
The Annals of Probability
2019, Vol. 47, No. 3, 1378–1416
https://doi.org/10.1214/18-AOP1286
© Institute of Mathematical Statistics, 2019

REGENERATIVE RANDOM PERMUTATIONS OF INTEGERS

BY JIM PITMAN AND WENPIN TANG

University of California, Berkeley

Motivated by recent studies of large Mallows(q) permutations, we pro-
pose a class of random permutations of N+ and of Z, called regenerative per-
mutations. Many previous results of the limiting Mallows(q) permutations
are recovered and extended. Three special examples: blocked permutations,
p-shifted permutations and p-biased permutations are studied.

1. Introduction and main results. Random permutations have been exten-
sively studied in combinatorics and probability theory. They have a variety of ap-
plications including:

• statistical theory, for example, Fisher–Pitman permutation test [36, 81], ranked
data analysis [23, 24];

• population genetics, for example, Ewens’ sampling formula [32] for the distri-
bution of allele frequencies in a population with neutral selection;

• quantum physics, for example, spatial random permutations [12, 104] arising
from the Feynman representation of interacting Bose gas;

• computer science, for example, data streaming algorithms [53, 79], interleaver
designs for channel coding [11, 27].

Interesting mathematical problems are (i) understanding the asymptotic behav-
ior of large random permutations, and (ii) generating a sequence of consistent
random permutations. Over the past few decades, considerable progress has been
made in these two directions:

(i) Shepp and Lloyd [97], Vershik and Shmidt [105, 106] studied the distri-
bution of cycles in a large uniform random permutation. The study was extended
by Diaconis, McGrath and Pitman [25], Lalley [72] for a class of large nonuni-
form permutations. Hammersley [52] first considered the longest increasing sub-
sequences in a large uniform random permutation. The constant in the law of large
numbers was proved by Logan and Shepp [75], Kerov and Vershik [67] via repre-
sentation theory, and by Aldous and Diaconis [3], Seppäläinen [95] using proba-
bilistic arguments. The Tracy–Widom limit was proved by Baik, Deift and Johans-
son [8]; see also Romik [92]. Recently, limit theorems for large Mallows permuta-
tions have been considered by Mueller and Starr [78], Bhatnagar and Peled [13],
Basu and Bhatnagar [9] and Gladkich and Peled [38].
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(ii) Pitman [83, 84] provided a sequential construction of random permutations
of [n] with consistent cycle structures. This is known as the Chinese restaurant
process, or virtual permutations [63, 64] in the Russian literature. A description of
the Chinese restaurant process in terms of records was given by Kerov [65], Kerov
and Tsilevich [66]; see also Pitman [82]. Various families of consistent random
permutations have been devised by Gnedin and Olshanski [45–47], Gnedin [39],
Gnedin and Gorin [40, 41] in a sequential way, and by Fichtner [35], Betz and
Ueltschi [12], Biskup and Richthammer [14] in a Gibbsian way.

The inspiration for this article is a series of recent studies of random permuta-
tions of countably infinite sets by Gnedin and Olshanski [46, 47], Basu and Bhatna-
gar [9] and Gladkich and Peled [38]. Here, a permutation of a countably infinite set
is a bijection of that set. Typically, these models are obtained as limits in distribu-
tion, as n → ∞, of some sequence of random permutations �[n], with some given
distributions Qn on the set Sn of permutations of the finite set [n] := {1, . . . , n}.
The distribution of a limiting bijection � :N+ →N+ is then defined by

(1.1) P(�i = ni,1 ≤ i ≤ k) := lim
n→∞P

(
�

[n]
i = ni,1 ≤ i ≤ k

)
,

for every sequence of k distinct values ni ∈N+ := {1,2, . . .}, provided these limits
exist and sum to 1 over all choices of (ni,1 ≤ i ≤ k) ∈N

k+. It is easy to see that for
Qn = Un the uniform distribution on Sn, the limits in (1.1) are identically equal to
0, so this program fails to produce a limiting permutation of N+. However, it was
shown by Gnedin and Olshanski [46], Proposition A.1, that for every 0 < q < 1
this program is successful for Qn = Mn,q , the Mallows(q) distribution on Sn [76],
which assigns each permutation π of [n] probability

(1.2) P
(
�[n] = π

) = Mn,q(π) := Z−1
n,qq inv(π) for π ∈ Sn,

where inv(π) := {(i, j) : 1 ≤ i < j ≤ n,π(i) > π(j)} is the number of inversions
of π , and the normalization constant Zn,q is well known to be the q-factorial
function

(1.3) Zn,q =
n∏

j=1

j∑
i=1

qi−1 = (1 − q)−n
n∏

j=1

(
1 − qj )

for 0 < q < 1.

See Diaconis and Ram [26], Section 2.e, for algebraic properties of Mallows(q)

distributions, and additional references. Note that it is possible to define the pro-
jective limit for both Qn = Un and Qn = Mn,q :

• For Qn = Un, the consistency of the family (Un;n ≥ 1) with respect to the
projection is closely related to the Fisher–Yates–Durstenfeld–Knuth shuffle [70],
Section 3.4.2. The projective limit is the Chinese restaurant process with θ = 1.

• For Qn = Mn,q , the fact that (Mn,q;n ≥ 1) are consistent relative to the projec-
tion is a consequence of the Lehmer code [71], Section 5.1.1. Moreover, Gnedin
and Olshanski [46], Proposition A.6, proved that the projective limit coincides
with the limit in distribution (1.1).
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Gnedin and Olshanski [46] gave a number of other characterizations of the lim-
iting distribution of � so obtained for each 0 < q < 1. They continued in [47] to
show that there exists a two-sided random permutation �∗ of Z, which is a similar
limit in distribution of Mallows(q) permutations of [n], shifted to act on intervals
of integers [1−an,n−an], for any sequence of integers an with both an → ∞ and
n− an → ∞ as n → ∞. They also showed that for each 0 < q < 1 the process �∗
is stationary, meaning that the process of displacements (D∗

z := �∗
z − z; z ∈ Z) is

a stationary process:

(1.4)
(
D∗

z ; z ∈ Z
) (d)= (

D∗
a+z; z ∈ Z

)
for a ∈ Z.

These results were further extended by Basu and Bhatnagar [9], Gladkich and
Peled [38], who established a number of properties of the limiting Mallows(q)

permutations of N+ and of Z, as well as provided many finer asymptotic results
regarding the behavior of various functionals of Mallows(q) permutations of [n],
including cycle counts and longest increasing subsequences, in various finer limit
regimes with q approaching either 0 or 1 as n → ∞. The analysis of limiting
Mallows(q) permutations � of N+ by these authors relies on a key regenerative
property of these permutations, which is generalized in this paper to provide com-
panion results for a much larger class of random permutations of N+ and of Z.

For a permutation � of a countably infinite set I , however, it may be con-
structed, there is the basic question:

(1.5) • is every orbit of � finite?

If so, say � has only finite cycles. For I = N+ or Z, one way to show � has only
finite cycles, and to gain some control on the distribution of cycle lengths, is to
establish the stronger property:

(1.6) • every component of � has finite length.

Here, we need some vocabulary. Let I ⊆ Z be an interval of integers, and � : I →
I be a permutation of I . Call n ∈ I a splitting time of �, or say that � splits atn, if
� maps (−∞, n] red onto itself, or equivalently, � maps I ∩[n+1,∞) onto itself.
The set of splitting times of �, called the connectivity set by Stanley [100], is the
collection of finite right endpoints of some finite or infinite family of components
of �, say {Ij }. So � acts on each of its components Ij as an indecomposable
permutation of Ij , meaning that � does not act as a permutation on any proper
subinterval of Ij . These components Ij form a partition of I , which is coarser than
the partition by cycles of �. For example, the permutation π = (1)(2,4)(3) ∈ S4
induces the partition by components [1][2,3,4]. A block of � is a component of
�, or a union of adjacent components of �. For any block J of � with #J = n

(resp., #J = ∞), the reduced block of � on J is the permutation of [n] (resp., N+)
defined via conjugation of � by the shift from J to [n] (resp., N+).
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For any permutation � of N+, there are two ways to express the event
{� splits at n} as an intersection of n events:

{� splits at n} =
n⋂

i=1

{�i ≤ n} =
n⋂

i=1

{
�−1

i ≤ n
}
.

An alternative way of writing this event is

{� splits at n} =
n⋂

i=1

{
�−1

i < min
j>n

�−1
j

}
.

For if � splits at n, then �−1
i < n + 1 = minj>n �−1

j for every 1 ≤ i ≤ n. Con-
versely, if minj>n �−1

j = m+1 say, and �−1
i < m+1 for every 1 ≤ i ≤ n, then the

image of [n] via �−1 is equal to [m], so m = n and �−1
i ≤ n for every 1 ≤ i ≤ n.

Let

(1.7) An,i :=
{
min
j>n

�−1
j < �−1

i

}
,

be the complement of the ith event in the above intersection. Then by the principle
of inclusion-exclusion

(1.8) P(� splits at n) = 1 +
n∑

j=1

(−1)j�n,j ,

where

(1.9) �n,j := ∑
1≤i1<···<ij≤n

P

( j⋂
k=1

An,ik

)
.

So there are the Bonferroni bounds

P(� splits at n) ≥ 1 − �n,1, P(� splits at n) ≤ 1 − �n,1 + �n,2,

and so on. Moreover, each of the intersections of the An,i is an event of the form

FB,C :=
{
min
j∈B

�−1
j < min

h∈C
�−1

h

}
,

for instance An,iAn,j = FB,C for F = {n,n + 1, . . .} and C = {i, j}.
An approach to the problem of whether � has almost surely finite component

lengths for a number of interesting models, including the limiting Mallows(q)

model, is provided by the following structure. Let

N+ := {1,2, . . .} and N0 := {0,1,2, . . .}.
If a permutation � of N+ splits at n, let �n be the residual permutation of N+
defined by conjugating the action of � on N+ \ [n] by a shift back to N+:

�n
i := �n+i − n for i ∈ N+.
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Call (Tn;n ≥ 0) a delayed renewal process if

Tn := T0 + Y1 + · · · + Yn,

with T0 ∈ N0, Y1, Y2, . . . ∈ N+ ∪ {∞} independent, and the Yi identically dis-
tributed, allowing also the transient case with P(Y1 < ∞) < 1. When T0 := 0,
call (Tn;n ≥ 0) a renewal process with zero delay. For n > 0, let

Rn :=
∞∑

k=0

1(Tk = n),

be the renewal indicator at time n. The definition below is tailored to the general
theory of regenerative processes presented by Asmussen [6], Chapter VI.

DEFINITION 1.1. (1) Call a random permutation of � of N+ regenerative
with respect to the delayed renewal process (Tn;n ≥ 0) if every Ti is a splitting
time of �, and for each n > 0 such that P(Rn = 1) > 0, conditionally given a
renewal at n,

(i) there is the equality in distribution(
�n,Rn+1,Rn+2, . . .

) (d)= (
�0,R0

1,R0
2, . . .

)
between the joint distribution of �n with the residual renewal indicators (Rn+1,

Rn+2, . . .), and the joint distribution of some random permutation �0 of N+ with
renewal indicators (R0

1,R0
2, . . .) with zero delay;

(ii) the initial segment (R0,R1, . . .Rn) of the delayed renewal process is inde-
pendent of (�n,Rn+1,Rn+2, . . .).

(2) Call a random permutation of � of N+ regenerative if � is regenerative with
respect to some renewal process (Tn;n ≥ 0);

(3) Call a random permutation of � of N+ strictly regenerative if � is regenera-
tive with respect to its own splitting times.

In Definition 1.1, we do not require the independence of the pre-renewal and
the post-renewal permutations. This is called the wide-sense regeneration [103],
Chapter 10, while assuming further independence refers to the regeneration in the
classical sense. The formulation of Definition 1.1 was motivated by its application
to three particular models of random permutations of N+, introduced in the next
three definitions. Each of these models is parameterized by a discrete probability
distribution on N+, say p = (p1,p2, . . .). These models are close in spirit to the
similarly parameterized models of p-mappings and p-trees studied in [4, 5]; see
also [42, 48, 50] for closely related ideas of regeneration in random combinatorial
structures.
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General properties of a regenerative random permutation � of N+ with zero
delay can be read from the standard theory of regenerative processes [34], Chapter
XIII. Let u0 := 0, and

un := P(� regenerates at n),(1.10)

fn := P(� regenerates for the first time at n).(1.11)

If a random permutation � of N+ is regenerative but not strictly regenerative, the
renewal process (Tn;n ≥ 0) is not uniquely associated with �. So the sequences
un and fn are not necessarily intrinsic to � but to (Tn;n ≥ 0). Each of these
sequences determines the other by the recursion

(1.12) un = f1un−1 + f2un−2 + · · · + fnu0 for all n > 0,

which may be expressed in terms of the generating functions U(z) := ∑∞
n=0 unz

n

and F(z) := ∑∞
n=1 fnz

n as

(1.13) U(z) = (
1 − F(z)

)−1
.

According to the discrete renewal theorem, either:

(i) (transient case)
∑∞

n=1 un < ∞, when P(Y1 < ∞) < 1, and � has only
finitely many regenerations with probability one, or

(ii) (recurrent case)
∑∞

n=1 un = ∞, when P(Y1 < ∞) = 1, and with probability
one � has infinitely many regenerations, hence only finite components, and only
finite cycles.

Here is a simple way of constructing regenerative random permutations of N+
in the classical sense.

DEFINITION 1.2. For a probability distribution p := (p1,p2, . . .) on N+, and
Qn for each n ∈ N+ a probability distribution on Sn, call a random permutation �

of N+ recurrent regenerative with block length distribution p and blocks governed
by (Qn;n ≥ 1), if � is a concatenation of an infinite sequence Blocki , i ≥ 0 such
that:

(i) the lengths Yi of Blocki , i ≥ 1 are independent and identically distributed
(i.i.d.) with common distribution p, and are independent of the length T0 of
Block0 which is finite almost surely;

(ii) conditionally given the block lengths, say Yi = ni for i = 1,2, . . . , the re-
duced blocks of � are independent random permutations of [ni] with distributions
Qni

.

A transient regenerative permutation � of N+ can be constructed as above up
to time TN for Tn the sum of n i.i.d. variables Yi with distribution P(Y1 = n) =
pn/

∑
k pk , and N has geometric (1 − ∑

k pk) distribution on N0, independent of
the sequence (Yi; i ≥ 1). Then TN is the time of the last finite split point of �,
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and given TN = n and the restriction of � on [n] so created, the restriction of �

on [n,∞), shifted back to be a permutation of N+ can be constructed according
to any fixed probability distribution on the set of all permutations of N+ with no
splitting times.

The main focus here is the positive recurrent case, with mean block length μ :=
E(Y1) < ∞, and an aperiodic distribution of Y1, which according to the discrete
renewal theorem [34], Chapter XIII, Theorem 3, makes

(1.14) lim
n→∞un = 1/μ > 0.

Then numerous asymptotic properties of the recurrent regenerative permutation �

with this distribution of block lengths can be read from standard results in renewal
theory, as discussed further in Section 3. In particular, starting from any positive
recurrent random permutation � of N+, renewal theory gives an explicit construc-
tion of a stationary, two-sided version �∗ of �, acting as a random permutation
of Z, along with ergodic theorems indicating the existence of limiting frequencies
for various counts of cycles and components, for both the one-sided and two-sided
versions. This greatly simplifies the construction of stationary versions of the lim-
iting Mallows(q) permutations in [38, 47].

Observe that for every recurrent, strictly regenerative permutation of N+, the
support of Qn is necessarily contained in the set S†

n of indecomposable permu-
tations of [n]. As will be seen in Section 4, even the uniform distribution on S†

n

has a nasty denominator for which there is no very simple formula. The difficulty
motivates the study of other constructions of random permutations of N+, such as
the following.

DEFINITION 1.3. For p a probability distribution on N+ with p1 > 0, call a
random permutation � of N+ a p-shifted permutation of N+, if � has the dis-
tribution defined by the following construction from an i.i.d. sample (Xj ; j ≥ 1)

from p. Inductively, let:

• �1 := X1,
• for i ≥ 2, let �i := ψ(Xi) where ψ is the increasing bijection from N+ to
N+ \ {�1,�2, . . . ,�i−1}.

For example, if X1 = 2, X2 = 1, X3 = 2, X4 = 3, X5 = 4, X6 = 1 . . . , then the
associated permutation is (2,1,4,6,8,3, . . .).

The procedure described in Definition 1.3 is a version of sampling without re-
placement, or absorption sampling [60, 89]. Gnedin and Olshanski [46] introduced
this construction of p-shifted permutations of N+ for p the geometric(1 − q)

distribution. They proved that the limiting Mallows(q) permutations of [n] is
the geometric(1 − q)-shifted permutation of N+. The regenerative feature of
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geometric(1 − q)-shifted permutations was pointed out and exploited in [9, 38].
This regenerative feature is in fact a property of p-shifted permutations of N+
for any p with p1 > 0. This observation allows a number of previous results for
limiting Mallows(q) permutations to be extended as follows.

PROPOSITION 1.4. For each fixed probability distribution p on N+ with p1 >

0, and � a p-shifted random permutation of N+:

(i) The joint distribution of the random injection (�1, . . . ,�n) : [n] → N+ is
given by the formula

(1.15) P(�i = πi,1 ≤ i ≤ n) =
n∏

j=1

p

(
πj − ∑

1≤i<j

1(πi < πj )

)
,

for every fixed injection (πi,1 ≤ i ≤ n) : [n] → N+, and p(k) := pk .
(ii) The probability that � maps [n] to [n] is

(1.16) un := P
([n] is a block of �

) =
n∏

j=1

j∑
i=1

pi.

(iii) The random permutation � is strictly regenerative, with regeneration at
every n such that [n] is a block of N+, and the renewal sequence (un;n ≥ 1) as
above.

(iv) The distribution of component lengths fn := P(Y1 = n) where Y1 is the
length of the first component of � is given by the probability generating function

(1.17) EzY1 =
∞∑

n=1

fnz
n = 1 − 1

U(z)
where U(z) := 1 +

∞∑
n=1

unz
n.

(v) If EX1 = m := ∑
i ipi < ∞, then μ := E(Y1) < ∞, so � is positive recur-

rent, with limiting renewal probability

(1.18) u∞ := lim
n→∞un = μ−1 =

∞∏
j=1

(
1 − P(X1 > j)

)
.

Then � has cycle counts with limit frequencies detailed later in (3.2), and there is
a stationary version �∗ of � acting on Z, call it a p-shifted random permutation
of Z.

(vi) If m = ∞, then � is either null recurrent or transient, according to
whether U(1) is infinite or finite, and there is no stationary version of � acting
on Z.

Even for the extensively studied limiting Mallows(q) model, Proposition 1.4
contains some new formulas and characterizations of the distribution, which are
discussed in Section 5. An interesting byproduct of this proposition for a general
p-shifted permutation is the following classical result of Kaluza [59].
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COROLLARY 1.5 ([59]). Every sequence (un;n ≥ 0) with

(1.19) 0 < un ≤ u0 = 1 and u2
n ≤ un−1un+1 for all n ≥ 1,

is a renewal sequence. The sequence (un;n ≥ 0) satisfying (1.19) is called a
Kaluza sequence. The renewal process associated with a Kaluza sequence is gen-
erated by the random sequence of times n at which [n] is a block of �, for � a
p-shifted permutation of N+, with

p1 := u1 and pn := un

un−1
− un−1

un−2
for n ≥ 2.

If p∞ := 1 − ∑∞
i=1 pi > 0, and X1,X2, . . . is the sequence of independent choices

from this distribution on {1,2, . . . ,∞} used to drive the construction of �, then
the construction is terminated by assigning some arbitrarily distributed infinite
component on [n + 1,∞) following the last splitting time n such that X1 + · · · +
Xn < ∞, for instance by a shifting to [n + 1,∞) the deterministic permutation of
N+ with no finite components

· · ·6 → 4 → 2 → 1 → 3 → 5 → ·· · .

See also [37, 55, 62, 69, 74, 96] for other derivations and interpretations of
Kaluza’s result, all of which now acquire some expression in terms of p-shifted
permutations.

Some further instances of regenerative permutations are provided by the follow-
ing close relative of the p-shifted permutation.

DEFINITION 1.6. For p with pi > 0 for every i, call a random permutation
� of N+ a p-biased permutation of N+ if the random sequence (p�1,p�2, . . .) is
what is commonly called a sized biased random permutation of (p1,p2, . . .). That
is to say, (�1,�2, . . .) is the sequence of distinct values, in order of appearance,
of a random sample of positive integers (X1,X2, . . .), which are independent and
identically distributed (i.i.d.) with distribution (p1,p2, . . .). Inductively, let

• �1 := X1, and J1 := 1,
• for i ≥ 2, let �i := XJi

, where Ji is the least j > Ji−1 such that

Xj ∈ N+ \ {X�1,X�2, . . . ,X�i−1}.
The procedure described in Definition 1.6 is an instance of sampling with re-

placement, or successive sampling [51, 93]. See [28, 54, 80, 88, 94] for various
studies of this model of size-biased permutation, with emphasis on the annealed
model, where p is determined by a random discrete distribution P := (P1,P2, . . .),
and given P = p, the Xj are i.i.d. with distribution p. In particular, the joint dis-
tribution of the random injection (�1, . . . ,�n) : [n] → N+ is

(1.20) P(�i = πi,1 ≤ i ≤ n) = E

(
Pπ1

n∏
i=2

Pπi

1 − ∑i−1
j=1 Pπj

)
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for every fixed injection (πi,1 ≤ i ≤ n) : [n] → N+. A tractable model of this
kind, known as a residual allocation model (RAM), has the stick-breaking repre-
sentation:

(1.21) Pi := (1 − W1) · · · (1 − Wi−1)Wi,

with 0 < Wi < 1 and the Wi ’s are independent and identically distributed. This
model is of special interest for Bayesian nonparametric inference and machine
learning [15, 16]. In those contexts, the distribution of P represents a prior dis-
tribution on the underlying probability model p, which may be updated in re-
sponse to observations such as the values in the sample (X1, . . . ,Xn), or val-
ues of (�1, . . . ,�n). A model of particular interest arises when each Wi has the
beta(1, θ) density θ(1 − w)θ−1 at w ∈ (0,1) for some 0 < θ < ∞. This distribu-
tion of (P1,P2, . . .) is known as the GEM(θ) distribution, after Griffiths, Engen
and McCloskey who discovered the remarkable properties of this model, includ-
ing McCloskey’s result that the GEM(θ) model is the only RAM that is invariant
under P -biased permutation, meaning that there is the equality in distribution

(1.22)
(P�1,P�2, . . .)

(d)= (P1,P2, . . .)

for � a P -biased permutation of N+.

The following result reveals the regeneration of sized-biased random permutations
of N+.

PROPOSITION 1.7. For every residual allocation model (1.21) for a random
discrete distribution P with i.i.d. residual factors Wi , and � a P -biased random
permutation of N+:

(i) The random permutation � is strictly regenerative, with regeneration at
every n such that [n] is a block of N+, and the renewal sequence (un;n ≥ 1)

defined by

(1.23) un := P
([n] is a block of �

) =
∫ ∞

0
e−x

E

n∏
i=1

(
1 − exp

(
−xWi

Ti

))
dx,

where Ti := (1 − W1) · · · (1 − Wi). Then � is positive recurrent if

(1.24)
∞∑
i=2

E exp
(
−xWi

Ti

)
< ∞ for some x > 0.

(ii) If each Wi is the constant 1 − q for some 0 < q < 1, so P is the
geometric(1 − q) distribution on N+, then � is positive recurrent. Hence � has
all blocks finite and limiting frequencies of cycle counts as in (3.2), and there is a
stationary version �∗ of � acting on Z, called a p-biased random permutation
of Z.
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(iii) If the Wi are i.i.d. beta(1, θ) for some θ > 0, so P has the GEM(θ) distri-
bution, then � is positive recurrent, with the same further implications.

Propositions 1.4 and 1.7 expose a close affinity between p-shifted and p-biased
permutations of N+, at least for some choices of p, which does not seem to have
been previously recognized. For instance, if p is such that p1 is close to 1, and
subsequent terms decrease rapidly to 0, then it is to be expected in either of these
models that � should be close in some sense to the identity permutation on N+.
This intuition is confirmed by the explicit formulas described in Section 6 both for
the one parameter family of geometric(1 − q) distributions as q ↓ 0, and for the
GEM(θ) family as θ ↓ 0. This behavior is in sharp contrast to the case if � is a
uniformly distributed permutation of [n], where it is well known that the expected
number of fixed points of � is 1, no matter how large n may be. See also Gladkich
and Peled [38] for many finer asymptotic results for the Mallows(q) model of
permutations of [n], as both n → ∞ and q ↓ 0.

With further analysis, we derive explicit formulas for u∞ of the GEM(θ)-biased
permutations in Section 7. But there does not seem to be any simple formula for
u∞ of a P -biased permutation with P a general RAM, and the condition (1.24) for
positive recurrence is not easy to check. Nevertheless, we give a simple sufficient
condition for a P -biased permutation of N+ with P governed by a RAM to be
positive recurrent.

PROPOSITION 1.8. Let � be a P -biased permutation of N+ for P a RAM

with i.i.d. residual factors Wi
(d)= W . If the distribution of − log(1 − W) < ∞ is

nonlattice, meaning that the distribution of 1 − W is not concentrated on a geo-
metric progression, and

(1.25) E[− logW ] < ∞ and E
[− log(1 − W)

]
< ∞,

then � is positive recurrent regenerative permutation.

Organization of the paper. The rest of this paper is organized as follows.

• Section 2 sets the stage by recalling some basic properties of indecomposable
permutations of a finite interval of integers, which are the basic building blocks
of regenerative permutations.

• Section 3 indicates how the construction of a stationary random permutation of
Z along with some limit theorems is a straightforward application of the well-
established theory of regenerative random processes.

• Section 4 provides an example of the regenerative permutation of N+, with uni-
form block distribution. Some explicit formulas are given.

• Section 5 sketches a proof of Proposition 1.4 for p-shifted permutations, follow-
ing the template provided by [9] in the particular case of the limiting Mallows(q)

models.
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• Section 6 gives a proof of Proposition 1.7 for P -biased permutations. This is
somewhat trickier, and the results are less explicit than in the p-shifted case.

• Section 7 provides further analysis of regenerative P -biased permutations.
There Proposition 1.8 is proved. We also show that the limiting renewal proba-
bility of the GEM(1)-biased permutation is 1/3.

2. Indecomposable permutations. This section provides references to some
basic combinatorial theory of indecomposable permutations of [n] which may
arise as the reduced permutations of � on its components of finite length. For
1 ≤ k ≤ n, let (n, k)† be the number of permutations of [n] with exactly k compo-
nents. In particular, (n,1)† := #S†

n is the number of indecomposable permutations
of [n], as the sequence A003319 of OEIS. As shown by Lentin [73] and Comtet
[18], the counts ((n,1)†;n ≥ 1), starting from (1,1)† = 1, are determined by the
recurrence

(2.1) n! =
n∑

k=1

(k,1)†(n − k)!,

which enumerates permutations of [n] according to the size k of their first compo-
nent. Introducing the formal power series which is the generating function of the
sequence (n!;n ≥ 0)

G(z) :=
∞∑

n=0

n!zn,

the recursion (2.1) gives the generating function of the sequence ((n,1)†;n ≥ 1),
as

(2.2)
∞∑

n=1

(n,1)†zn = 1 − 1

G(z)
,

which implies that

(2.3) (n,1)† = n!
(

1 − 2

n
+ O

(
1

n2

))
.

Furthermore, it is derived from (2.2) that

(2.4)
∞∑

n=k

(n, k)†zn =
(

1 − 1

G(z)

)k

for 1 ≤ k ≤ n.

The identity (2.4) determines the triangle of numbers (n, k)† for 1 ≤ k ≤ n, as
displayed for 1 ≤ n ≤ 10 in Comtet [19], Exercise VI.14; see also [1, 7, 20–22, 68]
for various results about indecomposable permutations.
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Recall that for I ⊆ Z an interval of integers, and � : I → I a permutation of I ,
we say � splits at n ∈ I , if � maps I ∩ (−∞, n] onto itself. As observed by Stam
[99], the splitting times of a uniform random permutation � of a finite interval
of integers I = [a, b] are regenerative in the sense that conditionally given that �

splits at some n ∈ I with a ≤ n < b, the restrictions of � to [a,n] and to [n +
1, b] are independent uniform random permutations of these two subintervals of I .
However, for a uniform random permutation � of a finite interval, the components
of � turn out not to be very interesting. In fact, for a large finite interval of integers
I , most permutations of I have only one component. Assuming for simplicity that
I = [n], let

Vn :=
n∑

k=1

1(� splits at k),

be the number of interval components of �, a uniformly distributed random per-
mutation of [n]. It is easily seen from (2.3) that P(Vn = 1) → 1 as n → ∞. By an
obvious enumeration,

EVn :=
n∑

k=1

P(� splits at k) =
n∑

k=1

k!(n − k)!
n! = �n − 1,

where

�n :=
n∑

k=0

(
n

k

)−1

,

is the sum of reciprocals of binomial coefficients. The sum �n, as the sequence
A046825 of OEIS, has been studied in a number of articles [91, 101], with some
other interpretations of the sum given in [98].

The following lemma records some basic properties of the decomposition of a
uniform permutation � of [n].

LEMMA 2.1. Let � be a uniformly distributed random permutation of [n].
Then:

(i) The number Kn of components of � has distribution

(2.5) P(Kn = k) = (n, k)†

n! for 1 ≤ k ≤ n,

with the counts (n, k)† determined as above.
(ii) Conditionally given Kn = k, the random composition of n defined by the

lengths Ln,1, . . . ,Ln,k of these components has the exchangeable joint distribution

(2.6) P(Ln,1 = n1, . . . ,Ln,k = nk | Kn = k) = 1

(n, k)†

k∏
i=1

(ni,1)†,
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for all compositions (n1, . . . , nk) of n with k parts, meaning ni ≥ 1 and
∑k

i=1 ni =
n.

(iii) The unconditional distribution of the length Ln,1 of the first component of
� is given by

(2.7) P(Ln,1 = �) = (�,1)†(n − �)!
n! for 1 ≤ � ≤ n,

while the conditional distribution of Ln,1 given that Kn = k is given by

(2.8) P(Ln,1 = � | Kn = k) = (�,1)†(n − �, k − 1)†

(n, k)† for 1 ≤ � ≤ n,

with the convention that (0,0)† = 1 but otherwise (n, k)† = 0 unless 1 ≤ k ≤ n.
(iv) The distribution of the length L∗

n of a size-biased random component of �,
such as the length of the component of � containing Un, where Un is independent
of � with uniform distribution on [n], is given by the formula

(2.9) P
(
L∗

n = �
) = �(�,1)†

n · n!
n∑

k=1

k(n − l, k − 1)†,

with the same convention.

PROOF. The first three parts are just probabilistic expressions of the preceding
combinatorial discussion. Then part (iv) follows from the definition of the size-
biased pick, using

P
(
L∗

n = �
) =

n∑
k=1

P
(
L∗

n = � | Kn = k
)
P(Kn = k).

Given that Kn = k let the lengths of these k components listed from left to right be
Ln,1, . . . ,Ln,k ,

P
(
L∗

n = � | Kn = k
) =

k∑
j=1

P(pick Ln,j and Ln,j = � | Kn = k)

= kP(pick Ln,1 and Ln,1 = � | Kn = k)

= k
�

n
P(Ln,1 = � | Kn = k),

where the second equality is obtained by exchangeability. Now part (iv) follows
by plugging in the formulas in previous parts. �
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Table of n · n!P(L∗
n = �) for 1 ≤ � ≤ n ≤ 7:

n

1 1
2 2 2
3 5 4 9
4 16 10 18 52
5 64 32 45 104 355
6 312 128 144 260 710 2766
7 1812 624 576 832 1775 5532 24,129

0 1 2 3 4 5 6 �

3. Regenerative and stationary permutations. This section elaborates on
the structure of a regenerative permutation of N+, and its stationary version �∗
acting on Z. To provide some intuitive language for discussion of a permutation �

of I = N+ or of I = Z, it is convenient to regard � as describing a motion of balls
labeled by I . Initially, for each i ∈ I , ball i lies in box i. After the action of �,

• ball i from box i is moved to box �i ;
• box j contains the ball initially in box �−1

j .

For i ∈ I , let Di := �i − i, the displacement of ball initially in box i. It follows
easily from Definition 1.1 that if � is a regenerative permutation of N+, then
the process (Dn;n ≥ 1) is a regenerative process with embedded delayed renewal
process (Tk;k ≥ 0). This means that if Rn := ∑∞

k=0 1(Tk = n) is the nth renewal
indicator variable, then for each n such that P(Rn = 1) > 0, conditionally given
the event {Rn = 1}:

(i) There is the equality of finite dimensional joint distributions(
(Dn+j ,Rn+j ); j ≥ 1

) (d)= ((
D0

j ,R
0
j

); j ≥ 1
)
,

where the D0
j := �0

j − j are the displacements of the random permutation �0 of

N+, with associated renewal indicators R0
1,R0

2, . . . with zero delay.
(ii) The bivariate process ((Dn+j ,Rn+j ); j ≥ 1) is independent of (R1,

. . . ,Rn).

This paraphrases the discrete case of the general definition of a regenerative pro-
cess proposed by Asmussen [6], Chapter VI, and leads to the following lemma.

LEMMA 3.1 ([6], Chapter VI, Theorem 2.1). Let (Dn;n ≥ 1) be a regener-
ative process with embedded delayed renewal process, (Tk;k ≥ 0), in the sense
indicated above. Assume that the renewal process is positive recurrent with finite
mean recurrence time μ := E(Y1) < ∞, where Y1 := T1 − T0, and that the dis-
tribution of Y1 is aperiodic. Then there is the convergence in total variation of



REGENERATIVE PERMUTATIONS 1393

distributions of infinite sequences

(Dn,Dn+1, . . .)
t.v.−→ (

D∗
0 ,D∗

1 , . . .
)
,

where (D∗
z ; z ∈ Z) is a two-sided stationary process, whose law is uniquely deter-

mined by the block formula

(3.1) Eg
(
D∗

z ,D∗
z+1, . . .

) = 1

μ
E

( ∞∑
k=1

g(Dk,Dk+1, . . .)1(Y1 ≥ k)

)
,

for all z ∈ Z and all nonnegative product measurable functions g.

The existence of a stationary limiting Mallows(q) permutation of Z was estab-
lished by Gnedin and Olshanski [46], along with various characterizations of its
distribution. Their work is difficult to follow, because they did not exploit the re-
generative properties of this distribution. Gladkich and Peled [38], Section 3, pro-
vides some further information about this model, including what they call a “stitch-
ing” construction of the two-sided model from its blocks on (−∞, T0], (T0, T1)

and [T1 + 1,∞). But their construction too is difficult to follow. In fact, the struc-
ture of the two-sided Mallows permutation of Z is typical of the general structure
of stationary regenerative processes. This structure is spelled out in the following
theorem, which follows easily from Lemma 3.1.

THEOREM 3.2. Let � be a positive recurrent regenerative random permuta-
tion of N+, with block length distribution p and family of block distributions Qn

on Sn, and μ := ∑
n npn < ∞:

(i) There exists a unique stationary regenerative random permutation �∗ of Z,
with associated stationary renewal process

{· · ·T−2 < T−1 < T0 < T1 < T2 · · · } ⊆ Z,

with indexing defined by T−1 < 0 ≤ T0, and renewal indicators R∗
z , with R∗

z = 1
implying that � splits at z, such that

P
(
R∗

z = 1
) = 1/μ for z ∈ Z,

and given the event {R∗
z = 1}, by letting �

∗,z
i := �∗

z+i − z for i ∈ N+,(
�

∗,z
1 ,�

∗,z
2 , . . . | R∗

z = 1
) (d)= (

�n
1,�

n
2, . . . | Rn = 1

)
for z ∈ Z,

for every n such that P(Rn = 1) > 0, where (Rn;n ≥ 1) is the sequence of renewal
indicators associated with the one-sided regenerative permutation �.

(ii) If �∗ so defined, with block lengths Yz := Tz − Tz−1 for z ∈ Z, then the
(Yz; z ∈ Z) are independent, with the Yz, z �= 0 all copies of Y1 with distribution p,
while Y0 has the size-biased distribution

P(Y0 = n) = npn/μ for n ≥ 1.
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Conditionally given all the block lengths, the delay T0 has uniform distribution on
{0,1, . . . , Y0 − 1}, and conditional on all the block lengths and on T0, with given
block lengths ni say, the reduced permutation of �∗ on the block of ni integers
(Ti−1, Ti] is distributed according to Qni

.

Conversely, if � is regenerative, existence of such a stationary regenerative per-
mutation of Z implies that � is positive recurrent.

Also note that the law of the stationary regenerative random permutation �∗ is
uniquely defined by the equality of joint distributions(

�∗
1,�

∗
2, . . . , T0, T1, T2, . . . | R∗

0 = 1
) (d)= (

�0
1,�

0
2, . . . , T0, T1, T2, . . .

)
,

where on the left side the Ti are understood as the renewal times that are strictly
positive for the stationary process �∗, and on the right-hand side the same no-
tation is used for the renewal times of the regenerative random permutation �0

of N+ with zero delay, and on both sides T0 = 0, the Yi := Ti − Ti−1 for i ≥ 1
are independent random lengths with distribution p, and conditionally given these
block lengths are equal to ni , the corresponding reduced permutations of [ni] are
independent and distributed according to Qni

. So the random permutation �0 of
N+ is a Palm version of the stationary permutation �∗ of Z. See Thorisson [102,
103] for general background on stationary stochastic processes.

Let � be a positive recurrent regenerative random permutation of N+, with
block length distribution p. For n ∈N+, let

• Cycn be the length of the cycle of � containing n,
• Cmpn be the length of the component of � containing n,
• Blkn be the length of the block of � containing n.

Clearly, 1 ≤ Cycn ≤ Cmpn ≤ Blkn ≤ ∞, and the structure of these statistics is of
obvious interest in the analysis of �. Assuming further that p is aperiodic, it fol-
lows from Lemma 3.1 there is a limiting joint distribution of (Cycn,Cmpn,Blkn)

as n → ∞. However, the evaluation of this limiting joint distribution is not easy,
even for the simplest regenerative models.

Suppose that a large number M of blocks of � are formed and concatenated to
make a permutation of the first N integers for N ∼ Mμ almost surely as M → ∞.
Then among these N ∼ Mμ integers, there are about M�p� integers contained
in regeneration blocks of length �. So for an integer i = �UN� picked uniformly
at random in [N ], the probability that this random integer falls in a regeneration
block of length � is approximately

P
(�UN� ∈ regeneration block of length �

) ≈ M�p�

Mμ
= �p�

μ
.

This is the well-known size-biased limit distribution of the length of block contain-
ing a fixed point in a renewal process. Now given that �UN� falls in a regeneration
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block of length �, the location of �UN� relative to the start of this block has uni-
form distribution on [�]. These intuitive ideas are formalized and extended by the
proposition below, which follows from Lemma 3.1, and the renewal reward theo-
rem for ergodic averages [6], Theorem 3.1.

PROPOSITION 3.3. Let � be a positive recurrent regenerative random per-
mutation of N+, with block length distribution p with finite mean μ, and blocks
governed by (Qn;n ≥ 1):

(i) Let Cn,j be the number of cycles of � of length j that are wholly contained
in [n]. Then the cycle counts have limit frequencies

(3.2) lim
n→∞

Cn,j

n
= νj

μ
a.s. for j ≥ 1,

where νj is the expected number of cycles of length j in a generic block of �, and
μ = ∑

j jνj . The same conclusion holds with Cn,j replaced by the larger number
of cycles of � of length j whose least element is contained in [n].

(ii) If the block length distribution p is aperiodic, then

lim
n→∞P(� regenerates at n) = 1/μ,

and

(3.3) lim
n→∞P(Cycn = j) = jνj

μ
for j ∈ N+.

Alternatively, let L∗
� be a random variable with values in [�], which is the length of

a sized-biased cycle of a random permutation of [�] distributed as Q�. Then

(3.4) lim
n→∞P(Cycn = j,Blkn = �) = �p�

μ
P

(
L∗

� = j
)

for 1 ≤ j ≤ �,

and

(3.5) lim
n→∞P(Cycn = j) = 1

μ

∞∑
�=1

�p�P
(
L∗

� = j
)

for j ≥ 1.

(iii) Continuing to assume that p is aperiodic, there is an almost sure limiting
frequency p◦

j of cycles of � of length j , relative to cycles of all lengths. These
limiting frequencies are uniquely determined by

(3.6) p◦
j = νj∑∞

j=1 νj

for j ∈ N+,

or by the relations

(3.7) p◦
j = μ◦

μ

1

j

∞∑
�=1

�p�P
(
L∗

� = j
)

for j ∈N+,

with μ◦ := ∑∞
j=1 jp◦

j .
(vi) The statements (i)–(iii) hold with cycles replaced by components, with al-

most sure limiting frequencies p
†
j of components of � of length j .
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4. Uniform blocked permutations. In this section, we study an example of
regenerative permutations where it is possible to describe the limiting cycle count
frequencies explicitly. The story arises from the following observation of Shepp
and Lloyd [97].

LEMMA 4.1 ([97]). Let N be a random variable with the geometric(1 − q)

distribution on N0. That is,

P(N = n) = qn(1 − q) for n ≥ 0.

Let � be a uniform random permutation of [n] given N = n. Let (Nj ; j ≥ 1) be
the cycle counts of �, which given N = 0 are identically 0, and given N = n

are distributed as the counts of cycles of various lengths j in a uniform random
permutation of [n]. Then (Nj ; j ≥ 1) are independent Possion random variables
with means

ENj = qj

j
for j ≥ 1.

The Lévy–Itô representation of N with the infinitely divisible geometric(1 − q)

distribution as a weighted linear combination of independent Poisson variables, is
realized as N = ∑∞

j=1 jNj . The possibility that N = 0 is annoying for concatena-
tion of independent blocks. But this is avoided by simply conditioning a sequence
of independent replicas of this construction on N > 0 for each replica. The obvious
identity Nj 1(N > 0) = Nj allows easy computation of

(4.1) E(Nj | N > 0) = ENj

P(N > 0)
= qj−1

j
for j ≥ 1.

Similarly, for k = 1,2 . . .

(4.2) P(Nj = k | N > 0) = 1

k!q
(

qj

j

)k

exp
(
−qj

j

)
for j ≥ 1,

hence by summation

(4.3) P(Nj > 0 | N > 0) = 1

q

[
1 − exp

(
−qj

j

)]
for j ≥ 1.

PROPOSITION 4.2. Let � be the regenerative random permutation of N+,
which is the concatenation of independent blocks of uniform random permutations
of lengths Y1, Y2, . . . where each Yi > 0 has the geometric(1 − q) distribution on
N+. Then:

(i) The limiting cycle count frequencies νj/μ in (3.2) are determined by the
formula μ := E(Y1) = (1 − q)−1, and

(4.4) νj = qj−1

j
for j ∈ N+.
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(ii) The distribution of �1 is given by

(4.5) P(�1 = k) = 1 − q

q

(
λ1(q) −

k−1∑
h=1

qh

h

)
for k ∈ N+,

where

λ1(q) :=
∞∑

h=1

qh

h
= − log(1 − q).

(iii) The probability of the event {�1 = 1,�2 = 2} that both 1 and 2 are fixed
points of �, is

(4.6) P(�1 = 1,�2 = 2) = 1 − q.

(iv) The regenerative random permutation � is not strictly regenerative.

PROOF. (i) This follows readily from the formula (4.1) for the cycle counts in
a generic block.

(ii) By conditioning on the first block length Y1, since given Y1 = y the distri-
bution of � is uniform on [y], there is the simple computation for k = 1,2, . . .

P(�1 = k) =
∞∑

y=k

qy−1(1 − q)
1

y
,

which leads to (4.5). In particular, the probability that 1 is a fixed point of � is

P(�1 = 1) = −1 − q

q
log(1 − q).

(iii) The joint probability of the event {�1 = 1,�2 = 2} is computed as

P(�1 = 1,�2 = 2) = P(Y1 = 1,�1 = 1,�2 = 2) + P(Y1 ≥ 2,�1 = 1,�2 = 2)

= (1 − q) · 1 − q

q
λ1(q) +

∞∑
y=2

qy−1(1 − q)
1

y(y − 1)

= (1 − q)2

q
λ1(q) + 1 − q

q
λ2(q),

where

(4.7) λ2(q) :=
∞∑

h=2

qh

h(h − 1)
= q − (1 − q)λ1(q).

But this simplifies, by cancellation of the two terms involving λ1(q), to the formula
(4.6).

(iv) This follows from the fact that P(�1 = 1,�2 = 2) �= P(�1 = 1)2. �
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More generally, the probability of the event {�i = i,1 ≤ i ≤ k} involves

λk(q) :=
∞∑

h=k

qh

h(h − 1) · · · (h − k + 1)
= 1

ak

qpk−2(q) + (q − 1)k−1

(k − 1)! λ1(q),

for some ak ∈ Z and pk−2 ∈ Zk−2[q]. The sequence (ak;k ≥ 1) appears to be the
sequence A180170 of OEIS; see [77] for related discussion.

REMARK 4.3. One referee proposed the following regenerative but not
strictly regenerative permutation. Consider a stationary M/M/c service system
with c > 1 servers, a single queue and the first-come-first serve policy. Labeling
customers in the arrival order, the output order is a random permutation �. When
the system turns idle, we have a renewal for �. But there is no renewal, though
a split, if the first served customers are 1,2, . . . , n in some output order and the
(n + 1)th customer is still in the system.

Proposition 4.2 is generalized by the following one, which is a corollary of
Theorem 3.2 and Proposition 3.3.

PROPOSITION 4.4. Let � be a positive recurrent random permutation of N+,
whose block lengths Yk are i.i.d. with distribution p, and whose reduced block
permutations given their lengths are uniform on Sn for each length n:

(i) The limiting cycle count frequencies νj/μ in (3.2) are determined by the
formula

(4.8) νj = j−1
P(Y1 ≥ j) for j ∈N+,

where P(Y1 ≥ j) = ∑∞
i=j pi . So the almost sure limiting frequencies p◦

j of cycles
of � of length j are given by

(4.9) p◦
j =

∑∞
i=j pi

j
∑∞

i=1 piHi

for j ∈ N+,

where Hi := ∑i
j=1 1/j is the ith harmonic sum.

(ii) If p is aperiodic, the limit distribution of displacements Dn := �n − n as
n → ∞ is the common distribution of the displacement D∗

z := �∗
z − z for every

z ∈ Z, which is symmetric about 0, according to the formula

(4.10) lim
n→∞P(Dn = d) = P

(
D∗

z = d
) = 1

μ
E

(
(Y1 − |d|)+

Y1

)
for d ∈ Z,

which implies

(4.11) lim
n→∞P(�n > n) = P

(
D∗

z > 0
) = 1

2

(
1 − 1

μ

)
,

and the same holds for < instead of >.
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(iii) Continuing to assume that p is aperiodic, there is also the convergence of
absolute moments of all orders r > 0

(4.12) lim
n→∞E|Dn|r = E

∣∣D∗
z

∣∣r = 2

μ
Eδr(Y ),

where

δr(n) := σr(n) − n−1σr+1(n) with σr(n) :=
n∑

k=1

kr ,

the sum of r th powers of the first n positive integers. In particular, for r ≥ 1, δr(n)

is a polynomial in n of degree r + 1, for instance,

δ1(n) = 1

6

(
n2 − 1

)
, δ2(n) = 1

12
n
(
n2 − 1

)
,

implying that the limit distribution of displacements has a finite absolute moment
of order r if and only if EY r+1

1 < ∞.

PROOF. (i) Recall the well-known fact that for a uniform random permutation
of [n], for 1 ≤ j ≤ n the expected number of cycles of length j is ECn,j = 1/j .
This follows from the easier fact that the length of a size-biased pick from the
cycles of a uniform permutation of [n] is uniformly distributed on [n], and the
probability 1/n that the size-biased pick has length j can be computed by condi-
tioning on the cycle counts as 1/n = E[jCn,j /n]. Appealing to the uniform distri-
bution of blocks given their lengths, given Y1 the expected number of j -cycles in
the block of length Y1 is (1/j)1(Y1 ≥ j), and the conclusion follows. The limiting
frequencies (4.9) are computed by injecting the formula (4.8) for cycle counts into
(3.6).

(ii) This follows from Lemma 3.1, with the expression for the limit distribution
of D∗

z := �∗
z − z given by

P
(
D∗

z = d
) = 1

μ

∞∑
k=1

P(�k = k + d,Y1 ≥ k).(4.13)

By construction of �, given Y1 = y for some y ≥ k, the image of �k is a uniform
random pick from [y], so

P(�k = k + d,Y1 ≥ k,Y1 = y) = 1(1 ≤ k + d ≤ y)y−1py for y ≥ k.

Sum this expression over y, then switch the order of summations over k and y, to
see that for each fixed y ≥ 1 the coefficient of μ−1y−1py in (4.13) is

∞∑
k=1

1(1 ≤ k + d ≤ y) = (
y − |d|)+,
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since if d ≥ 0 the sum over k is effectively from 1 to y − d , and while if d < 0 it
is from 1 + |d| to y, and in either case the number of nonzero terms is y − |d| if
|d| < y, and 0 otherwise. This gives the expression for the limit on the right-hand
side of (4.10), from which follow the remaining assertions.

(iii) This follows from the formula (4.10), a known result of convergence of
moments in the limit theorem for regenerative stochastic processes [6], Chapter
VI, Problem 1.4, and Bernoulli’s formula for σr(n) as a polynomial in n of degree
r + 1; see, for example, Beardon [10]. �

Note, however, that the companion results for components of � seem to be
complicated. For instance, there is in general no simple expression for the expected
number of components of � of a fixed length. The limiting frequencies p

†
j of

components of � of length j are obtained by plugging (2.9) into (3.7), which are
determined implicitly by the relations

(4.14) p
†
j = μ†

μ
(j,1)†

∞∑
�=1

p�

�!
�∑

k=1

k(l − j, k − 1)† for j ∈N+.

5. p-Shifted permutations. In this section, we study the p-shifted permuta-
tions introduced in Definition 1.3. It is essential that p be fixed and not random
to make p-shifted permutations regenerative. The point is that if p is replaced by
a random P , the observation of �1, . . . ,�n given a split at n allows some infer-
ence to be made about the Pi , 1 ≤ i ≤ n. But according to the definition of the
P -shifted permutation, these same values of Pi are used to create the remaining
permutation of N+ \ [n]. Consequently, the independence condition required for
regeneration at n will fail for any nondegenerate random P . Now we give a proof
of Proposition 1.4.

PROOF OF PROPOSITION 1.4. (i) This is clear from the definition of p-shifted
permutations.

(ii) This is obvious from the absorption sampling: one element of [n] is sampled
with probability p1 +· · ·+pn, then one element of the remaining in [n] is sampled
with probability p1 + · · · + pn−1, and so on. Alternatively, observe that

un = ∑
π∈Sn

n∏
j=1

p

(
πj − ∑

1≤i<j

1(πi < πj )

)
= ∑

π∈Sn

n∏
j=1

p

(
j − ∑

1≤i<π−1
j

1(πi < j)

)
,

and the conclusion follows from the well-known bijection Sn → [1] × [2] × · · · ×
[n] defined by

π �→
(
j − ∑

1≤i<π−1
j

1(πi < j);1 ≤ j ≤ n

)
.
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(iii)–(iv) The strict regeneration is clear from the definition of p-shifted per-
mutations, and the generating function (1.17) follows easily from the the general
theory of regenerative processes [34], Chapter XIII.

(v)–(vi) The particular case of these results for p the geometric(1 − q) distribu-
tion was given by Basu and Bhatnagar [9], Lemmas 4.1 and 4.2. Their argument
generalizes as follows. The key observation is that for X1,X2, . . . the i.i.d. sample
from p which drives the construction of the p-shifted permutation �, the sequence
Mn defined by M0 := 0 and

Mn := max(Mn−1,Xn) − 1,

has the interpretation that

Mn = #
{
i : 1 ≤ i ≤ max

1≤j≤n
�j

}
− n,

which can be understood as the current number of gaps in the range of �j , 1 ≤
j ≤ n. The event {� regenerates at n} is then identical to the event {Mn = 0}. It
is easily checked that (Mn;n ≥ 0) is a Markov chain with state space N0, and the
unique invariant measure (μi; i ∈ N0) for the Markov chain (Mn;n ≥ 0) is given
by

(5.1) μ0 = 1 and μi = P(X1 > i)∏i
j=1[1 − P(X1 > j)] for i ≥ 1.

Moreover, it follows by standard analysis that this sequence μj is summable if and
only if the mean m of X1 is finite. The conclusion follows from the well known
theory of Markov chains [30], Chapter 6, and Theorem 3.2. �

See also Alappattu and Pitman [2], Section 3, for a similar argument used to
derive the stationary distribution of the lengths of the loop-erasure in a loop-erased
random walk. For the p-shifted permutation, the first splitting probabilities fn :=
P(� first splits at n) are given by the explicit formulas

f1 = p1,

f2 = p1p2,

f3 = p1p
2
2 + p2

1p3 + p1p2p3,

f4 = p1p
3
2 + 2p2

1p2p3 + 2p1p
2
2p3 + p2

1p
2
3 + p1p2p

2
3

+ p3
1p4 + 2p2

1p2p4 + p1p
2
2p4 + p2

1p3p4 + p1p2p3p4.

It is easily seen that for each n, fn(p1,p2, . . .) is a polynomial of degree n in
variables p1, . . . , pn. The polynomial so defined makes sense even for variables



1402 J. PITMAN AND W. TANG

pi not subject to the constraints of a probability distribution. The polynomial can
be understood as an enumerator polynomial for the vector of counts

Rn,j := πj −
j∑

i=1

1(πi < πj ) for 1 ≤ j ≤ n.

In the polynomial for fn, the choice of π1, . . . , πn is restricted to the set S†
n of inde-

composable permutations of [n], and the coefficient of p
r1
1 . . . p

rn
n is for each choice

of nonnegative integers r1, . . . , rn with
∑n

i=1 ri = n is the number of indecompos-
able permutations of [n] such that

∑n
j=1 1(Rn,j = i) = ri for each 1 ≤ i ≤ n. In

particular, the sum of all the integer coefficients of these monomials is

fn(1,1, . . .) = (n,1)†,

which is the number of indecomposable permutations of [n] discussed in Section 2.
Properties of the limiting Mallows(q) permutations of N+ and of Z are obtained

by specializing Proposition 1.4 with p the geometric(1 − q) distribution on N+.
Many results of [38, 46] acquire simpler proofs by this approach. The following
corollary also exposes a number of properties of the limiting Mallows(q) models
which were not mentioned in previous works.

COROLLARY 5.1. For each 0 < q < 1, with Pq governing � as a geo-
metric(1 − q)-shifted permutation of N+, the conclusions of Proposition 1.4 apply
with the following reductions:

(i) The formula (1.15) reduces to

(5.2) Pq(�i = πi,1 ≤ i ≤ n) = (1 − q)nq inv(π)+δ(n,π),

where inv(π) is the number of inversions of π , and δ(n,π) := ∑n
i=1 πi − 1

2n(n +
1). In particular, (5.2) holds with the further simplification δ(n,p) = 0 if and only
if π is a permutation of [n].

(ii) The probability that � maps [n] to [n] is

(5.3) un,q := Pq

([n] is a block of �
) = (1 − q)nZn,q,

where Zn,q is defined by (1.3).
(iii) The Pq distribution of � is strictly regenerative, with regeneration at every

n such that [n] is a block of N+, and renewal sequence (un,q;n ≥ 1) as above.
(iv) The Pq distribution of component lengths fn,q = Pq(Y1 = n), where Y1

is the length of the first component of �, is given by the probability generating
function

(5.4)
∞∑

n=1

fn,qzn = 1 − 1

Uq(z)
where Uq(z) = 1 +

∞∑
n=1

uq,nz
n,
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as well as by the formula

(5.5) fn,q = (1 − q)nZ†
n,q,

where Z†
n,q := ∑

π∈S+
n

q inv(π) is the restricted partition function of the Mallows(q)

distribution Mn,q on the set S†
n of indecomposable permutations of [n].

(v) Under Pq , conditionally given the component lengths, say Yi = ni for i =
1,2, . . . , the reduced components of � are independent random permutations of
[ni] with conditional Mallows(q) distributions M†

ni,q
defined by

(5.6) M†
ni,q

(π) := 1

Z
†
ni,q

q inv(π) for π ∈ S+
ni

.

6. p-Biased permutations. This section provides a detailed study of p-
biased permutations introduced in Definition 1.6. For a P -biased permutation �

of N+ with P = (P1,P2, . . .) a random discrete distribution, the joint distribution
of (�1, . . . ,�n) is computed by the formula (1.20). In particular, the distribution
of �1 is given by the vector of means (E(P1),E(P2), . . .). So if P is the GEM(θ)

distribution, then �1 has the geometric(θ/(1 + θ)) distribution on N+. The in-
dex �1 of a single size-biased pick from (P1,P2, . . .), and especially the random
size P�1 of this pick from (P1,P2, . . .) plays an important role in the theory of
random discrete distributions and associated random partitions of positive integers
[84]. Features of the joint distribution of (P�1, . . . ,P�n) also play an important
role in this setting [83], but we are unaware of any previous study of (�1,�2, . . .)

regarded as a random permutation of N+.
We start with the following construction of size-biased permutations from Per-

man, Pitman and Yor [80], Lemma 4.4. See also Gordon [51] where this construc-
tion is indicated in the abstract, and Pitman and Tran [85] for further references to
size-biased permutations.

LEMMA 6.1 ([51, 80]). Let (Li;1 ≤ i ≤ n) be a possibly random sequence
such that

∑n
i=1 Li = 1, and (εi;1 ≤ i ≤ n) be i.i.d. standard exponential variables,

independent of the Li’s. Define

Yi := εi

Li

for 1 ≤ i ≤ n.

Let Y(1) < · · · < Y(n) be the order statistics of the Yi ’s, and L∗
1, . . . ,L

∗
n be the

corresponding L values. Then (L∗
i ;1 ≤ i ≤ n) is a size-biased permutation of

(Li;1 ≤ i ≤ n).

By applying the formula (1.8) and Lemma 6.1, we evaluate the splitting proba-
bilities for P -biased permutation with P a random discrete distribution.
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PROPOSITION 6.2. Let � be a P -biased permutation of N+ of a random dis-
crete distribution P = (P1,P2, . . .), and Tn := 1 − ∑n

i=1 Pi . Then the probability
that � maps [n] to [n] is given by (1.8) with

(6.1) �n,j = ∑
1≤i1<···<ij≤n

E

(
Tn

Tn + Pi1 + · · · + Pij

)
.

PROOF. Recall the definition of An,i from (1.7). By Lemma 6.1, for 1 ≤ i1 <

· · · < ij ≤ n,

P

( j⋂
k=1

An,ik

)
= P

(
min

1≤k≤j

(
εik

Pik

)
>

ε

Tn

)

= E exp
(
−ε(Pi1 + · · · + Pij )

Tn

)
= E

(
Tn

Tn + Pi1 + · · · + Pij

)
,

which leads to the desired result. �

In terms of the occupancy scheme by throwing balls independently into an infi-
nite array of boxes indexed by N+ with random frequencies P = (P1,P2, . . .), the
quantity �n,j has the following interpretation. Let Cn be the count of empty boxes
when the first box in {n + 1, n + 2, . . .} is filled. Then

(6.2) �n,j = E

(
Cn

j

)
.

Further analysis of Cn and �n,j for the GEM(θ) model will be presented in
the forthcoming article [29]. Contrary to p-shifted permutations, we consider P -
biased permutations where P is determined by a RAM (1.21). In the latter case, the
only model with P fixed is the geometric(1−q)-biased permutation for 0 < q < 1.
Now we give a proof of Proposition 1.7.

PROOF OF PROPOSITION 1.7. (i) The strict regeneration follows easily from
the stick breaking property of RAM models. By Lemma 6.1, the renewal probabil-
ities un are given by

un = P

(
max

1≤i≤n

εi

Pi

<
ε

Tn

)
,

where Pi = Wi

∏i−1
j=1(1 − Wj), Tn = ∏n

j=1(1 − Wj), and the εi ’s and ε are inde-
pendent standard exponential variables. Note that for each x > 0,

P

(
max

1≤i≤n

εi

Pi

<
x

Tn

)
= P

(
n⋂

i=1

{
εi <

xPi

Tn

})
= E

n∏
i=1

(
1 − e

− xPi
Tn

)
,
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which, by conditioning on ε = x, leads to

(6.3) un =
∫ ∞

0
e−x

E

n∏
i=1

(
1 − e−xPi/Tn

)
dx.

Since (W1, . . . ,Wn)
(d)= (Wn, . . . ,W1) for every n ≥ 1, the formula (6.3) simplifies

to (1.23). So to prove u∞ > 0, it suffices to prove (1.24).
(ii) This is the deterministic case where Pi = qi−1(1 − q) and Tn = qn. So the

formula (1.23) specializes to

un =
∫ ∞

0
e−x

n∏
i=1

(
1 − e−x(1−q)/qi )

dx.

It follows by standard analysis that u∞ := limn→∞ un > 0 if and only if

∞∑
i=1

e−x(1−q)/qi

< ∞.

But this is obvious for 0 < q < 1, which implies that � is positive recurrent.
(iii) This case corresponds to Pi = Wi

∏i−1
j=1(1 − Wj) and Tn = ∏n

j=1(1 − Wj),
where Wi are i.i.d. beta(1, θ) variables. Note that for each i, Wi is independent of
Ti−1. By conditioning on Ti−1, we get

∞∑
i=2

E exp
(
−xWi

Ti

)
=

∫ 1

0
E exp

(
− xw

Ti−1(1 − w)

)
· θ(1 − w)θ−1 dw

=
∫ 1

0

∫ 1

0
exp

(
− xw

t(1 − w)

)
· θ

u
· θ(1 − w)θ−1 dt dw,

where the second equality follows from Ignatov’s description [56] of GEM(θ)

variables as a Poisson point process on (0,1) with intensity θ(1 − u)−1 du. Note
that ∫ 1

0

∫ 1

0
exp

(
− xw

t(1 − w)

)
u−1(1 − w)θ−1 dt dw

=
∫ 1

0
E1

(
xw

1 − w

)
(1 − w)θ−1 dw,

where E1(x) := ∫ ∞
x u−1e−u du with E1(x) ∼ − log(x) as x → 0+. It follows by

elementary estimates that the above integral is finite, which leads to the desired
result. �

Let � be the P -biased permutation of N+ for P the geometric(1 − q) distribu-
tion, with the renewal sequence (un,q;n ≥ 1). Let Cn,1,q be the number of fixed
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points of � contained in [n], and ν1,q be the expected number of fixed points of �

in a generic component. According to Proposition 3.3,

lim
n→∞

Cn,1,q

n
= ν1,qu∞,q a.s.,

where u∞,q := limn→∞ un,q . Note that with probability 1 − q , a generic compo-
nent has only one element. This implies that ν1,q ≥ 1 − q . It follows from Propo-
sition 6.2 that limq↓0 u∞,q = 1. As a result,

(6.4) lim
n→∞

Cn,1,q

n
= α(q) a.s. with lim

q↓0
α(q) = 1.

Similarly, by letting � be the P -biased permutation of N+ for P the GEM(θ)

distribution, and Cn,1,θ be the number of fixed points of � contained in [n],

(6.5) lim
n→∞

Cn,1,θ

n
= β(θ) a.s. with lim

θ↓0
β(θ) = 1.

7. Regenerative P -biased permutations. This section provides further anal-
ysis of P -biased permutations of N+, especially for P the GEM(1) distribution,
with the Wi ’s i.i.d. uniform on (0,1). While the formulas provided by (1.8), (1.23),
or by summing the right-hand side of (1.20) over all permutations π ∈ Sk for the
renewal probabilities uk and their limit u∞ are quite explicit, it is not easy to eval-
uate these integrals and their limit directly. For instance, even in the simplest case
where the Wi ’s are uniform on (0,1), explicit evaluation of uk for k ≥ 2 involves
the values of ζ(j) of the Riemann zeta function at j = 2, . . . , k, as indicated later
in Proposition 7.2.

We start with an exact simulation of the P -biased permutation for any P =
(P1,P2, . . .) with Pi > 0 for all i ≥ 1 involving the following construction of a
process (Wk;k ≥ 1) with state space the set of finite unions of open subintervals
of (0,1), from P and a collection of i.i.d. uniform variables U1,U2, . . . on (0,1)

independent of P .

• Construct Fj = P1 + · · · + Pj until the least j such that Fj > U1. Then set

W1 =
(j−1⋃

i=1

(Fi−1,Fi)

)
∪ (Fj ,1),

with convention F0 := 0.
• Assume that Wk−1 has been constructed for some k ≥ 2 as a finite union of

open intervals with the rightmost interval (Fj ,1) for some j ≥ 1. If Uk lands
in one of the intervals of Wk−1 that is not the rightmost interval, then remove
that interval from Wk−1 to create Wk . If Uk hits the rightmost interval (Fj ,1),
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then construct F� = Fj + Pj+1 + · · · + P� for � > j until the least � such that
F� > Uk . Set

Wk = (
Wk−1 ∩ (0,Fj )

) ∪
(

�−1⋃
i=j+1

(Fi−1,Fi)

)
∪ (F�,1).

It is not hard to see that a P -biased permutation � of N+ can be recovered from the
process (Wk;k ≥ 1) driven by P , with �k a function of W1, . . . ,Wk . In particular,
the length Y1 of the first component of � is

Y1 = min
{
k ≥ 1 : Wk is composed of a single interval (F�,1) for some l

}
.

In the sequel, the notation θ= or
θ≈ indicates exact or approximate evaluations for

the GEM(θ) model; that is the residual factors Wi are i.i.d. beta(1, θ) distributed.
By a simulation of the process (Wk;k ≥ 1) for GEM(1), we get some surprising
results:

(7.1) EY1
1≈ 3 and Var(Y1)

1≈ 11,

which suggests that

(7.2) u∞ = 1/EY1
1= 1/3.

These simulation results (7.1) are explained by the following lemma, which
provides an alternative approach to the evaluation of uk derived from a RAM. This
lemma is suggested by work of Gnedin and coauthors on the Bernoulli sieve [43,
44, 49], and following work on extremes and gaps in sampling from a RAM by
Pitman and Yakubovich [86, 87].

LEMMA 7.1. Let X1,X2, . . . be a sample from the RAM (1.21) with i.i.d. stick-

breaking factors Wi
(d)= W for some distribution of W on (0,1). For positive inte-

gers n and k = 0,1, . . . let

(7.3) Q∗
n(k) :=

n∑
i=1

1(Xi > k)

represent the number of the first n balls which land outside the first k boxes. For
m = 1,2, . . . let n(k,m) := min{n : Q∗

n(k) = m} be the first time n that there are
m balls outside the first k boxes. Then:

• For each k and m, there is the equality of joint distributions

(7.4)
(
Q∗

n(k,m)(k − j),0 ≤ j ≤ k
) (d)= (Q̂j ,0 ≤ j ≤ k | Q̂0 = m),

where (Q̂0, Q̂1, . . .) with 1 ≤ Q̂0 ≤ Q̂1 · · · is a Markov chain with state space
N+ and stationary transition probability function

(7.5) q̂(m,n) :=
(

n − 1

m − 1

)
EWn−m(1 − W)m for m ≤ n.
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So q̂(m,•) is the mixture of Pascal (m,1−W) distributions, and the distribution
of the Q̂ increment from state m is mixed negative binomial (m,1 − W).

• For each k ≥ 1, the renewal probability uk for the P -biased permutation of N+
for P a RAM is the probability that the Markov chain Q̂ started in state 1 is
strictly increasing for its first k steps:

(7.6) uk = P(Q̂0 < Q̂1 < · · · < Q̂k | Q̂0 = 1).

• The sequence uk is strictly decreasing, with limit u∞ ≥ 0 which is the probabil-
ity that the Markov chain Q̂ started in state 1 is strictly increasing forever:

(7.7) u∞ = P(Q̂0 < Q̂1 < · · · | Q̂0 = 1).

PROOF. For 0 < v < 1 and U1,U2, . . . a sequence of i.i.d. uniform [0,1] vari-
ables, let

Nn(v,1) :=
n∑

i=1

1(v < Ui < 1)

be the number of the first n values that fall in (v,1), and let

g(v,m) := min
{
n ≥ 1 : Nn(v,1) = m

}
be the random time when Nn(v,1) first reaches m. So g(v,m) has the Pascal(m,

1 − v) distribution of the sum of m independent random variables with geometric
(1 − v) distribution on N+. Then there is the well-known identity in distribution
of Pascal counting processes [17, 33]

(7.8)
(
Ng(v,m)(u,1),0 ≤ u ≤ v

) (d)=
(
Ym

(
log

(
1 − v

1 − u

))
,0 ≤ u ≤ v

)
,

where (Ym(t), t ≥ 0) is a standard Yule process; that is the pure birth process on
positive integers with birth rate k in state k, with initial state Ym(0) = m. Let the
sample X1,X2, . . . from the RAM be constructed as Xi = j iff Ui ∈ (Fj−1,Fj ]
where Fj := 1 − ∏j

i=1(1 − Wi) for a sequence of stick-breaking factors (Wi; i ≥
1) independent of the uniform sample points (Ui; i ≥ 1). Then by construction
Q∗

n(k,m)(i) = Ng(Fk,m)(Fi,1) for each 0 ≤ i ≤ k. The identity in distribution (7.8)
yields

(7.9)
(
Q∗

n(k,m)(i),0 ≤ i ≤ k
) (d)=

(
Ym

(
log

(
1 − Fk

1 − Fi

))
,0 ≤ i ≤ k

)
,

first conditionally on F1, . . . ,Fk , then also unconditionally, where on the right-
hand side it is assumed that the Yule process Ym is independent of F1, . . . ,Fk .

By a reversal of indexing, and the equality in distribution (Wk, . . . ,W1)
(d)=

(W1, . . . ,Wk), this gives

(7.10)
(
Q∗

n(k,m)(k − j),0 ≤ j ≤ k
) (d)= (

Ym(τj ),0 ≤ j ≤ k
)
,
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where τj := ∑j
i=1 − log(1 − Wi), and the Wi are independent of the Yule process

Ym. It is easily shown that the process on the right-hand side of (7.10) is a Markov
chain with stationary transition function q̂ as in (7.5). This gives the first part of
the lemma, and the remaining parts follow easily. �

For P the GEM(θ) distribution, the transition probability function q̂ of the Q̂

chain simplifies to

(7.11) q̂(m,n)
θ= (m)n−m(θ)m

(1 + θ)n

1= m

n(n + 1)
for m ≤ n,

where

(x)j := x(x + 1) · · · (x + j − 1) = �(x + j)

�(x)
.

The Markov chain Q̂ with the transition probability function (7.11) for θ = 1 was
first encountered by Erdős, Rényi and Szüsz in their study [31] of Engel’s series
derived from U with uniform (0,1) distribution, that is,

U = 1

q1
+ 1

q1q2
+ · · · + 1

q1q2 · · ·qn

+ · · · ,

for a sequence of random positive integers qj ≥ 2. They showed that

(qk+1 − 1, k ≥ 0)
(d)= (Q̂k, k ≥ 0),

for Q̂ with transition matrix q̂ as in (7.11) for θ = 1, and initial distribution

(7.12) P(Q̂0 = m) = 1

m(m + 1)
for m ≥ 1.

Rényi [90], Theorem 1, showed that for this Markov chain derived from Engel’s
series, the occupation times

(7.13) Gj :=
∞∑

k=0

1(Q̂k = j) for j ≥ 1,

are independent random variables with geometric(j/(j + 1)) distributions on N0.
Rényi deduced that with probability one the chain Q̂ is eventually strictly increas-
ing, and [90], (4.5), that for the initial distribution (7.12) of Q̂0

(7.14) P(Q̂0 < Q̂1 < · · · ) 1=
∞∏

j=1

P(Gj ≤ 1)
1=

∞∏
j=1

j (j + 2)

(j + 1)2 = 1

2
,

by telescopic cancellation of the infinite product. A slight variation of Rényi’s
calculation gives for each possible initial state m of the chain

(7.15) P(Q̂0 < Q̂1 < · · · | Q̂0 = m)
1= m

m + 1

∞∏
j=m+1

j (j + 2)

(j + 1)2 = m

m + 2
.
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The instance m = 1 of this formula, combined with (7.7), proves the formula (7.2)
for u∞ for the GEM(1) model. A straightforward variation of these calculations
gives the corresponding result for P the GEM(θ) distribution:

(7.16) u∞ θ= 1

1 + θ

∞∏
j=2

j (j + 2θ)

(j + θ)2 = �(θ + 2)�(θ + 1)

�(2θ + 2)
.

A key ingredient in this evaluation is the fact that in the GEM(θ) model the random
occupation times Gj of Q̂ are independent geometric variables; see [86, 87]. For a
more general RAM, the Gj ’s may not be independent, and they may not be exactly
geometric, only conditionally so given Gj ≥ 1. The Yule representation (7.10) of
Q̂ given Q̂(0) = 1 as Q̂(j) = Y1(τj ) combined with Kendall’s representation [61],
Theorem 1, of Y1(t) = 1 + N(ε(et − 1)) for N a rate 1 Poisson process and ε

standard exponential independent of N , only reduces the expression (7.7) for u∞
back to the limit form as n → ∞ of the previous expression (1.23). So u∞ for a
RAM is always an integral over x of the expected value of an infinite product of
random variables; see also [57, 58, 86] for treatment of closely related problems.
Now we give a proof of Proposition 1.8.

PROOF OF PROPOSITION 1.8. The result of [44], Theorem 3.3, shows that
under the assumptions of the proposition, if Ln is the number of empty boxes to
the left of the rightmost box when n balls are thrown, then

Ln
(d)−→ L∞ :=

∞∑
j=1

(Gj − 1)+ as n → ∞,

where the right-hand side is defined by the occupation counts (7.13) of the Markov
chain Q̂ for the special entrance law

(7.17) P(Q̂0 = m) = EWm

mE[− log(1 − W)] for m ≥ 1,

which is the limit distribution of Zn, the number of balls in the rightmost occupied
box, as n → ∞, and that also

ELn → EL∞ = E[− logW ]
E[− log(1 − W)] ,

which is finite by assumption. It follows that P(L∞ < ∞) = 1, hence also that
Pm(L∞ < ∞) = 1 for every m, where Pm(•) := P(• | Q̂0 = m). Let R := max{j :
Gj > 1} be the index of the last repeated value of the Markov chain. From
P1(L∞ < ∞) = 1, it follows that P1(R < ∞) = 1, hence that P1(R = r) > 0 for
some positive integer r . But for r = 2,3, . . . , a last exit decomposition gives

P1(R = r) =
( ∞∑

k=1

P1(Q̂k−1 = Q̂k = r)

)
Pr (L∞ = 0),
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where both factors on the right-hand side must be strictly positive to make P1(R =
r) > 0. Combined with a similar argument if P1(R = 1) > 0, this implies Pr (L∞ =
0) > 0 for some r ≥ 1, hence also

u∞ = P1(L∞ = 0) ≥ P1(Gi ≤ 1 for 0 ≤ i < r,Gr = 1)Pr (L∞ = 0) > 0,

which is the desired conclusion. �

To conclude, we present explicit formulas for uk of a GEM(1)-biased permuta-
tion of N+. The proof is deferred to the forthcoming article [29].

PROPOSITION 7.2 ([29]). Let � be a GEM(1)-biased permutation of N+,
with the renewal sequence (uk;k ≥ 0). Then (uk;k ≥ 0) is characterized by any
one of the following equivalent conditions:

(i) The sequence (uk;k ≥ 0) is defined recursively by

(7.18) 2uk + 3uk−1 + uk−2
1= 2ζ(k) with u0 = 1, u1 = 1/2,

where ζ(k) := ∑∞
n=1 1/nk is the Riemann zeta function.

(ii) For all k ≥ 0,

(7.19) uk
1= (−1)k−1

(
2 − 3

2k

)
+

k∑
j=2

(−1)k−j

(
2 − 1

2k−j

)
ζ(j).

(iii) For all k ≥ 0,

(7.20) uk
1=

∞∑
j=1

2

jk(j + 1)(j + 2)
.

(iv) The generating function of (uk;k ≥ 0) is

(7.21) U(z) :=
∞∑

k=0

ukz
k 1= 2

(1 + z)(2 + z)

[
1 + (

2 − γ − �(1 − z)
)
z
]
,

where γ := limn→∞(
∑n

k=1 1/k − lnn) ≈ 0.577 is the Euler constant, and �(z) :=
�′(z)/�(z) with �(z) := ∫ ∞

0 tz−1e−t dt , is the digamma function.

The distribution of Y1, that is fk := P(Y1 = k) for all k ≥ 1, is determined by
(uk;k ≥ 0) or U(z) via the relations (1.12)–(1.13). It is easy to see that the gener-
ating function F(z) of (fk;k ≥ 1) is real analytic on (0, z0) with z0 ≈ 1.29. This
implies that all moments of Y1 are finite. By expanding F(z) into power series at
z = 1, we get

(7.22) F(z)
1= 1 + 3(z − 1) + 17

2
(z − 1)2 + 1

2

(
47 + π2)

(z − 1)3 + · · · ,

which agrees with the simulation (7.1), since EY1 = F ′(1)
1= 3 and Var(Y1) =

2F ′′(1) + F ′(1) − F ′(1)2 1= 11.



1412 J. PITMAN AND W. TANG

Acknowledgments. We thank David Aldous, Persi Diaconis, Marek Biskup
and Sasha Gnedin for various pointers to the literature. Thanks to Jean-Jil
Duchamps for an insightful first proof of our earlier conjecture that u∞ = 1/3.
We also thank an anonymous referees for his careful reading and valuable sugges-
tions.

REFERENCES

[1] ACAN, H. and PITTEL, B. (2013). On the connected components of a random permuta-
tion graph with a given number of edges. J. Combin. Theory Ser. A 120 1947–1975.
MR3102170

[2] ALAPPATTU, J. and PITMAN, J. (2008). Coloured loop-erased random walk on the complete
graph. Combin. Probab. Comput. 17 727–740. MR2463406

[3] ALDOUS, D. and DIACONIS, P. (1995). Hammersley’s interacting particle process
and longest increasing subsequences. Probab. Theory Related Fields 103 199–213.
MR1355056

[4] ALDOUS, D., MIERMONT, G. and PITMAN, J. (2005). Weak convergence of random
p-mappings and the exploration process of inhomogeneous continuum random trees.
Probab. Theory Related Fields 133 1–17. MR2197134

[5] ALDOUS, D. and PITMAN, J. (2002). Invariance principles for non-uniform random map-
pings and trees. In Asymptotic Combinatorics with Application to Mathematical Physics
(St. Petersburg, 2001). NATO Sci. Ser. II Math. Phys. Chem. 77 113–147. Kluwer Aca-
demic, Dordrecht. MR1999358

[6] ASMUSSEN, S. (2003). Applied Probability and Queues: Stochastic Modelling and Applied
Probability, 2nd ed. Applications of Mathematics (New York) 51. Springer, New York.
MR1978607

[7] BACHER, R. and REUTENAUER, C. (2016). Number of right ideals and a q-analogue of
indecomposable permutations. Canad. J. Math. 68 481–503. MR3492625

[8] BAIK, J., DEIFT, P. and JOHANSSON, K. (1999). On the distribution of the length of the
longest increasing subsequence of random permutations. J. Amer. Math. Soc. 12 1119–
1178. MR1682248

[9] BASU, R. and BHATNAGAR, N. (2017). Limit theorems for longest monotone subsequences
in random Mallows permutations. Ann. Inst. Henri Poincaré Probab. Stat. 53 1934–1951.
MR3729641

[10] BEARDON, A. F. (1996). Sums of powers of integers. Amer. Math. Monthly 103 201–213.
MR1376174

[11] BENEDETTO, S. and MONTORSI, G. (1996). Unveiling turbo codes: Some results on parallel
concatenated coding schemes. IEEE Trans. Inform. Theory 42 409–428.

[12] BETZ, V. and UELTSCHI, D. (2009). Spatial random permutations and infinite cycles. Comm.
Math. Phys. 285 469–501. MR2461985

[13] BHATNAGAR, N. and PELED, R. (2015). Lengths of monotone subsequences in a Mallows
permutation. Probab. Theory Related Fields 161 719–780. MR3334280

[14] BISKUP, M. and RICHTHAMMER, T. (2015). Gibbs measures on permutations over one-
dimensional discrete point sets. Ann. Appl. Probab. 25 898–929. MR3313758

[15] BRODERICK, T., JORDAN, M. I. and PITMAN, J. (2012). Beta processes, stick-breaking and
power laws. Bayesian Anal. 7 439–475. MR2934958

[16] BRODERICK, T., PITMAN, J. and JORDAN, M. I. (2013). Feature allocations, probability
functions, and paintboxes. Bayesian Anal. 8 801–836. MR3150470

[17] BRUSS, F. T. and ROGERS, L. C. G. (1991). Pascal processes and their characterization.
Stochastic Process. Appl. 37 331–338. MR1102879

http://www.ams.org/mathscinet-getitem?mr=3102170
http://www.ams.org/mathscinet-getitem?mr=2463406
http://www.ams.org/mathscinet-getitem?mr=1355056
http://www.ams.org/mathscinet-getitem?mr=2197134
http://www.ams.org/mathscinet-getitem?mr=1999358
http://www.ams.org/mathscinet-getitem?mr=1978607
http://www.ams.org/mathscinet-getitem?mr=3492625
http://www.ams.org/mathscinet-getitem?mr=1682248
http://www.ams.org/mathscinet-getitem?mr=3729641
http://www.ams.org/mathscinet-getitem?mr=1376174
http://www.ams.org/mathscinet-getitem?mr=2461985
http://www.ams.org/mathscinet-getitem?mr=3334280
http://www.ams.org/mathscinet-getitem?mr=3313758
http://www.ams.org/mathscinet-getitem?mr=2934958
http://www.ams.org/mathscinet-getitem?mr=3150470
http://www.ams.org/mathscinet-getitem?mr=1102879


REGENERATIVE PERMUTATIONS 1413

[18] COMTET, L. (1972). Sur les coefficients de l’inverse de la série formelle
∑

n!tn. C. R. Acad.
Sci. Paris Sér. A–B 275 A569–A572. MR0302457

[19] COMTET, L. (1974). Advanced Combinatorics: The Art of Finite and Infinite Expansions,
enlarged ed. Reidel, Dordrecht. MR0460128

[20] CORI, R. (2009). Hypermaps and indecomposable permutations. European J. Combin. 30
540–541. MR2489248

[21] CORI, R. (2009). Indecomposable permutations, hypermaps and labeled Dyck paths. J. Com-
bin. Theory Ser. A 116 1326–1343. MR2568802

[22] CORI, R., MATHIEU, C. and ROBSON, J. M. (2012). On the number of indecomposable
permutations with a given number of cycles. Electron. J. Combin. 19 Paper 49, 14.
MR2900424

[23] CRITCHLOW, D. E. (1985). Metric Methods for Analyzing Partially Ranked Data. Lecture
Notes in Statistics 34. Springer, Berlin. MR0818986

[24] DIACONIS, P. (1988). Group Representations in Probability and Statistics. Institute of Mathe-
matical Statistics Lecture Notes—Monograph Series 11. IMS, Hayward, CA. MR0964069

[25] DIACONIS, P., MCGRATH, M. and PITMAN, J. (1995). Riffle shuffles, cycles, and descents.
Combinatorica 15 11–29. MR1325269

[26] DIACONIS, P. and RAM, A. (2000). Analysis of systematic scan Metropolis algorithms using
Iwahori–Hecke algebra techniques. Michigan Math. J. 48 157–190. MR1786485

[27] DIVSALAR, D. and POLLARA, F. (1995). Turbo codes for PCS applications. In IEEE Inter-
national Conference on Communications 1 54–59.

[28] DONNELLY, P. (1991). The heaps process, libraries, and size-biased permutations. J. Appl.
Probab. 28 321–335. MR1104569

[29] DUCHAMPS, J.-J., PITMAN, J. and TANG, W. (2017). Renewal sequences and record chains
related to multiple zeta sums. Preprint. Available at arXiv:1707.07776.

[30] DURRETT, R. (2010). Probability: Theory and Examples, 4th ed. Cambridge Series in Statis-
tical and Probabilistic Mathematics 31. Cambridge Univ. Press, Cambridge. MR2722836
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