (| x| ) and (3.6) with the above-defined Gh
t,n (which clearly holds the

same).
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390 WENPIN TANG, HUNG VINH TRAN, AND YUMING PAUL ZHANG

Next, we consider the term Xt,n. Note that, for any v \in L\infty (\BbbZ d
h),\sum 

x\in \BbbZ d
h

\Delta hv v\varphi = - 
\sum 
x\in \BbbZ d

h

| Dhv| 2\varphi  - 
\sum 
x\in \BbbZ d

h

vD - hv \cdot D - h\varphi .

So, similarly as before (also using (3.1), (3.6), the uniform Lipschitz assumptions, and
Young's inequality), we have, for some universal C > 0 and for any \sigma 1, \sigma 2 > 0,

Xt,n \geq NhGh
t,n  - C

\sum 
x\in \BbbZ d

h

| Vn  - V | (| Dh(Vn  - V )| + | D - h(Vn  - V )| )\varphi 

 - CM
\sum 
x\in \BbbZ d

h

| Vn  - V | (| Dh(Vn - 1  - V )| + | D - h(Vn - 1  - V )| )\varphi 

\geq (Nh - \sigma 1)G
h
t,n  - \sigma 2G

h
t,n - 1  - C(\sigma  - 1

1 +M2\sigma  - 1
2 )e - AtEt,n.

Since ET,n \equiv 0, putting the above together and summing up (4.1) with respect to
t yields that

 - Et,n/\tau 

\geq (Nh - \sigma 1  - C\tau )
\sum 

t+\tau \leq s\in \BbbN \tau 
T

eA(s - \tau )Gh
s,n  - (\sigma 2 +CM2\tau )

\sum 
t+\tau \leq s\in \BbbN \tau 

T

eA(s - \tau )Gh
s,n - 1

+ (A - C\sigma  - 1
1  - CM2\sigma  - 1

2 )e - A\tau 
\sum 

t+\tau \leq s\in \BbbN \tau 
T

Eh
s,n

(4.2)

for some universal constant C > 0.
Finally, we take \sigma 1 := h/4, \sigma 2 := h/8, A := 12CM2/h. Then, if \tau \leq h/(8CM2),

(4.2) yields that\sum 
t+\tau \leq s\in \BbbN \tau 

T

eA(s - \tau )Gh
s,n \leq 1

2

\sum 
t+\tau \leq s\in \BbbN \tau 

T

eA(s - \tau )Gh
s,n - 1 \leq \cdot \cdot \cdot \leq 2 - n

\sum 
t+\tau \leq s\in \BbbN \tau 

T

eA(s - \tau )Gh
s,0,

and then, Et,n \leq h\tau 
4

\sum 
t+\tau \leq s\in \BbbN \tau 

T
eA(s - \tau )Gh

s,n - 1 \leq h\tau 
2n+1

\sum 
t+\tau \leq s\in \BbbN \tau 

T
eA(s - \tau )Gh

s,0. This,
together with Proposition 2.5, concludes the proof of the first claim as before.

The second claim follows similarly as in Theorem 3.3.

By shifting the solutions, we obtain uniform pointwise exponential convergence
of V \tau ,h

n to V \tau ,h and \alpha (\cdot , \cdot ,\nabla hV \tau ,h
n (\cdot , \cdot )) to \alpha (\cdot , \cdot ,\nabla hV \tau ,h(\cdot , \cdot )) as n\rightarrow \infty in \Omega \tau ,h

T .

4.2. Convergence of \bfitV \bfittau ,\bfith as \bfittau ,\bfith \rightarrow 0. Let V \tau ,h and v be, respectively, solu-
tions to (2.20) and (2.4). Theorem 4.2 proves that the difference between V \tau ,h and v is
at most of order

\surd 
h. The argument follows the idea of [16, Theorem 1], which consid-

ered the discrete space-time scheme for the homogeneous Hamilton--Jacobi equation
vt +H(Dv) = 0.

Theorem 4.2. Assume (A1) and (A2) and (2.17). Then, there exists a universal
C > 0 such that

sup
(t,x)\in \Omega \tau ,h

T

| v(t, x) - V \tau ,h(t, x)| \leq C(1 + T )(1 + \| \nabla v\| \infty )
\surd 
h.

In particular, we have that sup(t,x)\in \Omega \tau ,h
T

| v(t, x) - V \tau ,h(t, x)| \leq C exp(CT )
\surd 
h.
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Remark 4.3. It was shown in [18, 19, 33] that

sup
(t,x)\in \Omega \tau ,h

T

| v(t, x) - V \tau ,h(t, x)| \leq C(\tau 1/4 + h1/2) for some C =C(T )> 0,

where v solves a general degenerate parabolic Bellman equation and V \tau ,h is its space-
time finite difference approximation. For the first-order equations, our Theorem 4.2
obtains a better convergence rate of C(\tau 1/2 + h1/2).

Proof. Assume that T \geq 1, and suppose, for some (t0, x0)\in \Omega \tau ,h
T , that

8\sigma := v(t0, x0) - V \tau ,h(t0, x0)\geq 
1

2
sup

(t,x)\in \Omega \tau ,h
T

\bigl[ 
v(t, x) - V \tau ,h(t, x)

\bigr] 
> 0.(4.3)

Let DT,\tau ,h := [0, T ]\times \BbbN \tau 
T \times \BbbR d \times \BbbZ d

h and

L := sup
\Bigl\{ 
v(t, x), - V \tau ,h(t, x) : (t, x)\in \Omega \tau ,h

T

\Bigr\} 
+ 1.

Then, \sigma \leq L\leq CT for some universal constant C > 0. Moreover, let R, g, and g\varepsilon with
\varepsilon \in (0,1), and \phi be from the proof of Theorem 3.5, and define \Phi h :DT,\tau ,h \rightarrow \BbbR by

\Phi h(t, s, x, y) := v(t, x) - V \tau ,h(s, y) - \sigma 

T
(2T  - t - s)

 - \sigma 

R
(\phi (x) + \phi (y)) + (8L+ 2\sigma )g\varepsilon (t - s,x - y).

Suppose that

\Phi h(t1, s1, x1, y1) = max
DT,\tau ,h

\Phi h(t, s, x, y).(4.4)

It is clear that (3.10)--(3.14) hold the same. By (3.14), if \tau \ll \varepsilon 2M/L, we get that

| t1  - s1  - \tau | \leq C\varepsilon 2M/L with M = 1+ \| \nabla v\| \infty .(4.5)

First, assume that t1, s1 < T . The viscosity solution test for v shows (3.15) by
(3.12). Next, since \Omega \tau ,h

T \ni (s, y)\rightarrow V \tau ,h(s, y) - \sigma 
T s+

\sigma 
R\phi (y) - (8L+2\sigma )g\varepsilon (t1 - s,x1 - y)

is minimized at (s1, y1), then, for all (s, y)\in \Omega \tau ,h
T ,

V \tau ,h(s, y)\geq V \tau ,h(s1, y1) - 
\sigma 

T
(s1  - s) +

\sigma 

R
(\phi (y1) - \phi (y))

 - (8L+ 2\sigma ) [g\varepsilon (t1  - s1, x1  - y1) - g\varepsilon (t1  - s,x1  - y)] =: \~V (s, y).

Recall that s1 + \tau \leq T and that \scrF t from (2.21) satisfies the monotonicity property.
We obtain

V \tau ,h(s1, y1) =\scrF s1+\tau (V
\tau ,h(s1 + \tau , \cdot ))(y1)\geq \scrF s1+\tau ( \~V (s1 + \tau , \cdot ))(y1),

which gives

0\geq \sigma 

T
 - (8L+ 2\sigma )\partial \tau t g\varepsilon (t1  - s1, x1  - y1)

+H
\Bigl( 
s1 + \tau , y1, - 

\sigma 

R
\nabla h\phi (y1) - (8L+ 2\sigma )\nabla h

x g\varepsilon (t1  - s1  - \tau ,x1  - y1)
\Bigr) 

 - Nh\Delta h
\Bigl[ \sigma 
R
\phi (y1) - (8L+ 2\sigma )g\varepsilon (t1  - s1  - \tau ,x1  - y1))

\Bigr] 
.

(4.6)
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By (3.11), if \tau ,h\ll \varepsilon 2,

| \partial \tau t g\varepsilon (t1  - s1, x1  - y1) - \partial tg\varepsilon (t1  - s1, x1  - y1)| \leq C\varepsilon  - 2\tau ,(4.7)

\nabla h
x g\varepsilon (t1  - s1  - \tau ,x1  - y1) =\nabla x g\varepsilon (t1  - s1, x1  - y1) = 2\varepsilon  - 2(x1  - y1).(4.8)

Combining (4.6) with (3.15) and using (4.7) and (4.8) yields that

2\sigma 

T
\leq H

\Bigl( 
t1, x1,

\sigma 

R
\nabla \phi (x1) - (8L+ 2\sigma )2\varepsilon  - 2(x1  - y1)

\Bigr) 
 - H

\Bigl( 
s1 + \tau , y1, - 

\sigma 

R
\nabla \phi (y1) - (8L+ 2\sigma )2\varepsilon  - 2(x1  - y1)

\Bigr) 
+Nh\Delta h

\Bigl[ \sigma 
R
\phi (y1) - (8L+ 2\sigma )g\varepsilon (t1  - s1  - \tau ,x1  - y1))

\Bigr] 
+CL\varepsilon  - 2\tau .

(4.9)

The definitions of \phi and g\varepsilon show (3.18). Then, applying (2.16) and (3.18) into (4.9),
if (\tau \leq )h\ll \varepsilon 2, we deduce, for some C > 0, that

\sigma T - 1 \leq C\sigma R - 1(| \nabla \phi (x1)| + | \nabla \phi (y1)| ) +CL\varepsilon  - 2h+CL\varepsilon  - 2\tau 

+C(| t1  - s1  - \tau | + | x1  - y1| )
\bigl[ 
1 + (8L+ 2\sigma )2\varepsilon  - 2| x1  - y1| 

\bigr] 
\leq C\sigma R - 1 +CL\varepsilon  - 2h+C\varepsilon 2M2L - 1,

(4.10)

where, in the second inequality, we also used (3.13) and (4.5).
Now, we take \varepsilon :=M - 1/2L1/2h1/4 and send R\rightarrow \infty . It is clear that \tau \ll \varepsilon 2M/L

is satisfied when h is small. We obtain from (4.10) that \sigma \leq CTM
\surd 
h, which finishes

the proof of the upper bound of sup\Omega \tau ,h
T

(v - V \tau ,h) in the case when t1, s1 <T .

Next, if at least one of t1 and s1 is equal to T , the argument of Theorem 3.5
applies the same, except that we need to use Proposition 2.5 in place of Lemma 2.4.
Finally, the proof for the upper bound of sup\Omega \tau ,h

T
(V \tau ,h  - v) is the same.

4.3. Almost everywhere convergence of the policy. We show the almost
everywhere convergence of the policy and some semiconcavity properties of the
solution.

Theorem 4.4. Under the assumptions of Theorem 4.2, further assume (A3).
Then, v is uniformly semiconcave for all t \in [0, T ]. Moreover, for each t \in [0, T ], we
have, for a.e. x\in \BbbR d, that

\alpha (th, xh,\nabla hV \tau h,h(th, xh))\rightarrow \alpha (t, x,\nabla v(t, x)) as h\rightarrow 0,

where \Omega \tau h,h
T \ni (th, xh)\rightarrow (t, x) as h\rightarrow 0 and \tau h satisfies 0< 2N\tau h \leq h.

Proof. The semiconcavity of v(t, \cdot ) follows from [27].
For the second claim, it suffices to prove that, for a fixed t\in [0, T ) and a.e. x\in \BbbR d,

\nabla hV \tau h,h(th, xh)\rightarrow \nabla v(t, x) as h\rightarrow 0.(4.11)

For any function g :\BbbR d \rightarrow \BbbR , we denote by D+g(x) the set of subdifferentials of g:

D+g(x) :=

\biggl\{ 
p\in \BbbR d

\bigm| \bigm| limsup
y\rightarrow x

g(y) - g(x) - p \cdot (y - x)

| y - x| 
\leq 0

\biggr\} 
.

Due to v(t, \cdot ) being semiconcave, D+v(t, x) is nonempty for all x\in \BbbR d.
Because v(t, \cdot ) is Lipschitz continuous, \nabla xv(t, x) exists for a.e. x \in \BbbR d. We fix

one such x. Since V \tau h,h are Lipschitz continuous uniformly in h, after passing to a
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PI FOR THE DETERMINISTIC CONTROL PROBLEMS 393

subsequence of h \rightarrow 0, we can assume that \nabla hV \tau h,h(th, xh) \rightarrow p for some p \in \BbbR d.
Since V \tau h,h(th, xh)\rightarrow v(t, x) as h\rightarrow 0, the stability of the subdifferential yields that
p \in D+v(t, x), while, because \nabla xv(t, x) exists, we get that p = \nabla xv(t, x). Note that
this is for any convergent subsequence of \nabla hV \tau h,h(th, xh), and so, we obtain (4.11).

In Theorem 4.5, we show a weak type of semiconcavity of V \tau ,h(t, \cdot ). We use the
``doubling variable"" method; see, e.g., [27].

Theorem 4.5. Under the assumptions of Theorem 4.4, there exists C > 0 (also
depending on (A3)) such that, for all t\in \BbbN \tau 

T and x, y \in \BbbZ d
h,

V \tau ,h(t, x+ y) + V \tau ,h(t, x - y) - 2V \tau ,h(t, x)\leq C exp(CT ) (| y| 2 +
\surd 
h).

Proof. It suffices to show that there exist CT ,C
\prime 
T > 0 depending on the assump-

tions such that

V \tau ,h(t, x) + V \tau ,h(t, z) - 2V \tau ,h(t, y)\leq CT

\bigl( 
| x - y| 2 + | z  - y| 2 + | x+ z  - 2y| 

\bigr) 
+C \prime 

T

\surd 
h

(4.12)

for all t\in \BbbN \tau 
T and x, y, z \in \BbbZ d

h. By the assumption on q, the inequality holds for t= T
with CT = \| q\| W 2,\infty =:C0 and C \prime 

T = 0.
Suppose, for contradiction, that (4.12) fails. Then, we have that, for some C1 \geq 1

to be determined and some C \geq 2,

V \tau ,h(t, x) + V \tau ,h(t, z) - 2V \tau ,h(t, y)

 - 2C0e
C1(T - t)

\bigl( 
| x - y| 4 + | z  - y| 4 + | x+ z  - 2y| 2

\bigr) 1/2 \geq CeC1(T - t)
\surd 
h

(4.13)

for some (t, x, y, z) = (t\prime , x\prime , y\prime , z\prime ) \in \BbbN \tau 
T \times \BbbZ d

h. Since V \tau ,h(t, \cdot ) is Lipschitz continuous
(with Lipschitz constant bounded by C exp(C(T  - t)) by Proposition 2.5 with a shift
in time), after enlarging the constant C in (4.13) and replacing y\prime by y\prime +

\surd 
h if

necessary, we can assume that

| x\prime + z\prime  - 2y\prime | \geq 
\surd 
h.(4.14)

We denote \psi (x, y, z) := | x - y| 4 + | z  - y| 4 + | x+ z  - 2y| 2, and by (4.14),

\delta :=\psi (x\prime , y\prime , z\prime )1/2 \geq 
\surd 
h.

Then, for all \varepsilon > 0 sufficiently small, we obtain from (4.13) that

\Phi (t, x, y, z)

:= eC1t
\bigl( 
V \tau ,h(t, x) + V \tau ,h(t, z) - 2V \tau ,h(t, y)

\bigr) 
 - C0e

C1T
\bigl( 
\delta + \delta  - 1\psi (x, y, z)

\bigr) 
 - \varepsilon | y| 2

satisfies \Phi (t\prime , x\prime , y\prime , z\prime ) \geq eC1T
\surd 
h. With the positive \varepsilon -term, \Phi obtains its positive

maximum that is at least eC1T
\surd 
h in \Omega \tau ,h

T at some point (t0, x0, y0, z0) \in \BbbN \tau 
T \times \BbbZ d

h,
where (t0, x0, y0, z0) depends on \varepsilon and \delta . It is clear that t0 \leq T  - \tau by the choice of
C0. Moreover, for

\gamma 0 := \delta + \delta  - 1\psi (x0, y0, z0),

we have that

V \tau ,h(t0, x0) + V \tau ,h(t0, z0) - 2V \tau ,h(t0, y0)\geq C0e
C1(T - t0)\gamma 0 + eC1(T - t0)

\surd 
h.(4.15)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/2

4/
25

 to
 1

60
.3

9.
34

.7
9 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



394 WENPIN TANG, HUNG VINH TRAN, AND YUMING PAUL ZHANG

Due to the uniform boundedness of V \tau ,h, by further taking \varepsilon to be small enough
depending on C,T , and h, it is easy to get \varepsilon | y0| \leq h.

Now, since \Omega \tau ,h
T \ni (t, x)\rightarrow eC1tV \tau ,h(t, x) - C0e

C1T \delta  - 1
\bigl( 
| x - y0| 4 + | x+ z0  - 2y0| 2

\bigr) 
is maximized at (t0, x0), we get, for all (t, x)\in \Omega \tau ,h

T , that

V \tau ,h(t, x)\leq eC1(t0 - t)V \tau ,h(t0, x0) +C0e
C1(T - t)\delta  - 1

\bigl( 
| x - y0| 4 + | x+ z0  - 2y0| 2

\bigr) 
 - C0e

C1(T - t0)\delta  - 1
\bigl( 
| x0  - y0| 4 + | x0 + z0  - 2y0| 2

\bigr) 
=: \~V (t, x).

Due to the equation and the monotonicity property of \scrF t (as in (2.21)), V \tau ,h(t0, x0) =
\scrF t0+\tau (V

\tau ,h(t0 + \tau , \cdot ))(x0)\leq \scrF t0+\tau ( \~V (t0 + \tau , \cdot ))(x0). By direct computation,

\nabla h
x(| x - y0| 4 + | x+ z0  - 2y0| 2) = 4(| x - y0| 2 + h2)(x - y0) + 2(x+ z0  - 2y0),

\Delta h
x(| x - y0| 4 + | x+ z0  - 2y0| 2) = (8 + 4d)| x - y0| 2 + 2dh2 + 2d.

We then get that

(1 - e - C1\tau )

\tau 
V \tau ,h(t0, x0)\leq H

\Bigl( 
t0 + \tau ,x0,\nabla h

x
\~V (t0 + \tau ,x0)

\Bigr) 
+Nh\Delta h

x
\~V (t0 + \tau ,x0)

\leq H (t0 + \tau ,x0,2CT,\delta (qx0
+ p0)) +CCT,\delta h(| x0  - y0| 2 + 1),

(4.16)

where

qx0
:= 2(| x0  - y0| 2 + h2)(x0  - y0),

CT,\delta :=C0e
C1(T - t0 - \tau )/\delta , and p0 := x0 + z0  - 2y0.(4.17)

Similarly, since \Omega \tau ,h
T \ni (t, z)\rightarrow eC1tV \tau ,h(t, z)  - C0e

C1T \delta  - 1(| z  - y0| 4 + | x0 + z  - 
2y0| 2) is maximized at (t0, z0), we get that

(1 - e - C1\tau )

\tau 
V \tau ,h(t0, z0)\leq H (t0 + \tau , z0,2CT,\delta (qz0 + p0)) +CCT,\delta h(| z0  - y0| 2 + 1),

(4.18)

where qz0 := 2(| z0  - y0| 2 + h2)(z0  - y0).
Next, note that \Omega \tau ,h

T \ni (t, y) \rightarrow 2eC1tV \tau ,h(t, y) + C0e
C1T \delta  - 1\psi (x0, y, z0) + \varepsilon | y| 2 is

minimized at (t0, y0). Hence, we get that V \tau ,h(t0, y0)\geq \scrF t0+\tau ( \^V (t0+ \tau , \cdot ))(y0), where

\^V (t, y) := eC1(t0 - t)V \tau ,h(t0, y0) - (\varepsilon /2)| y| 2 + (\varepsilon /2)| y0| 2

 - (C0/2)e
C1(T - t)\delta  - 1\psi (x0, y, z0) + (C0/2)e

C1(T - t0)\delta  - 1\psi (x0, y0, z0).

From this, we obtain that

 - (1 - e - C1\tau )

\tau 
V \tau ,h(t0, y0)

\leq  - H(t0 + \tau , y0,2CT,\delta (qy0
+ p0) - \varepsilon y0) - Nh\Delta h

y
\^V (t0 + \tau , y0)

\leq  - H(t0 + \tau , y0,2CT,\delta (qy0+p0) - \varepsilon y0)+CCT,\delta h(| x0  - y0| 2 + | z0 - y0| 2 + 1)+Ch\varepsilon ,

where

qy0
:= (| x0  - y0| 2 + h2)(x0  - y0) + (| z0  - y0| 2 + h2)(z0  - y0)
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PI FOR THE DETERMINISTIC CONTROL PROBLEMS 395

and CT,\delta and p0 are given in (4.17). Using | Hp| \leq C and \varepsilon | y0| \leq h yields that

 - (1 - e - C1\tau )

\tau 
V \tau ,h(t0, y0)\leq  - H (t0 + \tau , y0,2CT,\delta (qy0 + p0))

+CCT,\delta h(| x0  - y0| 2 + | z0  - y0| 2 + 1) +Ch.

(4.19)

Now, let \alpha \in \scrA be such that

H (t0 + \tau , y0,2CT,\delta (qy0
+ p0)) = c(t0 + \tau , y0, \alpha ) + 2CT,\delta f(t0 + \tau , y0, \alpha ) \cdot (qy0

+ p0).

By (2.15), denoting c\alpha (\cdot ) := c(t0 + \tau , \cdot , \alpha ) and f\alpha (\cdot ) := f(t0 + \tau , \cdot , \alpha ), we have that

H (t0 + \tau ,x0,2CT,\delta (qx0
+ p0)) +H (t0 + \tau , z0,2CT,\delta (qz0 + p0))

 - 2H (t0 + \tau , y0,2CT,\delta (qy0
+ p0))

\leq c\alpha (x0) + c\alpha (z0) - 2c\alpha (y0) + 2CT,\delta [f\alpha (x0) \cdot (qx0
+ p0)

+ f\alpha (z0) \cdot (qx0
+ p0) - 2f\alpha (y0) \cdot (qy0

+ p0)]

= c\alpha (x0) + c\alpha (z0) - 2c\alpha (y0) + 2CT,\delta [(f\alpha (x0) - f\alpha (y0)) \cdot qx0

+(f\alpha (z0) - f\alpha (y0)) \cdot qz0 + (f\alpha (x0) + f\alpha (z0) - 2f\alpha (y0)) \cdot p0]
\leq \| c\alpha \| W 2,\infty (| x0  - y0| 2 + | z0  - y0| 2 + | x0 + z0  - 2y0| )
+ 2CT,\delta \| f\alpha \| Lip(| x0  - y0| | qx0

| + | z0  - y0| | qz0 | )
+ 2CT,\delta \| f\alpha \| W 2,\infty (| x0  - y0| 2 + | z0  - y0| 2 + | x0 + z0  - 2y0| )| x0 + z0  - 2y0| ,

(4.20)

where we used 2qy0
= qx0

+ qz0 and that, for any x, y, z \in \BbbR d and g \in W 2,\infty (\BbbR d),
| g(x)+g(z) - 2g(y)| \leq \| g\| W 2,\infty (| x - y| 2+ | z - y| 2+ | x+z - 2y| ). By Young's inequality,
we get that

| x0  - y0| | qx0
| + | z0  - y0| | qz0 | \leq 2| x0  - y0| 4 + 2| z0  - y0| 4 + h4.

Also, using the definitions of CT,\delta and \psi , we get the left-hand side of (4.20)

\leq CeC1(T - t0)(\delta + \delta  - 1\psi (x0, y0, z0) + h4) =CeC1(T - t0)\gamma 0 +CeC1(T - t0)h4/\delta 

with C > 0 only depending on \| q\| W 2,\infty , \| c\alpha \| W 2,\infty , and \| f\alpha \| W 2,\infty .
Now, summing up (4.16), (4.18), and (4.19) twice, we get that

(1 - e - C1\tau )

\tau 

\bigl[ 
V \tau ,h(t0, x0) + V \tau ,h(t0, z0) - 2V \tau ,h(t0, y0)

\bigr] 
\leq CeC1(T - t0)\gamma 0 +

C

\delta 
eC1(T - t0)h4 +CCT,\delta h(| x0  - y0| 2 + | z0  - y0| 2 + 1) +Ch

\leq CeC1(T - t0)\gamma 0 +CeC1(T - t0)\delta  - 1(| x0  - y0| 4 + | z0  - y0| 4) +CeC1(T - t0)
\surd 
h

\leq CeC1(T - t0)\gamma 0 +CeC1(T - t0)
\surd 
h,

where we used \delta \geq 
\surd 
h in the second inequality. Finally, this and (4.15) yield that

C1(C0e
C1(T - t0)\gamma 0 + eC1(T - t0)

\surd 
h)\leq CeC1(T - t0)\gamma 0 +CeC1(T - t0)

\surd 
h,

with C > 0 depending only on d,N , and the regularity assumptions of q, c, f . Thus,
if C1 is sufficiently large depending only on the assumptions, we get a contradiction,
which finishes the proof of (4.12), which finishes the proof.
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396 WENPIN TANG, HUNG VINH TRAN, AND YUMING PAUL ZHANG

5. Generalization: A PDE perspective. In this section, we consider PI for
HJB equations with a general Hamiltonian. For convenient use of the Legendre trans-
form, we write the system in the forward-in-time setting. It is easy to carry over to
the backward-in-time setting.

Suppose that \scrH : [0, T ]\times \BbbR d\times \BbbR d \rightarrow \BbbR is continuous such that \scrH (t, x, p) is convex
in p. Let \scrL (t, x,\mu ) be the Legendre transform of \scrH ; that is,

\scrL (t, x,\mu ) := sup
p\in \BbbR d

[p \cdot \mu  - \scrH (t, x, p)] for (t, x,\mu )\in [0, T ]\times \BbbR d \times \BbbR d.

We always have the inequality \scrL (t, x,\mu ) +\scrH (t, x, p)\geq p \cdot \mu , with the equality holding
if and only if \mu =\nabla p\scrH (t, x, p) and if and only if p=\nabla \mu \scrL (t, x,\mu ).

The HJB equation is\Biggl\{ 
\partial tv(t, x) +\scrH (t, x,\nabla v(t, x)) = 0 in (0, T )\times \BbbR d,

v(0, x) = q(x) on \BbbR d.
(5.1)

Under some assumptions (see [3, 54]), it is a classical result that v is uniformly Lip-
schitz continuous if q is Lipschitz continuous. So, we can assume that

\| \nabla v\| L\infty ([0,T ]\times \BbbR d) \leq M for some M > 0.(5.2)

Now, we take

m1 := min
| p| =2M,

t\in [0,T ],x\in \BbbR d

\scrH (t, x, p) and m2 \geq max
| p| =3M,

t\in [0,T ],x\in \BbbR d

[\scrH (t, x, p) - m1]/M,

and we can assume that m2 \geq 2. Then, define

\~\scrH (t, x, p) :=

\left\{     
\scrH (t, x, p) if | p| \leq 2M,

max\{ \scrH (t, x, p),m1 +m2(| p|  - 2M)\} if 2M < | p| \leq 3M,

m1 +m2(| p|  - 2M) if | p| > 3M.

It is not hard to verify that \~\scrH is continuous in all its dependencies and is convex in
p. Due to (5.2), v is also a solution of (5.1) with \scrH replaced by \~\scrH . Moreover, for
N :=m2/2\geq 1, we have that

| \~\scrH p(t, x, p)| \leq 2N in [0, T ]\times \BbbR d \times \BbbR d.(5.3)

We define \~\scrL as the Legendre transform of \~\scrH . Since the goal is to approximate v, it
suffices to study \~\scrH and \~\scrL instead of \scrH and \scrL . From now on, with a slight abuse of
notation, we write \scrH and \scrL as \~\scrH and \~\scrL , respectively.

With the modified operators, we can consider the semidiscretization. For h> 0,\Biggl\{ 
\partial tv

h(t, x) +\scrH (t, x,\nabla hvh(t, x)) =Nh\Delta hvh(t, x) in (0, T )\times \BbbR d,

vh(0, x) = q(x) on \BbbR d.
(5.4)

As before, N \geq \| \nabla p\scrH \| \infty /2 guarantees that the finite difference scheme is monotone.
We also assume that there exists C > 0 such that, for all t, x, p\in [0, T ]\times \BbbR d \times \BbbR d,

| \scrH t(t, x, p)| , | \scrH x(t, x, p)| \leq C(1 + | p| ), | \scrH (t, x,0)| \leq C.(5.5)
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PI FOR THE DETERMINISTIC CONTROL PROBLEMS 397

We can replace C(1 + | p| ) by just C for the modified operator. We will not discuss
the space-time discretization of (5.1) since it is similar.

From the above discussions, we note the PDE in (5.1) can be rewritten as

\partial tv(t, x) + sup
\mu \in \BbbR d

\{ \nabla v(t, x) \cdot \mu  - \scrL (t, x,\mu )\} = 0,

and the supremum is achieved when \mu (t, x) =\nabla p\scrH (t, x,\nabla v(t, x)). Therefore, we give
the following iteration scheme for (5.4). Fixing small h> 0, we start with a uniformly
bounded and Lipschitz continuous function vh0 (t, x) and then iteratively compute vhn
as follows. For n\geq 1, let vhn = vhn(t, x) be the solution to\Biggl\{ 

\partial tv
h
n + \mu h

n - 1(t, x) \cdot \nabla hvhn  - \scrL (t, x,\mu h
n - 1(t, x)) =Nh\Delta hvhn in (0, T )\times \BbbR d,

vhn(0, x) = q(x) on \BbbR d,
(5.6)

where we denoted \mu h
n(t, x) :=\nabla p\scrH (t, x,\nabla hvhn(t, x)). Note that \scrL (t, x,\mu h

n(t, x)) is finite
due to \mu h

n \leq 2N . Essentially, vhn solves a linearized equation of (5.4).
Let vhn (for each n \geq 1 with given vh0 ), v

h, and v be, respectively, Lipschitz
continuous solutions to (5.6), (5.4), and (5.1). We have the following monotonicity
property.

Proposition 5.1. Suppose that N \geq max\{ 1,\| \nabla p\scrH \| \infty /2\} and that \scrH (t, x, p) is
convex in p and satisfies (5.3) and (5.5). Let q and vh0 be uniformly bounded and
Lipschitz continuous for all h > 0. Then, the solutions vhn are uniformly bounded for
all n\geq 1 and h> 0. Moreover, we have, for all n\geq 0, that

vhn+1(t, x)\leq vhn(t, x) for all (t, x)\in [0, T ]\times \BbbR d.

In the current setting, the terms \mu h
n(t, x), - \scrL (t, x,\mu ), and \nabla p\scrH (t, x, p) correspond

to \alpha h
n(t, x), c(t, x, a), and \alpha (t, x, p) in section 2, respectively. The proof of Proposi-

tion 5.1 then is identical to that of Proposition 2.3 after converting the problem to a
backward-in-time setting by considering wh

n(t, x) = vhn(T  - t, x).
Additionally, we have the following convergence results. The proof of Theorem 5.2

follows those of Theorems 3.1 and 3.3, and the proof of Theorem 5.3 is analogous to
those of Theorems 3.7 and 3.8.

Theorem 5.2. Under the assumptions of Proposition 5.1, for all R \geq 1, there
exists a constant C depending only on T and the assumptions such that we have, for
all t\in [0, T ], that \int 

BR

\bigm| \bigm| vhn(t, x) - vh(t, x)
\bigm| \bigm| 2 dx\leq C2 - nheCt/hRd,\int 

BR

\bigm| \bigm| \nabla p\scrH (t, x,\nabla hvhn(t, x)) - \nabla p\scrH (t, x,\nabla hvh(t, x))
\bigm| \bigm| 2 dx\leq C2 - neCt/hRd/h.

Moreover, we have that sup(t,x)\in [0,T ]\times \BbbR d | vh(t, x) - v(t, x)| \leq C
\surd 
h.

Next, let \scrH take the form \scrH (t, x, p) := supa\in A [c(t, x, a) + p \cdot f(t, x, a)], where A is
some set, c : [0, T ]\times \BbbR d \times A\rightarrow \BbbR , and f : [0, T ]\times \BbbR d \times A\rightarrow \BbbR d.

Theorem 5.3. Under the assumptions of Theorem 5.2, assume that c(t, \cdot , a),
f(t, \cdot , a) are bounded in W 2,\infty (\BbbR d) uniformly for all t \in [0, T ] and a \in A. Then,
for each t\in [0, T ], we have that, for a.e. x\in \BbbR d,

\alpha (th, xh,\nabla hvh(th, xh))\rightarrow \alpha (t, x,\nabla v(t, x)) as h\rightarrow 0,

where [0, T ]\times \BbbR d \ni (th, xh)\rightarrow (t, x) as h\rightarrow 0.
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Fig. 1. Convergence of PI (2.18) and (2.19) for f(t, x, a) = a, c(t, x, a) = 1
2
a2, and q \equiv 0 with

A= [ - 2,2], \tau = 0.025, h= 0.1, and N = 2.

Moreover, there exists C > 0 depending only on the assumptions such that, for
all h \in (0,1), t \in [0, T ], and x, y \in \BbbR d, vh(t, x + y) + vh(t, x  - y)  - 2vh(t, x) \leq 
C exp(CT )(| y| 2 +

\surd 
h).

6. Numerical experiments. In this section, we provide numerical experiments
to illustrate the convergence of PI. We take f(t, x, a) = a, c(t, x, a) = 1

2a
2, and q\equiv 0 so

that v\ast \equiv 0. Figure 1 (the semilog plot) shows the exponential convergence of PI, cor-
roborating Theorem 4.1. For the vanishing viscosity approximations (Theorem 4.2),
we refer to [43] for numerical illustration.

7. Conclusion. In this paper, we study the convergence rate of PI for optimal
control problems in continuous time. To overcome the problem of ill-posedness, we
consider a semidiscrete scheme by adding a viscosity term using finite differences. We
prove that PI for the semidiscrete scheme converges exponentially fast and provide
a bound on the discrepancy between the semidiscrete scheme and the optimal con-
trol. We also study the discrete space-time scheme, where both space and time are
discretized.

Several future directions are related to PI. First, we plan to relax condition (A2)
by considering

\alpha (t, x, p)\in argmin
a\in A

[c(t, x, a) + p \cdot f(t, x, a)]

to replace (2.5). One possible approach is to use the minimization property of \alpha rather
than its precise value in the proof. Note, however, that without the Lipschitz continu-
ity of \alpha , we might not have the exponential convergence of the approximate optimal
policies in Theorem 3.3. Second, we have only proved a weak form of semiconcavity
for vh in Theorem 3.8. It remains an open question whether vh is semiconcave.

Several future directions are related to the nondiscretized PI. It remains unclear
under which conditions on the model parameters the PI (2.7) and (2.8) is well-defined
and converges exponentially fast. For instance, for f(t, x, a) = a, c(t, x, a) = 1

2 | a| 
2, and

q \equiv 0, the HJB equation is \partial tv  - 1
2 | \nabla v| 

2 = 0 and v(T,x) = 0, which has the solution
v\ast \equiv 0. On the other hand, PI yields that vn(t, x) = cn(t)x

2 with c1(t) =
1
2 for a

suitable initialization. It is easy to check that cn(t) \leq 2 - n for n \geq 1, and thus, we
get the exponential convergence of vn to v\ast on any compact set. Moreover, it is also
interesting to adapt PI to the differential game setting and design efficient numerical
schemes (see, e.g., [25]). We refer to [30, 50] for the use of PI to solve numerically
fully nonlinear HJB and HJBI equations.
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