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Abstract: Motivated by recent works on the high-dimensional logistic re-
gression, we establish that the existence of the maximum likelihood estimate
exhibits a phase transition for a wide range of generalized linear models with
binary outcome and elliptical covariates. This extends a previous result of
Candès and Sur who proved the phase transition for the logistic regression
with Gaussian covariates. Our result reveals a rich structure in the phase
transition phenomenon, which is simply overlooked by Gaussianity. The
main tools for deriving the result are data separation, convex geometry
and stochastic approximation. We also conduct simulation studies to cor-
roborate our theoretical findings, and explore other features of the problem.
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1. Introduction

In this paper, we are concerned with the maximum likelihood estimate of gener-
alized linear models [32, 34] with binary outcome. More precisely, we consider n
independent and identically distributed observations (xxxi, yi), i = 1, . . . , n, where
the binary outcome yi ∈ {−1, 1} is connected to the covariates xxxi ∈ R

p by the
probability model

P(yi = 1|xxxi) = σ(β0 + xxxT
i βββ). (1)

Here σ : R → [0, 1] is the inverse link function, and (β0,βββ) ∈ R
p+1 are unknown

parameters of the model. Popular choices for σ are

• logit link function [7]: σ(t) = et/(1 + et).

• probit link function [9]: σ(t) = Φ(t), where Φ(t) := 1√
2π

∫ t

−∞ exp(−s2/2)ds.

• cloglog link function [21]: σ(t) = 1− e−et .

The maximum likelihood estimate of (β0,βββ) is any maximizer of the log-likelihood

�(β0,βββ) :=
∑
yi=1

log(σ(β0 + xxxT
i βββ)) +

∑
yi=−1

log(1− σ(β0 + xxxT
i βββ)). (2)
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In contrast to the maximum likelihood estimate of linear models, that of
generalized linear models does not always exist. This phenomenon is closely
related to the separability of observed data, see Section 2.1 for a review. Classical
theory deals with this issue when the number of covariates p is fixed, and the
number of observed data n tends to infinity. In the era of data deluge, we
are often in a situation where the number of covariates p and the number of
observations n are comparable in size. The problems of interest are in high-
dimensional asymptotics, in which case the number of parameters p and the
number of observations n both tend to infinity, at the same rate.

In a series of papers [12, 39, 40], Sur, Chen and Candès developed a theory
for the logistic regression with Gaussian covariates in high-dimensional regimes.
They studied the asymptotic properties of the maximum likelihood estimate
when p/n → κ, with applications in hypothesis testing. Candès and Sur [12]
proved a phase transition for the existence of the maximum likelihood estimate
in high-dimensional logistic regression with Gaussian covariates. This extends
an earlier result of Cover [14] in the context of information theory. Formally,
there exists a threshold hMLE, depending on the parameters of the model, such
that

• if κ > hMLE, then P(maximum likelihood estimate exists) → 0 as n, p →
∞.

• if κ < hMLE, then P(maximum likelihood estimate exists) → 1 as n, p →
∞.

This phenomenon is referred to as the phase transition for the existence of the
maximum likelihood estimate. The latter is crucial to justify the use of large
sample approximations to numerous measures of goodness-of-fit, and derive the
limiting distribution of the likelihood ratio, as mentioned in [12]. But they only
studied the existence of the maximum likelihood estimate for Gaussian covari-
ates. This is rarely the case in reality. For instance, the covariates are often
heavy-tail distributed in financial problems where p and n are large.

The purpose of this paper is to further generalize the results of [12], proving
the phase transition for a large class of generalized linear models with elliptical
covariates. Here we consider a large number of covariates sampled from ellipti-
cal distributions, and predict whether one can expect the maximum likelihood
estimate to be found or not. Elliptical symmetry is a natural generalization of
multivariate normality. The contribution of this paper is twofold.

• Theoretical justifications. We give a universal threshold on p/n for the
existence of the maximum likelihood estimate in the binary classification.
Here the word ‘universal’ refers to a wide class of link functions and co-
variate distributions. Our work aims to explore to which extent the phase
transition occurs in terms of link functions and covariates, including the
logit link and Gaussian covariates as a special case. We notice that the
projection limit assumption (Assumption 2.6) is essential to our result,
which is disguised for the special choice of Gaussian covariates. This is
analogous to regularity assumptions in high-dimensional signal processing
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[6, 18]. Without this assumption, the phase transition formula may fail
(for example, log-normal covariates).

• Novel techniques. While the high level idea is the same as [12], we bring
a few techniques into this field. First, we give a checkable condition to the
projection limit assumption. Second, we use a stochastic approximation
approach (Theorem 4.3) to prove the phase transition formula. Compared
to the bare-hands analysis in [12], our argument is more general and is
easily adapted to other problems of interest. Finally, we provide fairly
general conditions (for example, (9)) under which the phase transition
occurs. These conditions reveal additional structures which are masked by
Gaussianity.

In a recent paper of Montanari, Ruan, Sohn and Yan [33], they considered the
max-margin classifier of the random feature problem in the high-dimensional
regime. They provided a phase transition threshold for the existence of the
max-margin classifier, and further studied the limiting max-margin classifier.
But similar to [12], they assume that the covariates are Gaussian. De Loera
and Hogan [31] considered the maximum likelihood estimate of a multi-class
logistic regression in a different way. They explored a condition on the number
of observed data and the number of classes such that the maximum likelihood
estimate exists. We hope that our work will trigger further research towards a
theory for multi-class classification models with non-Gaussian covariates.

The rest of the paper is organized as follows. In Section 2, we provide the
background and state the main result, Theorem 2.7. In Section 3, we perform
simulations to corroborate our theoretical findings. The proof of Theorem 2.7 is
given in Section 4. In Section 5, we conclude with some insights and directions
for future work.

2. Background and main result

In this section we provide the background on the existence of the maximum like-
lihood estimate in binary response generalized linear models, and the properties
of elliptical distributions. Then we present the main result, Theorem 2.7.

2.1. Existence of the maximum likelihood estimate and data
geometry

Often the maximum likelihood estimate in the logit model, implemented in
many statistical packages, runs smoothly. But sometimes it fails, even when the
number of covariates p is much smaller than the sample size n. One reason for
this undesirable phenomenon is that the maximum likelihood estimate does not
exist. It is a classical problem in statistics to characterize the existence and
uniqueness of the maximum likelihood estimate in generalized linear models.

Historically, Haberman [22] and Weddenburn [41] provided general criteria
for the maximum likelihood estimate to exist. Silvapulle [38], and Albert and
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Anderson [1] gave conditions for the existence of the maximum likelihood esti-
mate in logistic regression via data geometry. More precisely, they classified the
data into the following three categories:

• The data points (xxxi, yi) are said to be completely separated if there exists
bbb ∈ R

p such that yixxx
T
i bbb > 0 for all i.

• The data points (xxxi, yi) are said to be quasi-completely separated if for
each bbb �= 000, yixxx

T
i bbb ≥ 0 for all i, and equality holds for some i.

• The data points (xxxi, yi) are said to overlap if for each bbb �= 000, there exists
one i such that yixxx

T
i bbb > 0, and another i such that yixxx

T
i bbb < 0.

In [1], it was proved that the maximum likelihood estimate exists in logistic
regression if and only if the data points overlap. See also [36] for a generalization.
Later Lesaffre and Kaufmann [29] proposed a necessary and sufficient condition
for the existence of the maximum likelihood estimate in probit regression, which
coincides with that derived in [1] for logistic regression. In fact, their result holds
for a general class of generalized linear models.

Theorem 2.1. Consider the generalized linear model defined by (1), and assume
that σ(·) and 1 − σ(·) are log-concave. Then the maximum likelihood estimate
exists if and only if the data points overlap.

It is easily seen that the logit, probit and cloglog links all satisfy the log-
concavity. Despite this nice characterization, it is not clear how to check these
criteria efficiently. See also [13, 16, 28] for algorithmic aspects for detecting
separation/overlaps.

2.2. Elliptical distributions

Elliptical distributions are natural generalizations of multivariate normal, which
preserve spherical symmetry. In the sequel, Sp−1 denotes the unit sphere in R

p.
The following definition of elliptical distributions is due to Kelker [25], and
Cambanis, Huang and Simons [11].

Definition 2.2. A random vector XXX := (X1, . . . , Xp) ∈ R
p is elliptically con-

toured, or simply elliptical if

XXX
(d)
= μμμ+RAAAUUU, (3)

where μμμ ∈ R
p, AAA ∈ R

p×r, UUU is uniformly distributed on S
r−1 for some r > 0, and

R is a non-negative random variable independent of UUU . WriteXXX ∼ Ep(μμμ,ΣΣΣ, FR),
where ΣΣΣ = AAAAAAT , and FR is the cumulative distribution function of R.

If μμμ = 000, r = p, and AAA is orthogonal, then XXX ∼ Ep(000, IIIp, FR) is said to
be spherically symmetric. For XXX ∼ N (000, IIIp), the random variable R is chi-
distributed with degree of freedom p. Below we list a few useful properties of
elliptical distributions, see [10, 11, 19] for further development.
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1. The random vector XXX ∼ Ep(μμμ,ΣΣΣ, FR) has finite moments of order k > 0 if
and only if ERk < ∞. If the first two moments exist, then EXXX = μμμ and

V arXXX = ER2

r ΣΣΣ.
2. The distribution ofXXX ∼ Ep(μμμ,ΣΣΣ, FR) is absolutely continuous with respect

to Lebesgue measure on R
p if and only if r = p = rank(ΣΣΣ), and the dis-

tribution of R is absolutely continuous with respect to Lebesgue measure
on R+.

3. The marginal and conditional distributions of XXX ∼ Ep(μμμ,ΣΣΣ, FR) are also
elliptical. For the sake of simplicity, assume that r = p = rank(ΣΣΣ). Let
XXX := (XXX1,X2X2X2), with XXX1 ∈ R

p1 and XXX2 ∈ R
p2 (p1 + p2 = p). Let μμμ :=(

μμμ1

μμμ2

)
and ΣΣΣ :=

(
ΣΣΣ11 ΣΣΣ12

ΣΣΣ21 ΣΣΣ22

)
, with μμμ1 ∈ R

p1 , μμμ2 ∈ R
p2 , ΣΣΣ11 ∈ Mp1(R),

ΣΣΣ12 = ΣΣΣT
21 ∈ Mp1,p2(R), and ΣΣΣ22 ∈ Mp2(R). ThenXXX1 ∼ Ep1(μμμ1,ΣΣΣ11, FR),

and (XXX1|XXX2 = xxx2) ∼ Ep1(μμμ1|2,ΣΣΣ1|2, FR1|2) where

μμμ1|2 := μμμ1 +ΣΣΣ12ΣΣΣ
−1
22 (xxx2 −μμμ2), ΣΣΣ1|2 := ΣΣΣ11 −ΣΣΣ12ΣΣΣ

−1
22 ΣΣΣ21,

and

FR1|2(r) =

∫ √
r2+d2

ΣΣΣ22
(xxx2,μμμ2)

dΣΣΣ22
(xxx2,μμμ2)

(
s2 − d2ΣΣΣ22

(xxx2,μμμ2)
)p1/2−1

s−p+2dFR(s)∫∞
dΣΣΣ22

(xxx2,μμμ2)

(
s2 − d2ΣΣΣ22

(xxx2,μμμ2)
)p1/2−1

s−p+2dFR(s)

,

with dΣΣΣ22
(xxx2,μμμ2) :=

√
(xxx2 −μμμ2)TΣΣΣ

−1
22 (xxx2 −μμμ2) the Mahalanobis distance

between xxx2 and μμμ2 in the metric associated with ΣΣΣ22.

2.3. Main result

Before stating the main result, we make a few assumptions on the link function,
the covariate distribution, and model parameters. As seen in Section 2.1, the ex-
istence of the maximum likelihood estimate of binary response generalized linear
models can be translated into data geometry. Thus, we need the assumptions
on the link function in Theorem 2.1.

Assumption 2.3 (link function). For σ : R → [0, 1], both σ(·) and 1− σ(·) are
log-concave.

The phase transition for the existence of the maximum likelihood estimate
is expected to occur not only with Gaussian covariates, but with a broad range
of covariate distributions. Here we consider elliptical distributions. To exclude
singularity, we assume that the covariate distribution is absolutely continuous
with respect to Lebesgue measure on R

p.

Assumption 2.4 (covariate distribution). The covariates xxxi ∼ Ep(μμμ,ΣΣΣ, FR)
are of full rank. That is, r = p = rank(ΣΣΣ) and FR is absolutely continuous on
R+.
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To get a meaningful result in diverging dimension, we consider a sequence
of problems with the intercept β0 fixed, and V ar(xxxT

i βββ) → γ2
0 . Recall that for

xxxi ∼ Ep(μμμ,ΣΣΣ, FR), we have V ar(xxxT
i βββ) =

ER2

p βββTΣΣΣβββ. This leads to the following
assumption on model parameters.

Assumption 2.5 (parameter scaling). As p → ∞, ER2/p → α2
0 and |ΣΣΣ1/2βββ| →

γ0/α0.

In the remaining of the paper, we define

(Y (p), X(p)) ∼ Fα0,β0,γ0 if (Y (p), X(p))
(d)
= (V (p), V (p)U (p)), (4)

where U (p) is distributed as any component of xxxi ∼ Ep(000, IIIp, FR), and P(V (p) =
1|U (p)) = 1−P(V (p) = −1|U (p)) = σ(β0+γ0U

(p)/α0). The parametric distribu-
tion Fα0,β0,γ0 is an analog of Fβ0,γ0 introduced in [12]. Here the superscript (p)
emphasizes that the distribution of (Y (p), X(p)) or (V (p), U (p)) may depend on
p. The dependence in the Gaussian case is easily ignored since for xxxi ∼ N (000, IIIp),
U (p) is distributed as standard normal independent of p. For the general ellip-
tical covariates, we make the following technical assumption.

Assumption 2.6 (projection limit). The projection U (p) converges in distribu-
tion to U . That way, (Y (p), X(p)) converges in distribution to (Y,X).

Now we give a sufficient condition for Assumption 2.6 to hold. Let mp,k be
the kth moment of U (p). If for each k ≥ 1, mp,k → mk as p → ∞ and

∞∑
k=1

m
− 1

2k

2k = ∞, (5)

then U (p) converges in distribution to U whose distribution is entirely char-
acterized by the moments (mk; k ≥ 1). The condition (5) is referred to as the
Carleman’s condition. See Lin [30, Theorem 1] for a list of equivalent conditions.

Define

p+(x) = σ

(
β0 +

γ0
α0

x

)
and p−(x) := 1− p+(x). (6)

Denote fX as the density of X. Also define

Gp,+(x) =

∫
z≤x

p+(z)fX(p)(z)dz and Gp,−(x) =

∫
z≤x

p−(z)fX(p)(z)dz,

Gp,+(x) =

∫
z>x

p+(z)fX(p)(z)dz and Gp,−(x) =

∫
z>x

p−(z)fX(p)(z)dz. (7)

So Gp,+(x) + Gp,−(x) is the cumulative distribution function of X(p), and
Gp,±(x) +Gp,±(x) = Ep±(X

(p)). The main result is stated as follows.
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Theorem 2.7. Let (Y (p), X(p)) ∼ Fα0,β0,γ0 , and (Y,X) be the limit in distribu-
tion under Assumption 2.6. Let Z ∼ N (0, 1) be independent of (Y,X). Define

hMLE(α0, β0, γ0) : = lim
p→∞

min
λ0,λ1∈R

E(λ0Y
(p) + λ1X

(p) − Z)2+

= min
λ0,λ1∈R

E(λ0Y + λ1X − Z)2+, (8)

where x+ := max{x, 0}. If Assumptions 2.3-2.5 are satisfied and supp E[(X
(p))8]

< ∞, and

E[p±(X
(p))(Gp,∓(X

(p)) +Gp,±(X
(p)))n−1] = o

(
1

n

)
, (9)

then we have

κ > hMLE(α0, β0, γ0) ⇒ lim
n,p→∞

P(maximum likelihood estimate exists) = 0.

κ < hMLE(α0, β0, γ0) ⇒ lim
n,p→∞

P(maximum likelihood estimate exists) = 1.

The proof is deferred to Section 4. The assumption supp E[(X
(p))8] < ∞,

which is purely technical, is used to prove the law of large numbers for triangular
arrays. As suggested by simulations in Section 3, the phase transition exists even
without this moment condition. The assumption (9) is used to prove that the
probability the data points can be separated via a univariate model is small. A
sufficient condition for (9) to hold is that Gp,∓ +Gp,± is bounded away from 1.
That is, there exists ε > 0 independent of p such that

Gp,∓(x) +Gp,±(x) < 1− ε for all x. (10)

So the term E[p±(X
(p))(G∓(X

(p)) + G±(X
(p)))n−1] is exponentially small in

n. To illustrate, we check the condition (10) for the logistic regression with
Gaussian covariates. To simplify the discussion, we take β0 = 0, and α0 = γ0 =
1. In this case, p+(x) = 1 − p−(x) = ex/(1 + ex) and X(p) = X ∼ N (0, 1).
Fixing x ≥ 0, we get

Gp,−(x) +Gp,+(x) =
1

2
+

∫ ∞

x

ez − 1

1 + ez
fX(z)dz < 1.

Similarly, we can prove that Gp,−(x) + Gp,+(x) < 1 for x < 0. It is also easily
checked that all examples in Section 3 except the log-normal distribution satisfy
the sufficient conditions (5)-(10).

3. Empirical results

In this section we perform experiments to verify the phase transition of the max-
imum likelihood estimate by (i) computing hMLE defined by (8); (ii) checking
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whether the data is separated by the linear programming as in [12]:

max
b0,bbb

n∑
i=1

yi(b0 + xxxT
i bbb) (11)

subject to yi(b0 + xxxT
i bbb) ≥ 0, i = 1, . . . , n

−1 ≤ b0 ≤ 1, −111 ≤ bbb ≤ 111;

Note that the maximum likelihood estimate of the binary response generalized
linear model exists if the linear programming (11) only has the trivial solution.
We compare the theoretical phase transition curve with the empirical observa-
tions under several simulation designs described as below.

First, we argue that AAA = IIIp suffices to validate our theory. Consider X̃XX =

AAA−1XXX and β̃ββ = AAATβββ so that X̃XXβ̃ββ = XXXβββ. The conditional distribution of the
response Y given X̃XXβ̃ββ is the same as that givenXXXβββ. If (X̃XX1, Y1), . . . , (X̃XXn, Yn) are
linearly separated by a hyperplane βββ∗, then (XXX1, Y1), . . . , (XXXn, Yn) are linearly
separated by a hyperplane (AAAT)−1βββ∗. The other way around also holds. Note
that X̃XX ∼ Ep(AAA−1μμμ,IIIp, FR), so it suffices to consider AAA = IIIp.

For the elliptical covariates, we set μμμ = 0, AAA = IIIp and consider different
distributions for the non-negative variable R, including the chi distribution with
degree of freedom p, the Gamma distributions, the Pareto distributions, the
half-normal distribution and the log-normal distribution. When generating the
binary response by (1), we choose the logit function, the cloglog function and
the probit function for the link functino. We simply take β0 = 0. See [12] for
results with β0 �= 0. To ensure Assumption 2.5, let

ER2 = pα2
0 + 1 and βββ = (W̃/||W̃||2 + 1/p) · γ0/α0, (12)

where W̃ ∼ N (000, IIIp).
We fix n = 1000, α0 = 1, and vary γ0 ∈ {0.01, 0.02, . . . , 10.00} and κ = p/n ∈

{0.005, 0.01, . . . , 0.6}. The parameter α0 is simply set as 1 since we observed that
it does not affect the phase transition much. A large α0 might slightly shift the
phase transition curve (the reds curve in Figure 1) to the right, and enlarge
the uncertain band (the green bands). Once the data is generated, we solve the
problem (11) by checking whether a non-trivial solution exists. We repeat the
procedure for 100 times, and get a heat map which indicates the proportion
of times that the maximum likelihood estimate exists for each pair (γ0, κ). See
Figure 1 for the chi case with degree of freedom p. Results for other designs can
be found in Appendix A.

3.1. Multivariate Gaussian covariates with different link functions

We consider the multivariate Gaussian covariates, which have been studied for
the logit link in [12]. In our setup, R is sampled from a chi distribution with
degree of freedom p and the link function is one of {logit, cloglog, probit}. Figure
1 displays the phase transition for the existence of the maximum likelihood
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estimate for different link functions. There are green bands in these figures,
which indicates that the maximum likelihood estimate exists indefinitely when
(γ0, κ) falls in this band with the given sample size. This region is referred to
as the uncertainty band. Observe that for the multivariate Gaussian covariates,
as expected, the hMLE curves lie in the uncertainty bands for different link
functions.

Fig 1. Phase transition for the existence of the maximum likelihood estimate for R ∼ chi
distribution with degree of freedom p. The red curve is the theoretical hMLE boundary given
by (8).

We also use the same setup to investigate the situation when AAA �= IIIp. In this
case, we generate AAA such that each entry Aij is i.i.d sampled from the standard
Gaussian distribution. To make sure it is full rank, we letAAA ← 1

10000‖AAA‖2 ·IIIp+AAA.
The result is deferred to Figure 3 (Middle). We find that the result is very
similar to that in Figure 1, which corroborates our argument that it suffices to
use AAA = IIIp to validate our theory.

3.2. Gamma-distributed R

In [12], U (p) defined by (4) simplifies to the Gaussian distribution, which does
not depend on p. This is key to their proof of the phase transition for the exis-
tence of the maximum likelihood estimate. However, when we go beyond the chi
distribution for R, U (p) depends on p. We observe that Assumption 2.6 is sat-
isfied for Gamma distributions, and the resulting theoretical phase transition
curves agree with the simulations. More precisely, assume R ∼ Gamma(k, θ)
where k is the shape parameter and θ is the scale parameter. The second
moment condition (12) gives θ =

√
ER2/(k2 + k). When k = 0.5, we get

θ0.5 =
√
4(p+ 1)/3 which corresponds to χ distribution with degree of free-

dom 2 if θ0.5 is an integer; when k = 1, it is the Exponential distribution with
θ1 =

√
(p+ 1)/2; when k = 2, it is a Gamma distribution with θ2 =

√
(p+ 1)/6.

Figure 2 implies that hMLE defined by (8) converges quickly as p increases. Ta-
ble 1 indicates that all the theoretical phase transition curves align with the
corresponding middle curves of the uncertainty bands.
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Table 1

Summary of the theoretical hMLE and the simulations of the phase transition for the
maximum likelihood estimate with the logit link function. h0.5 is the κ such that the

proportion of times that the maximum likelihood estimate exists is 0.5, and the number
inside the bracket is the width of the uncertainty interval (a slice of the uncertainty band)
for a given γ0. MIW is the mean width of the uncertainty intervals across γ0 ∈ (0, 10]; MD

is the mean difference between hMLE and h0.5.

γ0 = 1 γ0 = 9 Overall
Distribution h0.5 hMLE h0.5 hMLE MIW MD

Gamma(0.5, θ0.5) 0.435 (0.075) 0.4238 0.310 (0.095) 0.310 0.101 0.0077
Gamma(1, θ1) 0.450 (0.050) 0.458 0.260 (0.080) 0.246 0.071 0.0186
Gamma(2, θ2) 0.450 (0.050) 0.447 0.205 (0.070) 0.191 0.057 0.0160

Pareto(2.5, xm(2.5)) 0.455 (0.045) 0.458 0.165 (0.065) 0.172 0.055 0.0045
Pareto(3.5, xm(3.5)) 0.440 (0.045) 0.439 0.120 (0.060) 0.137 0.057 0.0095
Pareto(4.5, xm(4.5)) 0.435 (0.055) 0.430 0.110 (0.060) 0.128 0.055 0.0095

half-normal 0.450 (0.050) 0.448 0.240 (0.075) 0.211 0.064 0.0215
log-normal 0.380 (0.135) 0.497 0.355 (0.150) 0.450 0.152 0.1199

Fig 2. Convergence of hMLE by (8) for Gamma distributions. ĥ
(0)
MLE is computed by taking

the average of hMLE for κ ≥ 0.3.

3.3. The moment condition and the tail behavior of R

First we explore a case where the eighth moment of X(p) does not exist as
required by Theorem 2.7. To this end, we sample R from the Pareto distribu-
tion of type I. We specify the shape parameter α, and set the scale parameter
xm =

√
(α− 2)/α · ER2. Recall that for the Pareto distribution of type I, the

fourth moment exists when α > 4, and the third moment exists when α > 3.
From Table 1, we see that the simulation results match the theoretical hMLE

well. This suggests that the moment condition in Theorem 2.7 may be further
relaxed.

Subsequently, we study how the tail behavior of the R distribution influ-
ences the phase transition curve hMLE. In the previous empirical studies, we
consider the chi distributions with degree of freedom p and Gamma distribu-
tions which have sub-exponential tails; the Pareto distributions have polynomial
tails. We also investigate the half-normal distribution with a sub-Gaussian tail,
and the log-normal distribution with another heavy tail. To ensure (12), we set
the scale parameter σ2 = ER2 = p + 1 for the half-normal distribution, and
σ2 = 0.5 · logER2 = log

√
p+ 1 for the log-normal distribution. From Table 1,

we observe that the theoretical hMLE successfully predicts the phase transition
in the simulations of the half-normal distribution, but fails for the log-normal



4038 W. Tang and Y. Ye

distribution. This is due to the fact that the log-normal distribution is not
uniquely characterized by its moments, and the sufficient condition (5) does not
hold. See Appendix A for more detailed results for the exploration.

4. Proof of Theorem 2.7

4.1. Roadmap to the proof of Theorem 2.7

Elliptical covariates Assume that the covariates xxxi ∼ Ep(μμμ,ΣΣΣ, FR) with r =

p = rank(ΣΣΣ). It is easily seen that xxxi = μμμ + ΣΣΣ1/2zzzi with zzzi ∼ Ep(000, IIIp, FR).
Recall from Section 2.1 that for GLMs satisfying Assumption 2.3, the MLE
does not exist if and only if there is (b0, bbb) �= 000 such that yi(b0 + xxxT

i bbb) ≥ 0 for

all i. This is equivalent to the existence of (̃b0, b̃bb) �= 000 such that yi(̃b0 +zzzTi b̃bb) ≥ 0
for all i. Without loss of generality, we assume xxxi ∼ Ep(000, IIIp, FR) in the sequel.

We are in a situation where the covariates xxxi := (xi1, . . . , xip) is spherically
symmetric and V ar(xxxT

i βββ) = |βββ|2ER2/p → γ2
0 . By rotational invariance, we

assume that all the signal is in the first coordinate. That is, P(yi = 1|xxxi) =

σ
(
β0 +

γ0

α0
xi1

)
. The results in Section 2.2 show that

(yi, yixxxi)
(d)
= (Y (p), X(p), X2, . . . , Xp), (13)

where (Y (p), X(p)) ∼ Fα0,β0,γ0 , and

(X2, . . . , Xp|X(p) = x) ∼ Ep−1(000, IIIp−1, FR−1),

with FR−1(r) =

∫ √
r2+x2

|x| (s2−x2)(p−3)/2s−p+2dFR(s)∫ ∞
|x|(s

2−x2)(p−3)/2s−p+2dFR(s)
.

Now we want to express P(no MLE) via conic geometry. For a fixed space
W ∈ R

n, let

C(W) = {www + uuu : www ∈ W , uuu ≥ 0},

be the convex cone generated by W . The following proposition is read from [12,
Propositions 1 & 2], and we include the proof in Section 4.2 for completeness.

Proposition 4.1. Let the n-dimensional vectors (YYY (p),XXX(p),XXX2, . . . ,XXXp) be n
i.i.d. copies of (Y (p), X(p), X2, . . . , Xp) distributed as in (13). Let

L := span(XXX2, . . . ,XXXp) and W := span(YYY (p),XXX(p)).

Let {No MLE Single} be the event that the data points can be completely or
quasi-completely separated by the intercept and the first coordinate only, i.e.
W ∩ R

n
+ �= {000}. Then

0 ≤ P(no MLE)− P(L ∩ C(W) �= {000}) ≤ P(No MLE Single). (14)
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By Proposition 4.1, the existence of the MLE boils down to whether L inter-
sects C(W) in a non-trivial way. It remains to prove the following: (1) The prob-
ability P(No MLE Single) is relatively small. (2) The probability P(L∩C(W) �=
{000}) exhibits a phase transition through the ratio κ := p/n, and hMLE(α0, β0, γ0)
defined by (8).

Separation of data in a univariate model We aim to prove that the probability

P(No MLE Single) is small. In [12], a sketch of proof is given for the logistic
regression with Gaussian covariates. In Section 4.3, we give a rigorous proof of
this result in the setting of Theorem 2.7. The main difficulty comes from the
fact that though the probability the data can be separated via any fixed t0 ∈ R

is exponentially small, there are uncountably many such t0 and the union bound
does not give a good estimate.

Proposition 4.2. Under the assumptions in Theorem 2.7, the event {No MLE
Single} occurs with small probability. That is, P(No MLE Single) = o(1).

Convex geometry and phase transition We want to prove the phase transition

of P(L∩ C(W)) through the interplay between κ and hMLE(α0, β0, γ0). The key
is to understand when a random subspace L with uniform orientation intersects
C(W) in a non-trivial way.

For any fixed subspace W ∈ R
n, the approximate kinematic formula [2, The-

orem I] shows that for any ε ∈ (0, 1), there exists aε > 0 such that

p− 1 + δ(C(W)) > n+ aε
√
n =⇒ P(L ∩ C(W)) ≥ 1− ε,

p− 1 + δ(C(W)) < n− aε
√
n =⇒ P(L ∩ C(W)) ≤ ε, (15)

Here δ(C) is the statistical dimension of the convex cone C defined by δ(C) :=
n − E|ZZZ − ΠC(ZZZ)|2, where ZZZ ∼ N (000, IIIn) and ΠC is the projection onto C. The
following identity is given in [12, Lemma 3]:

δ(C(W)) = n− E

(
min
www∈W

|(www −ZZZ)+|2
)
. (16)

Theorem 2.7 can be derived from the formulas (15)-(16) and the following
theorem.

Theorem 4.3. Let (YYY (p),XXX(p)) be n i.i.d. samples from Fα0,β0,γ0 satisfying
Assumption 2.6, and supp E[(X

(p))8] < ∞. Let

Qp,n := min
λ0,λ1∈R

1

n
|(λ0YYY

(p) + λ1XXX
(p) −ZZZ)+|2.

Then Qp,n converges in probability to minλ0,λ1∈R E(λ0Y +λ1X−Z)2+ as n, p →
∞.

In [12], the authors proved Theorem 4.3 in the setting of the logistic regression
by a bare-hands argument. One can adapt their argument to prove Theorem
4.3, with possibly more complications. However, the statement of Theorem 4.3
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suggests it be a form of stochastic approximation. Here we show how this result
follows systematically from stochastic approximation, which is of independent
interest.

Stochastic approximation We sketch a proof of Theorem 4.3 via a stochastic

approximation. In the stochastic approximation literature [26, 35], people seek
to approximate the optimization problem

min
λλλ∈S

G(λλλ), G(λλλ) := Eg(λλλ,ξξξ), (17)

where S ⊂ R
k for some k > 0 and ξξξ is a generic random vector, by a sequence of

stochastic optimization problems minλλλ∈S Ĝn(λλλ;ξξξ1, . . . , ξξξn), Ĝn(λλλ;ξξξ1, . . . , ξξξn) :=
1
n

∑n
i=1 g(λλλ,ξξξi) where (ξξξi; i ≥ 1) are i.i.d. copies of ξξξ.

A deep connection between stochastic approximation and convergence of ran-
dom closed sets was established by Attouch and Wets [5] via the epi-convergence
of functions. A sequence of lower semi-continuous functions fn : Rk → (∞,∞]
is said to epi-converges to f if for each x ∈ R

k,

• lim inf fn(xn) → f(x) if xn → x,
• lim fn(xn) → f(x) for at least one sequence xn → x.

See [3, 4, 17, 23, 27, 37] for further development on epi-convergence.

Here we consider a sequence of stochastic optimization problems with trian-
gular arrays

min
λλλ∈S

Ĝn(λλλ;ξξξ1,n, . . . , ξξξn,n), Ĝn(λλλ;ξξξ1,n, . . . , ξξξn,n) :=
1

n

n∑
i=1

g(λλλ,ξξξi,n), (18)

where (ξξξi,n; 1 ≤ i ≤ n) are i.i.d. copies of ξξξn, and ξξξn converges in distribution to

ξξξ. Let v, v̂n, and argminG, argminĜn be optimal values, and optimal solutions
to the problems (17)-(18). Note that argminG and argmin Ĝn are set-valued.
The following result gives asymptotic inference of v̂n as n → ∞. The proof will
be given in Section 4.4.

Lemma 4.4. Assume that g(·, ·) is measurable and bounded from below, and
g(·, ξξξ) is convex. Assume that supn Eg

4(λλλ,ξξξn) < ∞ and Eg(λλλ,ξξξn) → Eg(λλλ,ξξξ)

for all λλλ. Further assume that argmin Ĝn, n ≥ 1 are non-empty and bounded
in probability. Then argminG �= ∅, and

v̂n → v in probability.

To prove Theorem 4.3, we need to show that the set of minimizers argmin Ĝn

is non-empty and bounded in probability. The argument is similar in spirit to
[12], and we give the proof for ease of reference. In Section 4.4, we prove that
under the assumptions in Theorem 2.7:

• The problem (17) has a unique minimizer λλλ0.
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• For any minimizer λ̂λλn ∈ argmin Ĝn, |λ̂λλn − λλλ0| = OP (1). Here we use
the Chebyshev inequality instead of the concentration inequality for sub-
exponential variables in [12].

Proof of Theorem 2.7 The proof goes along the same line as [12], with two

modifications. Assume that κ > hMLE(α0, β0, γ0).

• Given (Y (p), X(p)), the random vector (X2, . . . , Xp) is also elliptical whose
distribution is given by (13). By the geometric characterization (15), we
get

P(L ∩ C(W) �= {000}) ≥ P(p/n > E(Qp.n|XXX,YYY ) + ann
−1/2)− εn,

for some εn → 0.
• The random variable Qp,n is uniformly integrable, since Qp,n ≤ |ZZZ+|2/n

which is sub-exponential. This implies that E(Qp,n|XXX,YYY ) converges in
probability to hMLE(α0, β0, γ0).

Thus, P(L∩C(W) �= {000}) → 1 and P(MLE exists) → 0. Similarly, we can prove
if κ < hMLE(α0, β0, γ0), then P(MLE exists) → 1.

4.2. Proof of Proposition 4.1

We aim to prove that

P(No MLE) = P(No MLE Single)+P(L∩C(W) �= {000} and {No MLE Single}c),
(19)

from which the result follows. If {No MLE Single} occurs, there is no MLE.
Assume that {No MLE Single} does not occur. If

P(no MLE) = P(Span(YYY (p),XXX(p),XXX2, . . .XXXp) ∩ R
n
+ �= {000}), (20)

then there is no MLE if and only if there is a non-zero vector (b0, . . . , bp) such
that b0YYY

(p) + b1XXX
(p) + · · · + bpXXXp = uuu, uuu ≥ 0,uuu �= 0. By assumption, b0YYY

(p) +
b1XXX

(p) �= u so b2XXX2+ · · · bpXXXp is a non-zero element of C(W). This leads to (19).
Note that there is no MLE if and only if there is a non-zero vector (b0, . . . , bp)
such that b0YYY

(p)+ b1XXX
(p)+ · · ·+ bpXXXp ≥ 0. The identity in law (9) implies that

the equality occurs with probability 0, which proves (20).

4.3. Proof of Proposition 4.2

Let (X1, . . . , Xn) be i.i.d. samples with density fX(p) . It is well known that the
distribution of the order statistics (X(1), . . . , X(n)) is given by n!

∏n
i=1 fX(p)(xi)

for x1 < · · · < xn. Note that there exists t ∈ R separating X(1) < · · · <
X(n) if and only if for some k ∈ {0, . . . , n}, the responses corresponding to
X(1), . . . , X(k) is of the same sign, and those corresponding to X(k+1), . . . , X(n)
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is of the opposite sign. Consequently,

P(∃t : separate X1, . . . , Xn)

=

∫
x1<···<xn

P(∃t separate X1, . . . Xn|X(i) = xi ∀i) · n!
n∏

i=1

fX(p)(xi)dx1 . . . dxn

=

∫
x1<···<xn

n!

n∏
i=1

fX(p)(xi)

(
n∏

i=1

p−(xi) +

n−1∑
k=1

k∏
i=1

p−(xi)

n∏
i=k+1

p+(xi)

+

n−1∑
k=1

k∏
i=1

p+(xi)

n∏
i=k+1

p−(xi) +

n∏
i=1

p+(xi)

)
dx1 . . . dxn.

Moreover,
∫
x1<···<xn

n!
∏n

i=1 fX(p)(xi)
∏n

i=1 p±(xi)dx1 . . . dxn is equal to(∫
R

fX(p)(x)p±(x)dx

)n

= (Ep±(X
(p)))n.

For 1 ≤ k ≤ n− 1,∫
x1<···<xn

n!
n∏

i=1

fX(p)(xi)
k∏

i=1

p−(xi)
n∏

i=k+1

p+(xi)dx1 . . . dxn

= n!

∫ ∞

xk+1=−∞
fX(p)(xk+1)p+(xk+1)dxk+1(∫

x1<···<xk+1

k∏
i=1

fX(p)(xi)p−(xi)dx1 . . . dxk

)
(∫

xn>···>xk+1

n∏
i=k+2

fX(p)(xi)p+(xi)dxk+2 . . . dxn

)

=
n!

k!(n− k − 1)!

∫ ∞

xk+1=−∞
fX(p)(xk+1)p+(xk+1)

kp−(xk+1)G
n−k−1

p,+ (xk+1)dxk+1

= n

(
n− 1

k

)
E[p+(X

(p))Gk
p,−(X

(p))G
n−k−1

p,+ (X(p))].

Combining the above identities yields

P(∃t separate X1, . . . , Xn)

= (Ep−(X
(p)))n + n

n∑
k=1

(
n− 1

k

)
E[p+(X

(p))Gk
p,−(X

(p))G
n−k−1

p,+ (X(p))]

+ n
n∑

k=1

(
n− 1

k

)
E[p−(X

(p))Gk
p,+(X

(p))G
n−k−1

p,− (X(p))] + (Ep+(X
(p)))n

= (Ep−(X
(p)))n + nE[p+(X

(p))(Gp,−(X
(p)) +Gp,+(X

(p)))n−1]

+ nE[p−(X
(p))(Gp,+(X

(p)) +Gp,−(X
(p))n−1] + (Ep+(X

(p)))n. (21)

Finally, the condition (9) together with (21) lead to the desired result.
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4.4. Proof of Theorem 4.3

We start with the proof of Lemma 4.4.

Proof of Lemma 4.4. By law of large numbers of triangular arrays, the condition
supi Eg

4(λλλ,ξξξi,n) < ∞ implies that 1
n

∑n
i=1 g(λλλ,ξξξi,n) − Eg(λλλ,ξξξn) → 0 a.s. It

follows from [3, Theorem 2.3] that

1

n

n∑
i=1

g(λλλ,ξξξi,n)− Eg(λλλ,ξξξn) epi-converges to 0 a.s.

It is well known that if a sequence of convex functions converge pointwise, then
they converge uniformly on compact sets. Since Eg(λλλ,ξξξn) → Eg(λλλ,ξξξ) for all λλλ
and g(·, ξξξ) is convex, the convergence is uniform on compact sets. This implies
the epi-convergence. Therefore,

1

n

n∑
i=1

g(λλλ,ξξξi,n) epi-converges to Eg(λλλ,ξξξ) a.s.

Combining with [17, Proposition 3.3] yields the desired result.

Now we are ready to prove Theorem 4.3. We specialize to λλλ = (λ0, λ1), ξξξn =
(Y (p), X(p), Z) with (Y (p), X(p)) ∼ Fα0,β0,γ0 , ξξξ = (Y,X,Z), and Z ∼ N (0, 1)
independent of {(Y (p), X(p)), (Y,X)}, and

g(λλλ,ξξξ) = (λ0Y + λ1X − Z)2+. (22)

It is clear that the function g defined by (22) is measurable and non-negative,
and g(·, ξξξ) is convex. It follows from supp E[(X

(p))8] < ∞ that supn g
4(λλλ,ξξξn) <

∞. By Assumption 2.5, E[(X(p))2] converges to α2
0, and by Assumption 2.6,

(Y (p), X(p)) converges in distribution to (Y,X). Now by [8, Lemma 8.3], we get
Eg(λλλ,ξξξn) → Eg(λλλ,ξξξ) for all λλλ.

Let λλλmin be a minimum of Eg(λλλ,ξξξ). By convexity of λλλ → Eg(λλλ,ξξξ), there
exists r > 0 such that Eg(λλλmin, ξξξ) < minr≤|λλλ|≤r+1 Eg(λλλ,ξξξ), and minλλλ Eg(λλλ,ξξξ) =
min|λλλ|≤r+1 Eg(λλλ,ξξξ). Note that Eg(λλλ,ξξξn) converges uniformly to Eg(λλλ,ξξξ) on {λλλ :
r ≤ |λλλ| ≤ r + 1}. So for p large enough, Eg(λλλmin, ξξξn) < minr≤|λλλ|≤r+1 Eg(λλλ,ξξξn)
and minλλλ Eg(λλλ,ξξξn) = minr≤|λλλ|≤r+1 Eg(λλλ,ξξξn). Now by [24, Theorem 2.1], we
have as p → ∞,

min
λλλ

Eg(λλλ,ξξξn) = min
|λλλ|≤r+1

Eg(λλλ,ξξξn) → min
|λλλ|≤r+1

Eg(λλλ,ξξξ) = min
λλλ

Eg(λλλ,ξξξ).

By Lemma 4.4, it suffices to prove that the set of minimizers argminĜn is
non-empty and bounded in probability. We aim to show that under the assump-
tions in Theorem 2.7, the problem (13) has a unique minimizer λλλ0, and for any

minimizer λ̂λλn ∈ argminĜn, |λ̂λλn − λλλ0| = OP (1).
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We prove these statements in the next two lemmas. It is easily seen that
G(λλλ) and Ĝn(λλλ) are convex. The following lemma shows that the function G is
strongly convex, which was stated in [12] without proof. Here we give a complete
proof.

Lemma 4.5. Under the assumptions in Theorem 2.7, the function λλλ → G(λλλ)
with g(·) defined by (22) is strongly convex. That is, there exists α1 > α0 > 0
such that

α0III2 � ∇2G(λλλ) � α1III2. (23)

Proof. Elementary analysis shows that

∇2G(λλλ) =

(
E[Y 2Φ(λ0Y + λ1X)] E[Y XΦ(λ0Y + λ1X)]
E[Y XΦ(λ0Y + λ1X)] E[X2Φ(λ0Y + λ1X)]

)
=

(
E[Φ(λ0V + λ1V U)] E[UΦ(λ0V + λ1V U)]
E[UΦ(λ0V + λ1V U)] E[U2Φ(λ0Y + λ1V U)]

)
,

where Φ(·) is the CDF of standard normal, U is defined in Assumption 2.6,
and P(V = 1|U) = 1 − P(V = −1|U) = p+(U). The r.h.s. of (23) is clear.
By Cauchy-Schwarz inequality, det∇2G(λλλ) ≥ 0. If det∇2G(λλλ) = 0, then U is
constant almost surely which violates the non-degeneracy of U . Thus, G(λλλ) is
strictly convex.

Note that

E[Φ(λ0V + λ1V U)] = E[Φ(λ0 + λ1X)p+(X)] + E[Φ(−λ0 − λ1X)p−(X)],

and the decomposition holds for other terms. So

∇2G(λλλ) =

(
E[Φ(λ0 + λ1U)p+(U)] E[UΦ(λ0 + λ1U)p+(U)]
E[UΦ(λ0 + λ1U)p+(U)] E[U2Φ(λ0 + λ1U)p+(U)]

)
+

(
E[Φ(λ0 + λ1U)p−(U)] E[UΦ(λ0 + λ1U)p−(U)]
E[UΦ(λ0 + λ1U)p−(U)] E[U2Φ(λ0 + λ1U)p−(U)]

)
.

(24)

Without loss of generality, consider λ1, λ2 > 0. For λ0, λ1 sufficiently large,

• if λ0/λ1 is large, then E[Φ(λ0 + λ1U)p+(U)] can be approximated by
Ep+(U).

• if λ0/λ1 is small, then E[Φ(λ0 + λ1U)p+(U)] can be approximated by
E[1(U > −λ0/λ1 + η)p+(U)], where η is a fixed small value.

The approximation also holds for other terms. By the strict convexity and the
approximation, we can show that there exist N+ > 0 such that for λ0, λ1 > N+,(

E[Φ(λ0 + λ1U)p+(U)] E[UΦ(λ0 + λ1U)p+(U)]
E[UΦ(λ0 + λ1U)p+(U)] E[U2Φ(λ0 + λ1U)p+(U)]

)
� ε+III2,

for some ε+ > 0. Similarly, there exist N− > 0 such that for λ0, λ1 > N−, we
get a bound ε−III2 for the second term on the r.h.s. of (24). Thus, for λ1, λ2 >
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max(N+, N−), ∇2G(λλλ) � min(ε+, ε−)III2. By continuity of det∇2G(λλλ), we get
∇2G(λλλ) � ε′III2 for λ0, λ1 < max(N+, N−). It suffices to take α0 = min(ε+, ε−, ε

′)
to conclude.

Finally, we prove that the set of minimizers argmin Ĝn is bounded in prob-

ability. The argument can be used to show that |λ̂λλn − λλλ0| = OP (n
−1/4), where

λ̂λλn is any minimizer of Ĝn. The proof is adapted from [12, Lemma 4], which we
include for completeness.

Lemma 4.6. Under the assumptions in Theorem 2.7, we have |λ̂λλn − λλλ0| =

OP (1), where λ̂λλn ∈ argmin Ĝn.

Proof. For any λλλ ∈ R
2, the strong convexity (23) gives that

G(λλλ) ≥ G(λλλ0) +
α0

2
|λλλ− λλλ0|2.

Fix x ≥ 1. For any λλλ on the circle C(x) := {λλλ : |λλλ− λλλ0| = x}, we have

G(λλλ) ≥ G(λλλ0) + 3y, y :=
α0x

2

6
. (25)

Fix z = G(λλλ0) + y, and consider the event

E :=

{
Ĝn(λλλ0) < z and inf

λλλ∈C(x)
Ĝn(λλλ) > z

}
.

By convexity of Ĝn, when E occurs, λ̂λλn must lie in the circle. Hence, |λ̂λλn −
λλλ0| ≤ x.

Next we prove that the event E occurs with high probability. Fix d equi-
spaced point {λλλi}di=1 on the set C(x). Take any point λλλ on the circle, and let λλλi

be its closest point. So |λλλ− λλλi| ≤ πx/d. By convexity of Ĝn,

Ĝn(λλλ) ≥ Ĝn(λλλi)− |∇Ĝ(λλλi)||λλλ− λλλi|. (26)

Define the event

B :=
{
max

i
|∇Ĝn(λλλi)−∇G(λλλi)| ≤ x

}
.

By Chebyshev inequality and union bound, we get

P(Bc) ≤ dσ2

nx2
, (27)

where σ2 := supn V ar[g(λλλ,ξξξn)] < ∞. As |∇2G| is bounded and ∇G(λλλ0) = 0,

|∇G(λλλi)| ≤ α1|λλλi − λλλ0| = α1x.

Now for n sufficiently large, on B we have |∇Ĝn(λλλi)||λλλ−λλλi| ≤ π(1+α1)x
2/d.

Choose d > 6π(1 + α1)/α0 so that |∇Ĝn(λλλi)||λλλ− λλλi| ≤ y. Then it follows from
(26) that on B,

inf
λλλ∈C(x)

Ĝn(λλλ) ≥ min
i

Ĝ(λλλi)− y.
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Observe that

Ĝn(λλλi) > G(λλλi)− y =⇒ Ĝn(λλλi)− y > G(λλλ0) + y = z,

since G(λλλi) ≥ G(λλλ0) + 3y by (25). Consequently,

P(Ec) ≤ P(Bc) + P(Ĝn(λλλ0) ≥ G(λλλ0) + y) +

d∑
i=1

P(Ĝn(λλλi) ≤ G(λλλi)− y),

where P(Bc) is controlled by (27), and the last two terms can also be bounded
by Chebyshev inequality.

5. Conclusion

In this paper, we proved a phase transition for the existence of the maximum
likelihood estimate in high-dimensional generalized linear models with elliptical
covariates. We derived an explicit formula for the phase transition boundary,
depending on the regression coefficients and the scaling parameter of the covari-
ate distribution. Our result extends a previous one in [12], and elucidates a rich
structure in the phase transition phenomenon. We believe that the phase tran-
sition also holds for multinomial response models such as the Poisson regression
and the log-linear regression. See [15, 20] for further discussions. We hope that
this work will trigger further research towards a theory of hypothesis testing for
generalized linear models with non-Gaussian covariates.

Appendix A: Empirical results

To study whether the MLE exists for a given pair of (γ0, κ) with some distri-
bution for R, we generate the data by the mechanism described in Section 3.
We fix the sample size at n = 1000, and vary γ0 ∈ {0.01, 0.02, . . . , 10.00} and
κ = p/n ∈ {0.005, 0.01, . . . , 0.6}. We generate 100 such datasets, and for each
dataset we solve the linear programming (11) by checking whether there is a
nonzero solution using the package CVXOPT 1 in python.

On the other hand, the optimization problem (8) does not have a closed-form
solution. Here we solve numerically this convex optimization. Using the same
data generation mechanism but with a sample size n = 4000, we compute hMLE

by CVXOPT as well. We repeat the procedure for 100 times and take the average
of these replicates as the reported hMLE. Here we take γ0 ∈ {0.5, 1.0, . . . , 10.00}
and κ = p/n ∈ {0.02, 0.04, . . . , 0.6}.
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Fig 3. Phase transition of the MLE existence for R ∼ chi distribution (df = p) with different
link functions. Upper: The value of each grid in the heatmap is the proportion of times that
the MLE exists across the 100 replicates. The red curve is the theoretical hMLE boundary
given by (8). Middle: The same setup as the upper figures, but AAA is generated so that each
entry Aij is sampled from the standard Gaussian distribution. To make sure it is full rank,

we let AAA ← 1
10000

‖AAA‖2IIIp +AAA. Bottom: The heatmap for the hMLE. Each grid is the averaged
value hMLE across 100 replicates.
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Fig 4. Phase transition of the MLE existence for R ∼ Gamma distributions with different
parameters and the logit link (see Section 3.2). Upper: The value of each grid in the heatmap
is the proportion of times that the MLE exists across the 100 replicates. The red curve is the
theoretical hMLE boundary given by (8). Bottom: The heatmap for the hMLE. Each grid is
the averaged value hMLE across 100 replicates.
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Fig 5. Phase transition of the MLE existence for the Pareto distributions with different
parameters and the logit link (see Section 3.3). Upper: The value of each grid in the heatmap
is the proportion of times that the MLE exists across the 100 replicates. The red curve is the
theoretical hMLE boundary given by (8). Bottom: The heatmap for the hMLE. Each grid is
the averaged value hMLE across 100 replicates.
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Fig 6. Phase transition of the MLE existence for the half-normal distribution and the logit
link function. Left: The value of each grid in the heatmap is the proportion of times that the
MLE exists across the 100 replicates. The red curve is the theoretical hMLE boundary given
by (8). Right: The heatmap for the hMLE. Each grid is the averaged value hMLE across 100
replicates.

Fig 7. Phase transition of the MLE existence for the log-Normal distribution and the logit
link function. Left: The value of each grid in the heatmap is the proportion of times that the
MLE exists across the 100 replicates. The red curve is the theoretical hMLE boundary given
by (8). Right: The heatmap for the hMLE. Each grid is the averaged value hMLE across 100
replicates.
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